DEPARTMENT OF COMMERCE (CA)
DATABASE MANAGEMENT SYSTEM (Semester-111)
11 B.COM(CA) Sub Code-18BCA32C
UNIT - 11

Embedded SQL.: Introduction — Operations not involving cursors, involving cursors —
Dynamic statements, Query by Example — Retrieval operations, Built-in Functions,
update operations - QBE Dictionary. Normalization: Functional dependency, First,
Second, Third normal forms, Relations with more than one candidate key, Good and
bad decomposition.

Embedded SOL

SQL provides a powerful declarative query language; writing queries in SQL are typically
much easier than is coding the same queries in a general-purpose programming language. To
access a database from a general-purpose programming language is for the following two
reasons.

1.Not all queries can be expressed in SQL, since SQL does not provide the full expressive
power of a general-purpose language. That is, there exists queries that can be expressed in a
language such as Pascal, C, COBOL or FORTRAN that cannot be expressed in SQL write
queries, we can embed SQL within a more powerful language

2.Nondeclarative actions-such as printing a report, interacting with a user, or sending the
results of a query to a graphical user interface-cannot be done from within SQL.

A language in which SQL queries are embedded is referred to as host language, and the SQL
structures permitted | the host language constitute embedded SQL.

Languages such as PL/I however are not well equipped to handle more that one record at a
time. It is therefore necessary t provide some form of bridge between the two functional
levels and embedded SQL provides such a bridge by means of a new type of object called a
cursor.

Operations not involving cursors

The DML statements that do not need cursors are as follows:

a “Singleton SELECT”
o UPDATE

o INSERT

o DELETE

Singleton SELECT

We use the term “singleton SELECT “ to mean statement for which the retrieved
table contains at most one row.
Example: SELECT statement

UPDATE

This statement can be executed to have changes in the databases designed.
Example: UPDATE, statement of SQL.

INSERT

This statement is used to include new row or information.
Example: INSERT, statement of SQL.

DELETE
This is used to delete information from the database.

Example: DELETE, statement of SQL.

Operations involving cursors

Consider the case of a SELECT that selects a whole set of records, not just one. What is
needed is a mechanism for accessing the records in the set one by one; and cursors provide
such a mechanism. Explicitly defined cursors are constructs that enable the user to name an
area of memory to hold a specific statement for access at a later time.

The programmer to process a multiple-row active set one record at a time defines explicit
cursors. The following are steps for using explicitly defined cursors within PL/SQL.

1. Declare the cursor

* Name the cursor
* Each cursor associates a query with cursor

Syntax
Declare cursor-name is Select statement
Example
Declare ¢ _names is select branch_name from branch where
branch_city="Brooklyn’;

2. Open the cursor

Opening the cursor activates the query and identifies the active set. Open also
initializes the cursor pointer to just before the first row of the active set.

Syntax
Open cursor-name;

3. Fetching the cursor

Getting data into the cursor is accompolished with the fetch command.The fetch
command retrieves the rows in the cursor set one row at a time.

2

Syntax
Fetch cursor-name into record-list;

4. Closing the cursor

The close statement closes or deactivates the previously opened cursor and makes the
active set undefined oracle will implicitly close a cursor when the user’s program or
session is terminated. After a cursor is closed ,we cannot perform any operation on it.

Syntax
Close cursor-name;
Attributes involved in cursors

% %ISOPEN returns TRUE if the cursor is already OPEN

% %FOUND returns TRUE if the last FETCH returned a row, and returns
FALSE if the last FETCH failed to return
arow.

% %NOTFOUND is the logical opposite of %FOUND.

% %ROWCOUNT yields the number of rows fetched.

Example to illustrate cursor

1)Declare
Cursor c4 is select salary,job from emp where job="CLERK’;
Begin
if c4%isopen then
dbms.output.put_line(‘This message will not be displayed’);
else
open c4;
dbms.output.put_line(‘Cursor not found’);
end if;
close c4;
end;

2) The procedure to update students information by finding the total and average.

