
  

1 

 

DEPARTMENT OF COMMERCE (CA) 

DATABASE MANAGEMENT SYSTEM (Semester-III) 

II B.COM(CA)                                            Sub Code-18BCA32C 

UNIT –II 
Relational Approach: Relational Data Structure : Relation, Domain, Attributes, Key 

Relational Algebra - Introduction, Traditional Set Operation. Attribute names for 

derived relations - Special Relational Operations. 

 

 

Relational Approach 
Introduction: 

 

The relational model has established itself as the primary data model for commercial data-

processing applications. The first database systems were based on either the network 

model or the hierarchical model. The relational model is now being used in numerous 

applications outside the domain of traditional data processing. 

 

Structure of relational databases. 

 

A relational database consists of a collection of tables, each of which is assigned a unique 

name. A row in a table represents a relationship among a set of values. The rows are 

termed as tuples and columns are termed as attributes. Since a table is a collection of such 

relationships, there is a close correspondence between the concept of table and the 

mathematical concept relation, from which the relational data model takes its name. 

 

The following account table or relation has three column headers: branch-name, account-

number and balance. These are the attributes (columns are referred as attributes). For each 

attribute there is a set of permitted values, called the domain of that attribute. For the 

attribute, branch-name set of all branch-names is its domain. 

 

The account relation 

   

 

 

 

 

 

 

 

 

 

 

 

Let D1 denote the set of all branch-names, D2 denote the set of all account-numbers, and 

D3 the set of all balances. In the account relation it consists of a 3-tuple (v1, v2, v3), were 

v1 is a branch name, v2 is an account number and v3 is a balance. The account will 

contain only a subset of the set of all possible rows. It can be represented as 

   D1 * 2 * D3 

Branch-name Account-number Balance 

Downtown 

Mianus 

Perry ridge 

Round Hill 

Brighton 

Redwood 

Brighton 

A-101 

A-215 

A-102 

A-305 

A-201 

A-222 

A-217 

500 

700 

400 

350 

900 

700 

750 



  

2 

 

In general a table of n attributes must be a subset of 

    D1   * D2 *……Dn-1     * D n 

 

The relation is said to be a subset of a Cartesian product of a list of domains. Tables are 

relations and the mathematical terms relation and tuple is used for the terms table and row 

respectively. In the account relation of the above figure there are seven tuples. Let the 

tuple variable t refer to the first tuple of the relation .We use the notation t [branch-name] 

to denote the value of t on the branch-name attribute. Thus, t [branch-

name]=”Downtown”, and t [balance]=500.Since the relation is a set of tuples, we use the 

mathematical notation of t E r to denote that tuple r is in relation r.   

 

Domain: - Domain is a pool of values. 

Also we can say that domain is atomic if elements of the domain are considered to be 

individual units. For example, the set of integers is a nonatomic domain. The distinction is 

that we do not normally consider integers to have subparts, but we consider sets of 

integers to have subparts-namely, the integers comprising the set. It is possible for several 

attributes to have the same domain. 

 

The customer relation 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

It is possible for several attributes to have the same domain. For example, suppose that we 

have a relation customer that has the three-attribute customer-name, customer-street and 

customer-city, and a relation employee that includes the attribute employee-name. It is 

possible that the attributes customer-name and employee-name will have the same 

domain: the set of all person names. The domains of balance and branch-name are 

certainly distinct. It is perhaps less clear whether customer-name and branch-name should 

have the same domain. At the physical level, both customer names and branch-names are 

character strings. However, at the logical level, we may want customer-name and branch-

name to have distinct domains. 

