
1

DEPARTMENT OF COMMERCE (CA)

DATABASE MANAGEMENT SYSTEM (Semester-III)

II B.COM(CA) Sub Code-18BCA32C

UNIT - III

Embedded SQL: Introduction – Operations not involving cursors, involving cursors –

Dynamic statements, Query by Example – Retrieval operations, Built-in Functions,

update operations - QBE Dictionary. Normalization: Functional dependency, First,

Second, Third normal forms, Relations with more than one candidate key, Good and

bad decomposition.

Embedded SQL

SQL provides a powerful declarative query language; writing queries in SQL are typically

much easier than is coding the same queries in a general-purpose programming language. To

access a database from a general-purpose programming language is for the following two

reasons.

1.Not all queries can be expressed in SQL, since SQL does not provide the full expressive

power of a general-purpose language. That is, there exists queries that can be expressed in a

language such as Pascal, C, COBOL or FORTRAN that cannot be expressed in SQL write

queries, we can embed SQL within a more powerful language

2.Nondeclarative actions-such as printing a report, interacting with a user, or sending the

results of a query to a graphical user interface-cannot be done from within SQL.

A language in which SQL queries are embedded is referred to as host language, and the SQL

structures permitted I the host language constitute embedded SQL.

Languages such as PL/I however are not well equipped to handle more that one record at a

time. It is therefore necessary t provide some form of bridge between the two functional

levels and embedded SQL provides such a bridge by means of a new type of object called a

cursor.

Operations not involving cursors

 The DML statements that do not need cursors are as follows:

❑ “Singleton SELECT”

❑ UPDATE

❑ INSERT

❑ DELETE

Singleton SELECT

 We use the term “singleton SELECT “ to mean statement for which the retrieved

table contains at most one row.

 Example: SELECT statement

2

UPDATE

 This statement can be executed to have changes in the databases designed.

 Example: UPDATE, statement of SQL.

INSERT

 This statement is used to include new row or information.

 Example: INSERT, statement of SQL.

DELETE

 This is used to delete information from the database.

 Example: DELETE, statement of SQL.

Operations involving cursors

Consider the case of a SELECT that selects a whole set of records, not just one. What is

needed is a mechanism for accessing the records in the set one by one; and cursors provide

such a mechanism. Explicitly defined cursors are constructs that enable the user to name an

area of memory to hold a specific statement for access at a later time.

The programmer to process a multiple-row active set one record at a time defines explicit

cursors. The following are steps for using explicitly defined cursors within PL/SQL.

1. Declare the cursor

 * Name the cursor

 * Each cursor associates a query with cursor

 Syntax

 Declare cursor-name is select statement
 Example

Declare c_names is select branch_name from branch where

branch_city=’Brooklyn’;

2. Open the cursor

Opening the cursor activates the query and identifies the active set. Open also

initializes the cursor pointer to just before the first row of the active set.

 Syntax

 Open cursor-name;

3. Fetching the cursor

Getting data into the cursor is accompolished with the fetch command.The fetch

command retrieves the rows in the cursor set one row at a time.

3

 Syntax

 Fetch cursor-name into record-list;

4. Closing the cursor

The close statement closes or deactivates the previously opened cursor and makes the

active set undefined oracle will implicitly close a cursor when the user’s program or

session is terminated. After a cursor is closed ,we cannot perform any operation on it.

 Syntax

 Close cursor-name;

Attributes involved in cursors

❖ %ISOPEN returns TRUE if the cursor is already OPEN

❖ %FOUND returns TRUE if the last FETCH returned a row, and returns

FALSE if the last FETCH failed to return

a row.

❖ %NOTFOUND is the logical opposite of %FOUND.

❖ %ROWCOUNT yields the number of rows fetched.

Example to illustrate cursor

 1)Declare

 Cursor c4 is select salary,job from emp where job=’CLERK’;

 Begin

 if c4%isopen then

 dbms.output.put_line(‘This message will not be displayed’);

 else

 open c4;

 dbms.output.put_line(‘Cursor not found’);

 end if;

 close c4;

 end;

2) The procedure to update students information by finding the total and average.