Declare
st stu%rowtype;
cursor cl is select * from stu;
Begin
Open c1,
loop;
fetch c1 into st;
exit when c1%notfound;
st.totll:=st.m1+st.m2+st.m3;
st.average:=st.total/3;

if st m1>=50 and st.m2>=50 and st. m3>=50 then
st.result:="PASS’;
else
st.result:="FAIL’;
end if;
update stu set total=st.total,average=st.average,result=st.result
where regno=st.regno;
end loop;
commit;
end;

Dynamic Statements

Embedded SQL provides certain features to facilitate the writing of on-line application
programs that is programs to support on-line access to the database from an end-user at the
terminal. Steps involved are

1.accept a command from the terminal
2.analyze the command

3.issue appropriate SQL statements

4.return a message and/or results to the terminal

The precompiler is a compiler for the SQL language. Suppose the application programs have
written a program P that includes some embedded SQL statements.

Pre-compilation proceeds as follows.

%+ The precompiler scans the source program P and locates the embedded SQL
statements.

» For each statement it finds the precompiler decides on a strategy for implementing
that statements in terms of RSI operations. This process is referred to as
optimization

% The precompiler replaces each of the original embedded SQL statements by an
ordinary PL/I statement

o

L)

The dynamic SQL component of SQL-92 allows programs to construct and submit
SQL queries at run-time. In case of embedded SQL, each statement must be
completely present at compile time, and are compiled by the embedded SQL
preprocessor.

Using dynamic SQL, programs can create SQL queries as strings at run-time (based on
i/p from the user) and can either have them executed immediately, or have them
prepared for subsequent use.

The two principal dynamic statements are PREPARE and EXECUTE.

DCL SQLSOURCE CHAR (256);

SQLSOUCE ="DELETE FROM BRANCH WHERE
BRANCH_CITY="PERRYRIDGE’;

$PREPARE SQLOBJ FROM SQLSOURCE:

$EXECUTE SQLOBJ:

4

The PREPARE statement passes the SQLSOURCE string to the RDS precompiler
which goes through its normal process of parsing, optimization, code generation and
builds a machine language versions of the statement called SQLOBJ.EXECUTE
statement causes this machine language routine to be executed and thus causes the
actual deletions to occur.

Once PREPARE, a given dynamically generated SQL statement can be EXECUTED
many times. The generated statement can be replaced by another by issuing PREPARE
again with the same target and a different source.

QUERY-BY-EXAMPLE

Query-by-example (QBE) is the name of both a data-manipulation language and the
database system that included this language. The QBE database system was
developed at IBM T.J.Watson Research center in the early 1970s.Today,some-
database systems for personal computers support variants of QBE languages. It has
two distinctive features:

1.Unlike most query languages and programming languages, QBE has a two-
dimensional syntax: Queries look like tables. A query in one-dimensional language
can be written in a one line. A two-dimensional language requires two dimensions for
its expression.

2.QBE queries are expressed “by example”. Instead of giving a procedure for
obtaining the desired answer, the user gives an example of what is desired. The
system generalizes this example to compute the answer to the query.

We express queries in QBE using skeleton tables. These tables show
the relation schema as shown below.

Example the representation of branch relation

Branch Branch Branch city assets
name

Retreival opérations

Queries on One relation
Examples:

1:Find all loan numbers at the Perryridge branch

Loan Branch- Loan- Amount
name number
Perryridge P. X

The proceeding query causes the system to look for tuples in loan that have “perryridge” as
the value for the branch-name attribute. For each such tuple the value of the loan-number

5

attribute is assigned to the variable x. The value of the variable x is “printed”, because the
command P. appears in the loan-number coloumn next to the variable x.QBE assumes that a
blank position in a row contains unique variable.As a result,if a variable does not appear
more than once in a query,it may be omitted.

Thus the previous query can be re-written as

Loan |branch-name [loan-number |amount
Perryridge |P. ‘

QBE performs duplicate elimination automatically.To suppress the duplicate elimination,we
insert the command ALL. After the P. command:

Loan |branch-name |loan-number amount
‘ Perryridge ‘ P.ALL ‘

To display the entire loan relation ,we can create a single row consisting of P. in every field.
Loan |branch-name Joan-number amount
P.
QBE allows queries that involve arithmetic comparisons
Example
1.Find the loan numbers of all loans with a loan amount of more than $700.

Loan |Branch-name | Loan-no. [Amount
‘ ‘ ‘ P.>700

The arithmetic operations that QBE supports are =,<,<,> and —
2.Find the names of all branches that are not located in Brooklyn.