 

 

Relation: 

 

Definition for relation (mathematically): 

Customer-name Customer-street Customer-city 

Jones 

Smith 

Hayes 

Curry 

Lindsay 

Turner 

Williams 

Adams 

Johnson 

Glenn 

Brooks 

Green 

Main 

North 

Main 

North 

Park 

Putnam 

Nassau 

Spring 

Alma 

Sand Hill 

Senator 

Walnut 

Harrison 

Rye 

Harrison 

Rye 

Pittsfield 

Stamford 

Princeton 

Pittsfield 

Palo Alto 

Woodside 

Brooklyn 

Stamford 



  

3 

 

Given a collection of set D1, D2,……Dn (not necessarily distinct,R is a relation on those 

n sets if it is a set of ordered n-tuples <d1,d2,……dn> such that d1 belongs to D1,d2 

belongs to D2 ,…..dn belongs to Dn.Set D1,D2,D3,…..Dn are the domains of R.The value 

of n is the degree of R. 

 

The concepts of relation correspond to the programming-language notion of a variable. 

The concept of a relation schema corresponds to the programming-language notion of type 

definition. It is convenient to give a name to a relation schema, just as we give names to 

type definitions in programming languages. We adopt the convention of using lowercase 

names for relations, and names beginning with an uppercase letter for relation schemas. 

For example, 

 

         Account-schema=(branch-name, account-number, balance) 

 

The explanation of relation can be expressed diagrammatically with the help of E-R 

diagrams. Before discussing E-R diagrams, the common terms used in the diagrams is 

analysed. 

 

Entity: This is a thing or object in the real world that is distinguishable from all other 

objects. For example, each person in an enterprise is an entity. An entity has a set of 

properties, and the values for some set of properties may uniquely identify entity. For 

example, the social-security number 677-89-9011(employee number 1111) uniquely 

identifies one particular person in the enterprise. 

 

Entity Set: An entity set is a set of entities of the same type that share the same properties 

or attributes. The set of all persons who are customers at a given bank, for example, can be 

defined as the entity set customer. 

 

Attributes: An entity is represented by a set of attributes. Attributes are descriptive 

properties possessed by each member of an entity set. Possible attributes of customer 

entity are customer-number, customer-street, and customer-city. The following attribute 

types, as used in the E-r model, can characterize an attribute. 

 

• Simple and Composite attributes: The attributes, which can be divided into 

subparts, are composite attribute. For example, name is an attribute, which is 

combination of first-name, middle name, and last-name. 

 

• Single-valued and Multivalued attributes: The attributes that we have 

specified in our examples all have a single value for a particular entity. For 

instance, the loan-number attribute for a specific loan entity refers to only one 

loan number. Such attributes are said to be single valued. There may be 

instances where an attribute has a set of values for a specific entity. 

 

• Null attributes: A null value is used when an entity does not have a value for 

an attribute. 

 

• Derived attribute: The value for this type of attribute can be derived from the 

values of other related attributes or entities. For instance, let us say that the 

customer entity set has an attribute loans-held, which represents how many 



  

4 

 

loan a customer entity set has from the bank. We can derive the value for this 

attribute by counting the number of loan entities associated with that customer. 

     

Relationship sets 
   

Consider the relation loan. 

    

Branch-name Loan-number Amount 

Downtown 

Redwood 

Perry ridge 

Downtown 

Mianus 

Round Hill 

Perry ridge 

L-17 

L-23 

L-15 

L-14 

L-93 

L-11 

L-16 

1000 

2000 

1500 

1500 

500 

900 

1300 

 

 

A relationship is an association among several entities. For example, we can define a 

relationship that associates customer Hayes with loan number L-15.This relationship 

specifies that Hayes is a customer with loan number L-15. 

 

A relationship set is a set of relationships of the same type.Formally.it is a mathematical 

relation on n>=2 (possibly non distinct) entity sets. If E1, E2,…..En are entity sets, then a 

relationship set R is a subset of  

     {(e1, e2,…………..,en)|e1    E1,e2  E2 ,…..en  En} 

Where (e1, e2,…….en) is a relationship. 

 

Consider the two entity sets customer and loan, we can define the relationship set 

borrower to denote the association between customers and the bank loans that the 

customers have. As another example, consider the two-entity sets loan and branch. We can 

define the relationship set loan-branch to denote the association between a bank loan and 

the branch in which that loan is maintained. 

 

Each row of the table represents one n-tuple of the relation. The number of tuples in the 

relation is called the cardinality of the relation. Eg. The cardinality of the relation loan is 

7. 