Declare

 st stu%rowtype;

 cursor c1 is select * from stu;

Begin

 Open c1;

 loop;

 fetch c1 into st;

 exit when c1%notfound;

 st.tot1l:=st.m1+st.m2+st.m3;

 st.average:=st.total/3;

4

 if st.m1>=50 and st.m2>=50 and st.m3>=50 then

 st.result:=’PASS’;

 else

 st.result:=’FAIL’;

 end if;

 update stu set total=st.total,average=st.average,result=st.result

where regno=st.regno;

 end loop;

 commit;

end;

Dynamic Statements

Embedded SQL provides certain features to facilitate the writing of on-line application

programs that is programs to support on-line access to the database from an end-user at the

terminal. Steps involved are

 1.accept a command from the terminal

 2.analyze the command

 3.issue appropriate SQL statements

 4.return a message and/or results to the terminal

The precompiler is a compiler for the SQL language. Suppose the application programs have

written a program P that includes some embedded SQL statements.

 Pre-compilation proceeds as follows.

❖ The precompiler scans the source program P and locates the embedded SQL

statements.

❖ For each statement it finds the precompiler decides on a strategy for implementing

that statements in terms of RSI operations. This process is referred to as

optimization

❖ The precompiler replaces each of the original embedded SQL statements by an

ordinary PL/I statement

The dynamic SQL component of SQL-92 allows programs to construct and submit

SQL queries at run-time. In case of embedded SQL, each statement must be

completely present at compile time, and are compiled by the embedded SQL

preprocessor.

Using dynamic SQL, programs can create SQL queries as strings at run-time (based on

i/p from the user) and can either have them executed immediately, or have them

prepared for subsequent use.

 The two principal dynamic statements are PREPARE and EXECUTE.

 DCL SQLSOURCE CHAR (256);

 SQLSOUCE =’DELETE FROM BRANCH WHERE

BRANCH_CITY=’PERRYRIDGE’;

 $PREPARE SQLOBJ FROM SQLSOURCE:

 $EXECUTE SQLOBJ:

5

The PREPARE statement passes the SQLSOURCE string to the RDS precompiler

which goes through its normal process of parsing, optimization, code generation and

builds a machine language versions of the statement called SQLOBJ.EXECUTE

statement causes this machine language routine to be executed and thus causes the

actual deletions to occur.

Once PREPARE, a given dynamically generated SQL statement can be EXECUTED

many times. The generated statement can be replaced by another by issuing PREPARE

again with the same target and a different source.

QUERY-BY-EXAMPLE

 Query-by-example (QBE) is the name of both a data-manipulation language and the

database system that included this language. The QBE database system was

developed at IBM T.J.Watson Research center in the early 1970s.Today,some-

database systems for personal computers support variants of QBE languages. It has

two distinctive features:

 1.Unlike most query languages and programming languages, QBE has a two-

dimensional syntax: Queries look like tables. A query in one-dimensional language

can be written in a one line. A two-dimensional language requires two dimensions for

its expression.

2.QBE queries are expressed “by example”. Instead of giving a procedure for

obtaining the desired answer, the user gives an example of what is desired. The

system generalizes this example to compute the answer to the query.

 We express queries in QBE using skeleton tables. These tables show

the relation schema as shown below.

Example the representation of branch relation

Branch Branch

name

Branch city assets

Retreival operations

Queries on One relation

 Examples:

 1:Find all loan numbers at the Perryridge branch

Loan Branch-

name

Loan-

number

Amount

 Perryridge P._x

The proceeding query causes the system to look for tuples in loan that have “perryridge” as

the value for the branch-name attribute. For each such tuple the value of the loan-number

6

attribute is assigned to the variable x. The value of the variable x is “printed”, because the

command P. appears in the loan-number coloumn next to the variable x.QBE assumes that a

blank position in a row contains unique variable.As a result,if a variable does not appear

more than once in a query,it may be omitted.