Branch Branch-name Branch-city Agsets

‘ P. -Brooklyn

3.Find the loan-no. of all loans made jointly to Smith and Jones.

Borrower| Customer-name| Loan-no.
Smith’ P. X
‘Jones’ X

4.Find the loan numbers of all loans made to smith ,to Jones or to both jointly.

6

Borrower customer-name _|oan-no.
‘Smith’| P, x
‘Jones’ P.y

5.Find all customers who live in the same city as Jones.

Customer |Cust0mer-name | Customer-street |Cust0mer-city
P. X 'y
Jones 'y

Queries on several relations

QBE allows queries that span several different relations. The connections
among the various relations are achieved through variables that force certain tuples to
have the same value on certain attributes.
Example

1.Find the names of all customers who have a loan from the ‘perryridge’ branch..

‘ loan brancl+_name Ipan_no. amount

‘ perryridge ‘ X ‘

borrower| cust_name | loan_no.

P. X X

2.Find the names of all customers who have both an account and a loan at the bank.

Depositor customer-name| account-no.

P. X

Borrower customer-name |account-no.

X

3.Find the names of all customers who have an account at the bank ,but who have a
loan from the bank.

Depositor tustomer-name |account-no
P. x

Borrower | customer-name |oan-no.
X

4.Find all customers who have atleast two account.

Depositor |customer-name | account-no.

P. X ‘ y

X ¥

The condition box

It is not convenient to express all the constraints on the domain variables
within the skeleton tables. To overcome this QBE includes a condition box feature
that allows the expression of general constraints over any of the domain variables.
Example:

1:Find all customers who are not named ‘Jones’ and who atleast two account.

Depositor customer-name | account-no.

P. x y

X ¥

Conditions

-Y>_ 7

2.Find all account-no. with a balance between $1300 and $1500 ,we write

acc-no.| branch-name| acc-nol balance
| ‘ P. ‘ X

Conditions

x.>1300
“x<1500

3.Find all branches that have assests greater than those of atleast one branch loacated
in ‘Brooklyn’.

Branch | branch-name| branch-city| assets

P. X y
Brooklyn | x

Conditions

Y>>z

Options available with condition Box

1.QBE allows complex arithmetic expressions to appear in a condition box.
Example:
Find all branches that have assets that are atleast twice as large as the assets of one of
the branches located in Brooklyn.

Branch | branch-name| branch-city| assets

P._X _y
Brooklyn |_x

2.QBE allows logical expressions to appear in condition box.Operators used are and(
&),or(])

Example

Find all account numbers with a balance between $1300 and $2000 but not exactly
$1500.

Account‘branch-name $ccount—no. dalance
‘ ‘ P. X

Conditions

_x=(>1300 and <2000 and
~ 1500)

The result relation

If the result of a query includes attributes from several relation schemas, we need a
mechanism to display the desired result in a single table.
Example
1.Find the customer-name, account-no. and balance for all accounts at the perryridge
branch
In relational algebra
1.Join depositor and account relation
2.project customer-name, account-no. and balance
QBE related with this.

1.Create a skeleton table called result with attributes customer-name, account-no. and
balance.

Account

branch-name z{ccount-no‘ Balance

Perryridge ‘_y ‘ Z

Depositor| customer-name gccount-no.

Result customer-name‘ account-no. Falance

Ordering of the displa of tuples

P X ‘ y ‘ Z
By using the command AO. And DO. we can order the contents.
Example

1.List all customers in descending alphabetical order.

Depositor Lustomer-name a&count-no.

P.DO. ‘

Aggregate functions[Built-in functions]

10

QBE includes the aggregate operators AVG, MAX, MIN, SUM and CNT.we must
postfix these operators with ALL. to create a multiset on which the aggregate
operation is evaluated.

Example

1.Find the total balance of all the account maintained at the perryridge branch.

Account |branch-name |account-no. Ibalance

Perryridge P.SUM
ALL.

2.Find the total no. of customers who have an account at the bank.

Depositor‘ customer-name |account-no.

‘ P.CNT.UNQ.ALL. ‘

3.Find the name,street and city of all customers who have more than one account at
the bank.

Customer |:ust-name c}.Jst-street 4ust—city

P. X

Depositor | Cust-name| Account-No.