 

The relations may be unary, binary, ternary, n-ary etc. 

 

Unary: Relations of degree one is unary. 

 

For ex, the query Find the branch name that issued loan with number L-17.The output will 

be  

 

 Branch-name 

Downtown 

 

Binary: Relations of degree two are binary. 

 

x, Find branch-name and amount for loan-number L-17 from branch relation 



  

5 

 

The output will be, 

    

Branch-name Amount 

Downtown 1000 

 

  Ternary: Relations of degree three are ternary 

 

  N-ary: Relations of degree n are n-ary. 

 

 

Mapping cardinalities: Mapping cardinalities, or cardinality ratios, express the number 

of entities to which another entity can be associated via relationship set. Mapping 

cardinalities are most useful in describing binary relationship sets, although occasionally 

they contribute to the description of relationship sets that involve more than two entity 

sets. 

For binary relationship set R between sets A and B, the mapping cardinality must be one 

of the following: 

 

One to one: An entity is associated with at most one entity in B, and an entity in B is 

associated with at most one entity in A. 

 

One to Many: An entity in A is associated with any number of entities in B.An entity in 

B, however, can be associated with at most one entity in A. 

 

Many to one: An entity in A is associated with at most one entity in B.An entity in B, 

however, can be associated with any number of entities in A. 

 

Many to Many: An entity in A is associated with any number of entities in B, and an 

entity in B is associated with any number of entities in A. 

 

 

Keys: 

 

In a relation there is one attribute whose values is unique within the relation and thus can 

be used to identify the tuples of that relation. 

 

For ex, in the above said loan relation the loan number can be considered as a key, which 

is unique, and can be used to distinguish all other tuples in that relation. Befrore 

discussing on various keys let us have a glance on integrity constraints. 

 

Integrity constraints: 

 

An integrity constraint is a mechanism used by oracle to prevent invalid data entry into the 

table. It is nothing but enforcing rule for the coloumn in a table. The following are the 

various types of integrity constraints: - 

 

*Domain integrity constraints 

 

Maintains value according to the specification like ‘not null’ condition, so that the user has 

to enter a value for the coloumn on which it is specified. 



  

6 

 

‘Not null’ and ‘Check’ constraints fall unde this category. 

 

*Entity integrity constraint  

 

Maintains uniqueness in a record. 

 

 *Referential integrity constraint 

 

            Enforces relationship between tables 

 

To establish a ‘parent-child’ or a ‘master-detail’ relationship between two tables having a 

common column we make use of referential integrity constraints. To implement this we 

should define the column in the parent table as a primary key and the same column in the 

child table as a foreign key referring to the corresponding parent entry. 

  

We define constraint to either at table or column level. If it is defined at the table level, 

then it can be enforced to any number of columns in a table .On other hand, if it is defined 

at the column level then it holds good only for the column for which it is defined. 

 

Various keys related to relational approaches are   

 

Primary Key: Primary key is a set of one or more attributes that, taken collectively 

allows us to identify uniquely an entity in the entity-set. 

 

    Ex.1) An-number in the loan relation 

          2) Also the combination of branch-name and loan-number  

 

Candidate Key: Several distinct sets of attributes could serve as candidate key 

 

Referenced key: It is a unique or a primary key, which is defined on a coloumn belonging 

to the parent table. 

 

Foreign Key: A coloumn or combination of coloumns included in the definition of 

referential integrity, which would refer to a referenced key. 

 

Child table: This table depends upon the values present in the referenced key of the 

parent table, which is referred by a foreign key. 

 

Parent table: This table determines whether insertion or updation of data can be done in 

child table. This table would be referred by child table’s foreign key. 

 

On delete cascade clause 

 

If all rows under the referenced key coloumn in a parent table are deleted, than all rows in 

the child table with dependent foreign key will also be deleted automatically. 