 Thus the previous query can be re-written as

 Loan branch-name loan-number amount

 Perryridge P.

QBE performs duplicate elimination automatically.To suppress the duplicate elimination,we

insert the command ALL. After the P. command:

Loan branch-name loan-number amount

 Perryridge P.ALL

To display the entire loan relation ,we can create a single row consisting of P. in every field.

Loan branch-name loan-number amount

 P.

 QBE allows queries that involve arithmetic comparisons

Example

 1.Find the loan numbers of all loans with a loan amount of more than $700.

 Loan Branch-name Loan-no. Amount

 P.>700

 The arithmetic operations that QBE supports are =,<,≤,≥ and ¬

 2.Find the names of all branches that are not located in Brooklyn.

 Branch Branch-name Branch-city Assets

P. ¬Brooklyn

 3.Find the loan-no. of all loans made jointly to Smith and Jones.

 Borrower Customer-name Loan-no.

 ‘Smith’ P._x

 ‘Jones’ _x

4.Find the loan numbers of all loans made to smith ,to Jones or to both jointly.

7

 Borrower customer-name loan-no.

 ‘Smith’ P._x

 ‘Jones’ P._y

5.Find all customers who live in the same city as Jones.

 Customer Customer-name Customer-street Customer-city

 P._x _y

 Jones _y

Queries on several relations

 QBE allows queries that span several different relations. The connections

among the various relations are achieved through variables that force certain tuples to

have the same value on certain attributes.

Example

 1.Find the names of all customers who have a loan from the ‘perryridge’ branch..

 loan branch_name loan_no. amount

 perryridge _x

 borrower cust_name loan_no.

 P._x _x

2.Find the names of all customers who have both an account and a loan at the bank.

 Depositor customer-name account-no.

 P._x

 Borrower customer-name account-no.

 _x

3.Find the names of all customers who have an account at the bank ,but who have a

loan from the bank.

 Depositor customer-name account-no.

 P._x

8

 Borrower customer-name loan-no.

 _x

 4.Find all customers who have atleast two account.

 Depositor customer-name account-no.

 P._x _y

 x y

The condition box

 It is not convenient to express all the constraints on the domain variables

within the skeleton tables. To overcome this QBE includes a condition box feature

that allows the expression of general constraints over any of the domain variables.

Example:

 1:Find all customers who are not named ‘Jones’ and who atleast two account.

 Depositor customer-name account-no.

 P._x _y

 x y

2.Find all account-no. with a balance between $1300 and $1500 ,we write

 acc-no. branch-name acc-no. balance

 P. _x

 Conditions

 -Y>_z

 Conditions

_x.≥1300

_x≤1500

9

3.Find all branches that have assests greater than those of atleast one branch loacated

in ‘Brooklyn’.

 Branch branch-name branch-city assets

 P._x _y

 Brooklyn _x

 Options available with condition Box

 1.QBE allows complex arithmetic expressions to appear in a condition box.

Example:

Find all branches that have assets that are atleast twice as large as the assets of one of

the branches located in Brooklyn.

 Branch branch-name branch-city assets

 P._x _y

 Brooklyn _x

2.QBE allows logical expressions to appear in condition box.Operators used are and(

&),or(|)

 Example

 Find all account numbers with a balance between $1300 and $2000 but not exactly

$1500.

 Account branch-name account-no. balance

 P. _x

 Conditions

 _Y >_z

 Conditions

_x=(≥1300 and ≤2000 and

 ┐1500)

10

The result relation

 If the result of a query includes attributes from several relation schemas, we need a

mechanism to display the desired result in a single table.

Example

1.Find the customer-name, account-no. and balance for all accounts at the perryridge

branch

 In relational algebra

 1.Join depositor and account relation

 2.project customer-name, account-no. and balance

 QBE related with this.