G. X |CNT.ALL.y

Conditions

CNT.ALL. y>1

Update operations/Modification of the database

This section deals with the options how to add, remove or change information using QBE.

Deletion

Deletion of tuples from a relation is expressed in much the same way as a
query. The major difference is the use of D. in the place of P..In QBE we can delete
whole tuples, as well as values in selected coloumns. To delete information in only
some of the columns, null values, specified by-are inserted.

D. Operates on only one relation. To delete tuples from several relations, we
must use one D. operator for each relation.

11

*Delete customer smith

customer| cust_name ‘ cust_street‘ cust_city
D Smith ‘ ‘

*Delete the branch-city value of the branch whose name is “Perryridge”.

Branch‘ branch-name branch-city‘asstes

‘ Perryridge ‘ D. ‘
*Delete all loans with a loan amount between $1300 and $1500

Loan| Branch-name| Ioan-no.| amount
D. ‘ y ‘ X

Borrower| cust_namei loan_no.
D. ‘ ‘ y

Condition

_x=(>=1300 and <= 1500)

*Delete all accounts at all branches located in Brooklyn.

Account] branch_name| account_no.| balance

D. X y

Depositor F st_name| acc_Ino.

D.

E

branch| branch_name| branch_city | assets

Brooklyn ‘

E

12

Insertion

We do the insertion by placing the I. Operator in the query expression.The attribute
values for inserted tuplles must be members of the attributes domain

Example

*To insert into the branch relation information about a new branch with name
“Capital” and city “Queens”,but with a null asset value,we write

branch| branch_name| branch_citﬂ assets
l. ‘Capital ‘Queens ‘

*To insert the account A-9732 at the Perryridge branch has a balance of $700.

Account | branch-nam4 account_no/ balance
l. ‘Perryridge ‘A-9732 ‘700

Updates

If we want to changeone value in a tuple withput changing all values in the tuple we
use the update facility and the operartor used is U. .QBE allows users to update the
primary key fields.

e Update the asset value of the Perryridge branch to $10,000,000

Branch| branch-name| branch-city| assets

‘ Perryridge ‘ U. 100000000

The query updates the assets of the Perryrigde branch to $10,000,000 regardless of the old
values.If we want to update a value using the previous vaulue ,we must express a request
using two rows:One specifying the old tuples that need to be updated,and the other indicating
the new updated tuples to be inserted in the database

e The interesty payments are being made,and all branches are to be
increased by 5%.

Account |branch-nam4 account-no/ balance

u. X *1.05
X.

13

OBE Dictionary

QBE has a built-in dictionary that is represented to the user as a collection of tables. The
dictionary includes for example, a TABLE and a DOMAIN table, giving details of all tables
and all domains currently known to the system. The dictionary tables can be interrogated
using the ordinary retrieval operations of the DML.

Retrieval of table-names

Get the names of all tables known to the system.

Instead of having to build a skeleton for the TABLE table and entering “P.” in the
NAME column of that skeleton, the user can formulate this query by simply entering the “P.”
in the table-name position of the blank table.

Retrieval of column-name for a given table

Get names of all columns in table S.
s| P |

User enters the table-name (S) followed by “P.” against the row of (blank) column-names.

Creation of a new table

1.Create table branch

I. branch I. |Branch name| branch city| branch street

The first 1. Creates a dictionary entry for table branch; the 2" I. Creates dictionary
entries for the four columns of the table branch. Also the information for each column must
be specified .The information includes the name of the underlying domain; the data-type of
the domain; if that domain is not already known to QBE.

14

Dropping a table
Drop table branch.
A table can be dropped only if it is currently empty.
1) Delete all branch details
branch street

branch [branch name

o T

2) Drop the table

branch city

D. Branch ‘ branch name‘ branch city‘branch street

Add a asset coloumn to the table branch.

Expanding a table

QBE does not directly support the dynamic addition of a new column to an existing
table is currently empty.

So the following steps should be followed.

1) Define a new table the same shape as the existing table plus the new column.
2) Load the new table from the old using a multiple-record insert.

3) Delete all data from the old table.

4) Drop the old table.

5) Change the name of the new table to that of the old table.