 

Entity-Relationship Diagrams: 

 

An E-R diagram can express the overall logical structure of a database graphically. Such a 

diagram consists of the following major components: 



  

7 

 

 

The symbol used to represent entity is rectangle   

 

The symbol used to represent attribute is ellipse   

 

 

The symbol used to represent links is   lines                 

 

 

The symbol used to represent the relation is     

 

 

The symbol used to represent multivalued attributes is Double ellipses    

 

 

The symbol used to represent the derived attributes is dashed ellipses 

 

 

The symbol used to represent the total partition of entity in a relationship  

set is double lines.  

 

 

E-R diagram for a Banking-Enterprise 

                        

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

account 

Account-number 

Balance 

Account-

branch branch 

Branch-city 

Branch-name Assets 

Deposit

-or 

customer 

Customer-name 

Customer-city 

Customer-street 

Borro-

wer 
loan 

Loan-number 

Amount 

Loan-

branch 



  

8 

 

Various relations used for the discussion of this chapter are 

1.Account relation 

 

 

 

 

 

 

 

 

 

 

2.Loan relation 

 

 

3.Branch relation 

 

Branch-name Branch-city Assets 

Downtown 

Redwood 

Perryridge 

Mianus 

Round hill 

Pownal 

North town 

Brighton 

Brooklyn 

Palo alto 

Horse neck 

Horse neck 

Horse neck 

Bennington 

Rye 

Brooklyn 

9000000 

2100000 

1200000 

400000 

8000000 

300000 

3700000 

7100000 

 

4.Customer relation 

 

Customer-name Customer-street Customer-city 

Jones 

Smith 

Hayes 

Curry 

Lindsay 

Turner 

Williams 

Adams 

Johnson 

Glenn 

Brooks 

Green 

Main 

North 

Main 

North 

Park 

Putnam 

Nassau 

Spring 

Alma 

Sand Hill 

Senator 

Walnut 

Harrison 

Rye 

Harrison 

Rye 

Pittsfield 

Stamford 

Princeton 

Pittsfield 

Palo Alto 

Woodside 

Brooklyn 

Stamford 

Branch-name Account-number Balance 

Downtown 

Mianus 

Perry ridge 

Round Hill 

Brighton 

Redwood 

Brighton 

A-101 

A-215 

A-102 

A-305 

A-201 

A-222 

A-217 

500 

700 

400 

350 

900 

700 

750 

Branch-name Loan-number Amount 

Downtown 

Redwood 

Perry ridge 

Downtown 

Mianus 

Round Hill 

Perry ridge 

L-17 

L-23 

L-15 

L-14 

L-93 

L-11 

L-16 

1000 

2000 

1500 

1500 

500 

900 

1300 



  

9 

 

 

5.Depositor relation 

  

Customer-name Account-number 

Johnson 

Smith 

Hayes 

Turner 

Johnson 

Jones 

Lindsay 

A-101 

A-215 

A-102 

A-305 

A-201 

A-217 

A-222 

 

6.Borrower relation 

 

Customer-name Loan-number 

Jones 

Smith 

Hayes 

Jackson 

Curry 

Smith 

Williams 

Adams` 

L-17 

L-23 

L-15 

L-14 

L-93 

L-11 

L-17 

L-16 

 

Relational Algebra 
 

Note:  Query languages 

         

A query language is a language in which a user requests information from the database. 

These languages are typically of a level higher than that of a standard programming 

language. Query languages can be categorized as being either procedural or non-

procedural .In procedural language, the user instructs the system to perform a sequence of 

operations on the database to compute the desired result. In a non-procedural language, the 

user describes the information desired without giving a specific procedure for obtaining 

that information. 

  

Introduction 

 

Relational algebra is a collection of operations on relations. Also it is a procedural query 

language, it consists of a set of operations that take one or two relations as input and 

produce a new relation as their result. 

 

The fundamental operations or traditional set operations available with relational algebra 

are select, project, set difference, Cartesian, rename, union. In addition to the fundamental 

operations, there are several other operations-namely, set intersection, natural join, 

division, and assignment. These operations will be defined in terms of the fundamental 

operations. Also we can state the selection, projection, join and division operations as 

special relational operators. 

  



  

10 

 

Fundamental operations 

 

The select, project and rename operations are called unary operations, because they 

operate on one relation. The other three operations union, setdifference and Cartesian 

product operate on pairs of relations and are, therefore called binary operations. 

 

The select operation 

 

The select operation selects tuples that satisfy a given predicate. The lowercase Greek 

letter sigma () is used to denote selection. The predicate appear as a subscript to . The 

argument relation is given in parenthesis following the . 

 

Example: 

1.Select those tuples of the loan relation where the branch is “Perryridge”. 

                branch _name=”perryridge”(loan) 

The result of the query is  

                             

 

 

 

 

2.Find all tuples in which the amount lent is more than $1200  

                         Amount>1200(loan) 

All comparisons using =,, <,,≥ in the selection predicate. Also we can combine larger 

predicates using the connectives and (^) and or (۷). 

 

3.Find those tuples pertaining to loans of more than $1200 made by Perryridge branch 

                             branch _name=”perryridge”^amount>1200(loan) 

The project operation 

 

Suppose we want to list all loan numbers and the amount of the loans, but do not care about the 

branch name. The project operation allows us to produce this relation. The project operation is a 

unary operation that returns its argument relation, with certain attributes left out. Since a relation is 

a set, any duplicate rows are eliminated. Projection is denoted by the Greek letter pi (π). We list 

those attributes that we wish to appear in the result as subscript to π.The argument relation follows 

in parentheses.  

 

Example: 

   1.List all loan numbers and the amount of the loan .The corresponding query is 

                π loan-number,amount(loan) 

  The relation that results from this query is                      

Loan-number Amount 

L-17 

L-23 

L-15 

L-14 

L-93 

L-11 

L-16 

1000 

2000 

1500 

1500 

500 

900 

1300 

Branch-name Loan-number Amount 

Perryridge 

Perryridge 

L-15 

L-16 

1500 

1300 



  

11 

 

The set difference operation 

 

The set-difference operation, denoted by -, allows us to find tuples that are in one relation but are 

not in another. The expression r – s results in a relation containing those tuples in r but not in s. 

 

Example: 

          1.Find all customers of the bank who have an account but not a loan 

       π customer-name (depositor) – πcustomer-name (borrower) 

The result will be 

             

Customer-name 

Johnson 

Turner 

Lindsay 

 

For a set difference operation r-s to be valid, we require that the relations r and s be of the same 

arity, and that the domains of the ith attribute of r and the ith attribute of s be the same. 

 

The Cartesian – product operation 

 

The Cartesian-product operation, denoted by a cross (X), allows us to combine information from 

any two relations. We write the Cartesian product of relations r1 and r2 as r1 X r2. Since the same 

attribute name may appear in both r1 and r2, we need to devise a naming schema to distinguish 

between these attributes. We do so here by attaching to an attribute the name of the relation from 

which the attribute originally came. For example, the relation schema for r = borrower X loan is  

 

(borrower.customer-name,borrower.loan-number,loan.branch-name,loan.loan-

number,loan.amount) 

So now we can distinguish borrower.loan-number from loan.loan-number.For those attributes that 

appear in only one of the two schemas,we shall usually drop the relation-name prefix.We can wrte 

the relation schema for r as  

(customer-name,borrower.loan-number,branch-name,loan.loan-number,amount) 

This above naming convention requires that the relations that are arguments of the Cartesian-

product operation have distinct names. 

 

Assume that we have n1 tuples in borrower and n2 tuples in loan. Then, there are n1 * n2 ways of 

choosing a pair of tuples –one tuple from each relation; so there are n1*n2 tuples in r. In particular 

,note that for some tuples t in r,it may be that t[borrower. loan-number] not equal to t[loan.loan-

number]. 

In general ,if we have relations r1(R1) and r2(R2),then r1 X r2 is a realtion whose schema is the 

concatenation of R1 and R2.Relation R contains all tuples t for which there is a tuple t1 in r1,and 

t2 in r2 for which t[R1]=t1[R1] and t[R2]=T2[R2]. 