Normalization

Introduction

Normalization theory is build around the concept of normal forms. A relation is said to be in
a particular normal form if it satisfies a certain specified set of constraints. For example, a
relation is said to be in first normal form if and only if it satisfies the constraint that it
contains atomic values only. Various normal forms are First Normal Form, Second Normal
Form, Third Normal Form, DKNF, and BCNF etc. Concept of normalization arises in the
case to design a relational-database without unnecessary redundancy, easy way of retrieval
etc...So if we want to design such a database we go for normalization.

15

For the description of normalization, we shall consider the supplier-and-parts database. The

database or relation is as follows:

P# | Pname | Color | Weight | City
PART---P P1 | Nut Red 12 London
P2 | Bolt Green | 17 Paris
P3 | Screw | Blue |17 Rome
P4 | Screw | Red 14 London
P5 | Cam Blue |12 Paris
P6 | Cog Red |19 London
S# | P# | QTY S# | Sname | Status | City
SP------ S1|P1|300 S1 | Smith | 20 London
S1|P2| 200 S2 | Jones |10 Paris
S1 | P3| 400 S3 | Blake | 30 Paris
S1|P4| 200 S4 | Clark | 20 London
S1|P5]100 S5 | Adams | 30 Athens
S1|P6 | 100
S2 | P1| 300
S2 | P2 | 400
S3 | P2 | 200
S4 | P2 | 200
S4 | P4 | 300
S4 | P5 | 400

FIG:1

Functional Dependency

Definition:

Given a relation R, attribute Y of R is functionally dependent on attribute X of R if and only
if each X-value in R has associated with it precisely one Y-value in R.

In the supplier-and-parts database the attributes SNAME, STATUS and CITY of a
relation S are each functionally dependent on attribute S#. For a particular value for S#
there exists precisely one corresponding value for each of SNAME, STATUS and

CITY.

S.S# > S.SNAME

S.S# > S.STATUS

S.S# 2S.CITY
Or we can say represent as

S.S#->S. (SNAME, STATUS, CITY)

16

The statement S.S#->S.CITY is read as “attribute S.CITY is functionally dependent on
attribute S.S#”, or “attribute S.S# functionally determines attribute S.CITY”.

Alternate definition for functional dependence

Given arelation R, attribute Y of R is functionally dependent on attribute X of R if and
only if, whenever two tuples of R agree on their X-value, they also agree on their Y-
value.

S# | P# | Qty | Status
S1|P1|300]20
S1|P2|200 |20
S1|P3 (400 |20
S1|P4 100 |20

Fig: Partial tabulation of relation SP’.
For example in this relation SP’
SP’.S#->SP’.STATUS

A functional dependence is a special form of integrity constraint. For example, if a
relation S satisfies the FD S.S#->S.CITY then we say that every legal extension of that
relation satisfies that constraint.

It is convenient to represent the FDs in a given set of relations by means of a functional
dependency diagram.

Example:
PNAMF
S# » STATLIS
A SH#
COl OR
P# —TY
Y WFIGHT Q
SNAMF > CITY P# —
CITY

Fig: Functional dependencies in relations S, P, SP.

Various Normal Forms

Brief description of Normal forms

First Normal Form

= Eliminates repetition of data that is converts each data value to its
atomic form

17

= No two rows should be identical

= Each table entry should be single valued

= Every table has a primary key, which is a unique label or identifier for
each row

Second Normal Form

= Requires taking out data that is only dependent on a part of the key
= Each non-key attribute is functionally dependent on the entire key

Third Normal form

= Involves getting rid of anything in the tables that does not depend
solely on the primary key

= 3NF is sometimes characterized as “the key, the whole key, and
nothing but the key”

FIRST NORMAL FORM

Definition:

A relation R is in first normal form(1NF) if and only if all underlying domain contain
atomic values only.

A relation that is only in first normal form has a structure that is undesirable for a
number of reasons.

For example:

Let us assume that information concerning suppliers and shipments, rather than being
split into two separate relations (S and SP) is combined into a single relation and let
the name be FIRST with fields (S#, STATUS, CITY, P#, QTY).

Where S# represents the supplier number, STATUS represents the supply details,
CITY represents the city where the supply has been made P# represents the Part
number, QTY represents the quantity of supply.