 

For example  

 

        1.if we want to find the names of all customers who have a loan at the Perryridge branch.We 

need the information in both the loan relation and the borrower relation to do so.If we write  

            branch-name=”Perryridge”(borrower X loan)   

                      



  

12 

 

Customer-name Borrower.loan-number Branch-name Loan.loan-number Amount 

Jones 

Jones 

……. 

……. 

……. 

Adams 

Adams 

L-17 

L-17 

……. 

……. 

……. 

L-16 

L-16 

Downtown 

Redwood 

……. 

…… 

…… 

Round hill 

Perryridge 

L-17 

L-23 

…….. 

……. 

……. 

L-11 

L-16 

1000 

2000 

….. 

….. 

….. 

900 

1300 

                 Table:Result of borrower  X loan 

 

 Now the output of the query stated above will be as 

 

Customer-name Loan-number  Branch-name Loan-number Amount 

Jones 

Jones 

Smith 

Smith 

Hayes 

Hayes 

Jackson 

Jackson 

Curry 

Curry 

Smith 

Smith 

Williams 

Williams 

Adams 

Adams 

L-17 

L-17 

L-23 

L-23 

L-15 

L-15 

L-14 

L-14 

L-93 

L-93 

L-11 

L-11 

L-17 

L-17 

L-16 

L-16 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

Perryridge 

L-15 

L-16 

L-15 

L-15 

L-15 

L-16 

L-15 

L-16 

L-15 

L-16 

L-15 

L-16 

L-15 

L-16 

L-15 

L-16 

1500 

1300 

1500 

1300 

1500 

1300 

1500 

1300 

1500 

1300 

1500 

1300 

1500 

1300 

1500 

1300 

  Table:result of query branch-name=”Perryridge”(borrower X loan)   

 

The relation describes the details relating to perryridge branch alone.But there is a chance that 

many customers may not have a loan at perryridge branch.So the query can be re-written as 

                   borrower.loan-number=loan.loan-number  

                      ( branch-name=”Perryridge”(borrower X loan)) 

In order to retrieve only the customer-name ,we vcan have the projection operation as  

         customer-name(borrower.loan-number = loan.loan-number 

             (branch-name=”Perryridge”(borrower X loan) 

 

The result is as shown below 

          

Customer-name 

Hayes 

Adams 

    Table:Result of  customer-name(borrower.loan-number = loan.loan-number 

             (branch-name=”Perryridge”(borrower X loan) 



  

13 

 

The rename operation 

 

Unlike relations in the database, the results of relational-algebra expressions do not have a name 

that we can use to refer to them. It is useful to be able to give them names; the rename operator, 

denoted by the lower-case Greek letter rho (), lets us perform this task.  

 

Given a relational-algebra expression E, the expression  

                               x(E) 

returns the result of expression E under the name x. 

 

A relation r by itself is considered to be a trivial relational-algebra expression. Thus, we can also 

apply the rename operation to a relation r to get the same relation under a new name. 

 

A second form of the rename operation is as follows. Assume that a relational-algebra 

expression E has arity n. Then the expression 

                                 x(A1,A2,.....An)(E) 

returns the result of expression E under the name x,and with the attributes renamed to 

A1,A2,.....An. 

 

      For example, 

 

        1.Find the largest balance in the bank 

                   Steps invloved are 

• Compute first the relation consisting of those balances that are not the 

largest  

• The take the set difference between the relation  balance(account)  

• Then comes the temporary relation 

 

The corresponding queries are 

      account.balance( account.balance < d.balance(account X d (account))) 

 

This expression gives those balances in the account relation for which a larger 

balance appears somewhere in the account relation(renamed as d).The result 

contains all balances except the largest one.  

The relation is 

 

Balance 

500 

700 

400 

350 

750 

 

The query to find the largest account balance in the bank can be written as follows: 

           balance(account) –  

                 account.balance (account.balance <d.balance(account X d (account))) 

         the result of this query is 

                          

Balance 



  

14 

 

900 

  Fig: largest account balance in the bank 

 

  2.Find the names of all customers who live on the same street and in the same city as Smith 

   The street and city of smith can be obtained by writing as 

                  customer-street,customer-city(customer-name=”Smith”(customer)) 

 

In order to find other customers with this street and city, we must reference the customer relation a 

second time. In the following query, we use the rename operation on the preceding expression to 

give its result the name smith-addr, and to rename its attributes to street and city, instead of 

customer-street and customer-city: 

 

             customer.customer-name 

                 (customer.customer-street=smith-addr.street^customer.customer-city=smith-addr.city 

                        (customer X smith-addr(street,city)         

  (customer-street,customer-city(customer-name=”Smith”(customer))))) 

 

     The result of this query is as shown below 

  

Customer-name 

Smith 

curry 

 

Additional operations or special relational operations 

 

    1.The set-intersection operation 

        The symbol used to identify is . 

 

     Example: 

           1.Find all customers who have both a loan and an account. 

             Query is 

                      customer-name(borrower)  customer-name(depositor) 

        The result will be 

 

Customer-name 

Hayes 

Jones 

Smith 

        Table: customers with both an account and a loan at the bank 

 

The intersection operation can be replaced using the set difference operation as 

 r  s =r-(r-s) 

 



  

15 

 

The Union operation 

 

With the help of this operation we can choose the details which are present in either of two 

relations. 

 

        For example: 

 

1.Find the names of all bank customers who have either an accoubt or a loan or both. The customer 

relaion does not contain the information ,since a customer does not need to have either an account 

or a loan at the bank.And to answer this query we need the information in the depositor relation 

and in the borrower relation . 

           *To find the customers with loan at the bank we use  

                       customer-name(borrower) 

            *To find the names of all customers with an account in the bank: 

                          customer_name(depositor) 

  To find both account and loan holding customers we need to union these two as  

                             Customer-name(borrower)     customer-name(depositor) 

  The result of this query is                    

Customer-name 

Johnson 

Smith 

Hayes 

Turner 

Jones 

Londsay 

Jackson 

Curry 

Williams 

Adams 

        

 For union operation r U s to be valid, we require two conditions: 

 

1.The relations r and s must be of the same arity. That is, they must have the same number of 

attributes. 

2.The domain of the ith attribute of r and the ith attribute of s must be the same, for all i. 

  Where r and s can be, in general temporary relations that are the result of relational-algebra 

expressions. 

 

The natural-join operation 

 

It is often desirable to simplify certain queries that require a Cartesian product. A query 

that involves a Cartesian product includes a selection operation on the result of the 

Cartesian product. 

 

  Assume: 

             Find the names of all customers who have a loan at the bank, and find the amount 

of the loan. 

Steps : 

   1.Form the Cartesian product of the borrower and loan relations. 



  

16 

 

   2.Select those tuples that pertain to only the same loan-number. 

   3.Project the customer-name,loan-number and amount. 

        customer-name,loan.loan-number,amount 

              (borrower.loan-number=loan.loan-number(borrower X loan)) 

 

The natural join is a binary operation that allows us to combine certain selections and a Cartesian 

product into one operation. It is denoted by the “join” symbol ⋈.The natural-join operation forms 

a Cartesian product of its two arguments, performs a selection forcing equality on those attributes 

that appear in both relation schemas, and finally removes duplicate attributes. 

 

For example: 

     1.Find the names of all customers who have a loan at the bank, and find the amount of the loan. 

     customer-name,loan-number,amount(borrower⋈  loan) 

  The result of the query is 

   

Customer-name Loan-number Amount 

Jones 

Smith 

Hayes 

Jackson 

Curry 

Smith 

Williams 

Adams 

L-17 

L-23 

L-15 

L-14 

L-93 

L-11 

L-17 

L-16 

1000 

2000 

1500 

1500 

500 

900 

1000 

1300 

 

  2.find names of all branches with customers who have an account in the bank and who live 

in Harrison 

              branch-name( customer-city=”Harrison”(customer ⋈ account  ⋈  depositor)) 

  The result of the query is   

Branch-name 

Brighton 

Perryridge 

  

The division operation 

 

 The division operation, denoted by, is suited to queries that include the phrase “for all”. 