Here the constraint is STATUS is functionally dependent on CITY. That is the
meaning of this constraint is that a supplier’s status is determined by the
corresponding location: e.g., all LONDON suppliers must have a status of 20.Also we
ignore the attribute SNAME for simplicity The primary key of FIRST is the
combination of (S#, P#). The following is the functional dependency diagram for this
relation

v

STATILIS

S#

QTY

A

P# CITY

Fig: Functional dependencies in the relation FIRST
In the diagram

18

i) STATUS and CITY are not functionally dependent on the primary key.

i) STATUS and CITY are not mutually dependent.

Certain difficulties of the FIRST relation occurs while UPDATION.They are
explained as

Insert: We cannot enter the fact that a particular supplier is located in a particular city
until that supplier supplies at least one part. The following is the tabulation of FIRST.

S# | STATUS | CITY | P#|QTY
S11|20 London | P1 | 300
S11]20 London | P2 | 200
S1 | 202 London | P3 | 400
S11]20 London | P4 | 200
S11|20 London | P5 | 100
S11]20 London | P6 | 100
S2 |10 Paris P1 | 300
S2 |10 Paris P2 | 400
S3 110 Paris P2 | 200
S4120 London | P2 | 200
S4120 London | P4 | 300
S4 120 London | P5 | 400

Table: FIRST NORMAL FORM

The FIRST relation does not show that supplier S% is located in ATHENS. Because
until S5 supplies some part, we have not appropriate primary key value.
Deletion: If we delete the only FIRST tuple for a particular supplier, we destroy not
only the shipment connecting that supplier to some part but also the information that
the supplier is located in a particular city.

For example if we delete the FIRST tuple with S# value S# and P# value P2, we
lose the information that S3 is located in Paris.

Updation: the city value for a given supplier appears in FIRST many times, this
redundancy causes update problems.

For example, if supplier S1 moves from London to Amsterdam then the two
difficulties occurs. They are
Searching the FIRST relation to find every tuple connecting S1 and London and this
produces an inconsistent result. The solution to these problems is to replace the
relation FIRST by the two relations SECOND (S#, STATUS, CITY) and SP (S#, P#,
QTY). The functional dependency diagrams for these two relations are as shown here.

STATUS St

A

A 4

CITY

S#

CITY P#

Fig: Functional dependencies in the relation SECOND and SP.

19

The following tables shows the sample tabulations corresponding to the data values of
FIG:1 except the information for supplier S5 has been included in SECOND and not
in SP.

SECOND NORMAL FORM

S# | Status | City

S1|20 London

S2 |10 Paris

S3 |10 Paris

S4 |20 London

S5 |30 Athens

SP

S# | P# QTY
S1|P1 300
S1 | P2 200
S1|P3 400
S1 | P4 200
S1|P5 100
S1 | P6 100
S2 | P1 300
S2 | P2 400
S3 | P2 200
S4 | P2 200
S4 | P4 300
S4 | P5 400

Fig: Sample tabulations of SECOND and SP.
After building the tables as shown we overcome the difficulties of FIRST relation.
Now we can easily do the operations on the tables. This is about first normal form.

SECOND NORMAL FORM:

DEFINITION: A relation R is in second normal form (2NF) if and only if it is in 1NF and
every nonkey attribute is fully dependent on the primary key.

Relations SECOND and SP are both 2NF (the primary keys are S# and the combination
(S#,P#), respectively). Relation FIRST is not in 2NF. A relation that is in first normal form
and not in second can always be reduced to an equivalent collection of 2NF relations. The
reduction consists of replacing the relations by suitable projections; the collections of these
projections is equivalent to the original relations, in the sense that the original relation can
always be recovered by taking the natural join of these projections, so no information is lost
in the process. In other words, the process is reversible.

In our example: SECOND and SP relations are projections of FIRST, and

FIRST is the natural join of SECOND and SP over S#.

The reduction of FIRST to the pair (SECOND, SP) is an example of nonloss decomposition.
In general, given a relation R with possibly composite attributes A, B, C satisfying the FD
R.A-> R.B, R can always be “nonloss-decomposed” into its projections R1 (A, B) and R2

20

(A, C).Since no information is lost in the reduction process, any information that can be
derived from the original structure can also be derived from the new structure. The converse
is not true, however: The new structure may contain information (such as the fact that S5 is
located in Athens) that could not be represented in the original. In the sense the new
structure is a slightly more faithful reflection of the real world.