 

 Example: 

             1.Find all customers who have an account at all the branches located in Brooklyn. 

                  Steps: 

                      1.All branches in Brooklyn can be obtained as 

                                  r1= branch-name( branch-city=”Brooklyn”(branch)) 

 

                                         The result is 

      

 

 

 

Branch-name 

Brighton 

Downtown 



  

17 

 

                  

We can find all (customer-name,branch-name) pairs for which the customer has an account at a 

branch by writing  

                                 r2=customer-name,branch-name(depositor⋈  account) 

 

 

 

   

 

 

 

 

 

 

 Table:Result of customer-name,branch-name(depositor⋈  account) 

 

Our question is to find those customers who appear in r2 with every branch name in r1.We 

formulate the query by writing  

         customer-name,branch-name(depositor ⋈ account) 

           ⊹  Branch-name( branch-city=”Brooklyn”(branch)) 

                                

Extended relational-algebra operations 

 

The basic relational-algebra expressions have been extended in several ways. A simple 

extension is to allow arithmetic operations as part of projection. An important extension is 

to allow aggregate operations, such as computing the sum of the elements of a set, or their 

average. Another important extension is the outer-join operation, which allows relational-

algebra expressions to deal null values, which model missing information. 

 

Generalized Projection 

       

The generalized projection operation extends the projection operation by allowing 

arithmetic functions to be used in the projection list. The generalized projection has the 

form  

                          F1,F2,……Fn(E) 

Where E is any relational-algebra expression, and each F1, F2,…Fn are arithmetic 

expressions involving constants and attributes in the schema of E.As a special case, the 

arithmetic expression may be simply an arithmetic or a constant. The following example 

demonstrates the basis for the use of the generalized projection operation. Suppose we 

have a relation credit-info, as shown, which lists the credit limit and expenses so far .If we 

want to find how much more each person can spend, we can write the following 

expression: 

 

     customer-name,limit  -  credit-balance(credit-info) 

 

 

 

Customer-name Branch-name 

Johnson 

Smith 

Hayes 

Turner 

Williams 

Lindsay 

Johnson 

Jones 

Downtown 

Mianus 

Perryridge 

Round hill 

Perryridge 

Redwood 

Brighton 

Brighton 



  

18 

 

Customer-name Limit Credit-balance 

Jones 

Smith 

Hayes 

Curry 

6000 

2000 

1500 

2000 

700 

400 

1500 

1750 

            

       

Table:The credit-info relation 

 

Customer-name Limit-credit_balance 

Jones 

Smith 

Hayes 

Curry 

5300 

1600 

0 

250 

The result of customer-name, limit  - credit-balance (credit-info) 

 

Outer join 

 

The outer-join operation is an extension of the join operation to deal with missing information. 

 

Aggregate functions 

 

Aggregate functions are functions that take a collection of values and return a single value as a 

result. For example, the aggregate function sum takes a collection of values and returns the sum of 

the values. 

 

The function sum applied on the collection  

          <1,1,3,4,4,11> 

returns the value 24. 

The function avg    returns the average of the values. So average of the above is 4. 

 

The function count returns the number of the elements in the collection and would return 6 on the 

preceding collection. 

 

The functions min and max, returns the minimum and maximum values in a collection; they return 

1 and 11. 

 

Examples: 

 

 1.Find out the total sum of salaries of all part-time employees in the bank. 

 

 The query is 

               Sum salary (pt-works) 

The result of this query is a relation with a single attribute, containing a single row with a 

numerical value corresponding to the sum of all the salaries of all employees working part-time in 

the bank. 

 



  

19 

 

 

BOOKS FOR REFERENCE: 

 

1. Database systems concepts by Abraham Silberschatz, Henry F. Korth. 

2. An Introduction to Database System – C. Dsai.  

3. An introduction to Database Systems (Seventh Edition) – C.J. Date 

 

Prepared by Dr.N.SHANMUGAVADIVU 
 