The SECOND /SP structure still causes problems, however. Relation SP is satisfactory; as a
matter of fact, relation SP is now in the normal form, and we shall ignore it for the reminder
of this section. Relation SECOND, on the other hand, still suffers from a lack of mutual
independence among its nonkey attributes. The dependence diagram for SECOND is still
more complex than a 3NF diagram. To be specific, the dependency of the STATUS on S#,
thought it is functional, is transitive (via CITY): Each S# value determines a CITY value,
and this in returns determines the STATUS value. This transitivity leads, once again, to
difficulties over update operations. (We now concentrate on the association between cities
and status values-ie.,on the functional dependency of STATUS on CITY)

INSERTING: We cannot enter the fact that a particular city has a particular status
value-for example, we cannot state that any supplier in Rome must have a status of
50-until we have some supplier located in that city. The reason is, again, that until
such a supplier exists we have no appropriate primary key value.

DELETING: If we delete the only SECOND tuple for a particular city, we destroy
not only the information for the supplier concerned but also the information that that
the city has that particular status value. For example, if we delete the SECOND tuple
for S5, we lose the information that the status for the Athens is 30.

UPDATING: The status value for a given city appears in SECOND many times.
Thus, if we need to change the status value for London from 20 to 30 we are faced
with either the problem of searching the SECOND relation to find every tuple for
London or the possibility of producing an inconsistent result.

The solution to the problems is to replace the original relation (SECOND) by two
projections SC(S#,CITY) and CS(CITY,STATUS).And the corresponding functional
dependency diagram is shown here.

S# » CITY CITY » STATUS
The tabulations corresponding to these is

S# | City sc City Status

S1 | London CS-..> | Athens | 30

S2 | Paris London | 20

S3 | Paris Paris 10

S4 | London

S5 | Athens

Fig:2 Sample tabulations of SC and CS.

21

It should be clear that this new structure overcomes all the problems over update
operations concerning the CITY-STATUS association.

Third Normal Form

Definition: A relation R is in third normal form (3NF) if and only if is in 2NF and
every non-key attribute is non-transitively dependent on the primary key.

Relations SC and CS (shown in Fig:2)are both 3NF;relation SECOND (shown in page
20)is not in 3NF.A relation that is not in second normal form and not in third can
always be reduced to an equivalent collection of 3NF relations.

Relations with more than one candidate key or BCNF (Boyce-codd
normal form)

Definition:
A relation R is in BCNF if and only if every determinant is a candidate key.

The objective of BCNF is to handle a relation having two or more composite and
overlapping candidate keys. Although BCNF is stronger than 3NF,it is still true that
any relation can be decomposed in a non-less way into an equivalent collection of
BCNF relations.

Relation FIRST consists of three determinants: S#, CITY and the combination (S#,
P#). Among these (S#, P#) alone is a candidate key; hence FIRST is not in BCNF.

Relation SECOND is also not in BCNF because the determinant CITY is not a
candidate key.

Relations SP, SC and CS are in BCNF because in each case the primary key is the
only determinant in the relation.

Example: involving two disjoint (non-overlapping) candidate keys. Let us consider
relation S (S#, SNAME, STATUS, CITY) .the relation S is BCNF.However, it is
desirable to specify both keys in the definition of the relation:

a) To inform the DBMS, so that it may enforce the constraints implied by the
two-way dependency between the two keys-namely, that corresponding to each
supplier number there exists a unique supplier name, and conversely

b) To inform the users, since of course the uniqueness of the two attributes is
an aspect of the semantics of the relation and is therefore of interest to people using it.

Example -where the candidate keys overlap.

Two candidate keys overlap if they involve two or more attributes each and have an
attribute in common.

22

1)

2)

We suppose that the supplier names are unique, and we consider the relation SSP
(S#, SNAME, P#, QTY). The keys are (S#, P#) and (SNAME, P#). This is
relation is not in BCNF because we have two determinants# and SNAME, which
are not keys for the relation (S# determines SNAME, and conversely). But the
relation is in 3NF if we consider the definition----A relation R is in 3NF if and
only if it is in 2NF and every non-key attribute is non-transitively dependent on
the primary key. Here in this definition it does not require an attribute to be fully
dependent on the primary key if it was itself a component of some other key in the
relation, and so the fact that SNAME is not fully dependent on (S#, P#). But this
fact leads to redundancy and hence to update problems in the relation SSP.If we
go for updating the name of supplier S from Smith to Robinson leads either to
search problems or to possibly inconsistent results. The solution to the problems
as usual is to decompose the relation SSP into two projections, in this case SS (S#,
SNAME) and SP (S#, P#, QTY) for SP (SNAME,P#,QTY).These projections are
both BCNF.
Second example;
Consider the relation SJT with attributes S(student),J(subject) and T(teacher).The
meaning of an SJT tuple is that the specified student is taught the specified
subject by the specified teacher. The semantic rules follow:

1.0nly one teacher teaches each student of thet subject

2.Each teacher teaches only one subject

3.Several tachers teach each subject.

The sample tabulation of this relation is as follows

SJT

S J T

Smith Math Prof.white
Smith Physics Prof.Green
Jones Math Prof.White
Jones Physics Prof.Brown

The functional dependencies of SJT are:

From the first semantic rule we have functional dependency of T on the composite
attributes (S, J).

Form the second semantic rule we have a functional dependency of Jon T.

From the third semantic rule it is understood that there is no functional
dependency of T on J.

So the diagram is as follows

N

Fig: Functional dependencies in the relation SJT.

23

Here again we are having two overlapping candidate keys: the combination (S, J) and the
combination (S, T). Once again the relation is 3NF and not BCNF; and once again the
relation suffers from certain anomalies in connection with update operations. For example, if
we wish to delete the information that Jones is studying physics, we cannot do so without at
the same time losing information that professor Brown teaches physics.

The difficulties are caused by the fact that T is determinant but not a candidate key. Again we
can get over the problem by replacing the original relation by two BCNF projections, in this
case ST (S, T)and T, J (T, J).

Finally we say that the concept of BCNF eliminates certain problem cases that could occur
under the old definition of 3NF.Moreover,BCNF is conceptually simpler than 3NF,in that it
involves no reference to the concepts of primary key, transitive dependence and full
dependence. The reference of candidate keys can also be replaced by a reference to the more
fundamental notion of functional dependence. The reference to candidate keys can also be
replaced by a reference to the more fundamental notion of functional dependence.

Good and Bad decompositions

During the reduction process it is frequently the case that a given relation can be
decomposed in a variety of different ways. Consider the relation SECOND (S#, STATUS,
CITY) with functional dependencies (FDs).

SECOND.S#>SECOND.CITY

SECOND.CITY->SECOND.STATUS
And therefore by transitivity

SECOND.S#->SECOND.STATUS

The representation of SECOND relation is

PNAME
S# »| STATUS
A N COLOR
P#
v <
SNAME CITY WEIGHT
CITY
S# > OTY
P#

Fig: Functional dependencies in relations S, P, SP

24

The above diagram clearly states that the update problems encountered with SECOND could
be overcome by replacing it by its decomposition into the two 3NF projections

SC (S#, CITY) and CS (CITY, STATUS)----------------=- 2>A
Let this composition be A.

An alternative decomposition is

SC (S#, CITY) and SS (S#, STATUS)---------=-=-=-m-mmemmeem >B
Decomposition B is also nonloss, and the two projections are again BCNF.But decomposition
B is less satisfactory than decomposition A.

For example, it is still not possible (in B) to insert the fact that a particular city has a
particular status value unless supplier is located in that city. The explanation of this example
is as follows:

In decomposition A the two projections are independent of each other, in the sense that
updates can be made to either one without regard for the other; So joining them will not
violate the FD constraints on SECOND.

In decomposition B updates to either of the two projections must be monitored to ensure that
the FD SECOND.CITY—>SECOND.STATUS is not violated. Thus projections SC and SS
are not independent of each other.

A relation that cannot be decomposed into independent component is said to be atomic.

BOOKS FOR REFERENCE:
1. Database systems concepts by Abraham Silberschatz, Henry F. Korth.

2. An Introduction to Database System — C. Dsai.
3. An introduction to Database Systems (Seventh Edition) — C.J. Date

Prepared by Dr. N. SHANMUGAVADIVU

25