1.Create a skeleton table called result with attributes customer-name, account-no. and

balance.

 Account branch-name account-no. Balance

 Perryridge _y _z

 Depositor customer-name account-no.

 _x _y

 Result customer-name account-no. Balance

 P. _x _y _z

Ordering of the display of tuples

 By using the command AO. And DO. we can order the contents.

 Example

1.List all customers in descending alphabetical order.

 Depositor customer-name account-no.

 P.DO.

Aggregate functions[Built-in functions]

11

QBE includes the aggregate operators AVG, MAX, MIN, SUM and CNT.we must

postfix these operators with ALL. to create a multiset on which the aggregate

operation is evaluated.

Example

1.Find the total balance of all the account maintained at the perryridge branch.

 Account branch-name account-no. balance

 Perryridge P.SUM

 ALL.

2.Find the total no. of customers who have an account at the bank.

 Depositor customer-name account-no.

 P.CNT.UNQ.ALL.

3.Find the name,street and city of all customers who have more than one account at

the bank.

 Customer cust-name cust-street cust-city

 P. _x

 Depositor Cust-name Account-No.

 G._x CNT.ALL._y

Update operations/Modification of the database

This section deals with the options how to add, remove or change information using QBE.

Deletion

 Deletion of tuples from a relation is expressed in much the same way as a

query. The major difference is the use of D. in the place of P..In QBE we can delete

whole tuples, as well as values in selected coloumns. To delete information in only

some of the columns, null values, specified by-are inserted.

 D. Operates on only one relation. To delete tuples from several relations, we

must use one D. operator for each relation.

Conditions

CNT.ALL._y > 1

12

 *Delete customer smith

 customer cust_name cust_street cust_city

 D. Smith

 *Delete the branch-city value of the branch whose name is “Perryridge”.

 Branch branch-name branch-city asstes

 Perryridge D.

*Delete all loans with a loan amount between $1300 and $1500

 Loan Branch-name loan-no. amount

 D. _y _x

 Borrower cust_name loan_no.

D. _y

*Delete all accounts at all branches located in Brooklyn.

 Account branch_name account_no. balance

 D. _x _y

 Depositor cust_name acc_no.

D. _y

 branch branch_name branch_city assets

 _x Brooklyn

 Condition

_x=(>=1300 and <= 1500)

13

Insertion

We do the insertion by placing the I. Operator in the query expression.The attribute

values for inserted tuplles must be members of the attributes domain

Example

*To insert into the branch relation information about a new branch with name

“Capital” and city “Queens”,but with a null asset value,we write

 branch branch_name branch_city assets

 I. Capital Queens

*To insert the account A-9732 at the Perryridge branch has a balance of $700.

 Account branch-name account_no. balance

 I. Perryridge A-9732 700

 Updates

 If we want to changeone value in a tuple withput changing all values in the tuple we

use the update facility and the operartor used is U. .QBE allows users to update the

primary key fields.

• Update the asset value of the Perryridge branch to $10,000,000

 Branch branch-name branch-city assets

 Perryridge U. 100000000

The query updates the assets of the Perryrigde branch to $10,000,000 regardless of the old

values.If we want to update a value using the previous vaulue ,we must express a request

using two rows:One specifying the old tuples that need to be updated,and the other indicating

the new updated tuples to be inserted in the database

• The interesty payments are being made,and all branches are to be

increased by 5%.

 Account branch-name account-no. balance

U. _x * 1.05

 _x.

14

QBE Dictionary

QBE has a built-in dictionary that is represented to the user as a collection of tables. The

dictionary includes for example, a TABLE and a DOMAIN table, giving details of all tables

and all domains currently known to the system. The dictionary tables can be interrogated

using the ordinary retrieval operations of the DML.

Retrieval of table-names

 Get the names of all tables known to the system.

P.

 Instead of having to build a skeleton for the TABLE table and entering “P.” in the

NAME column of that skeleton, the user can formulate this query by simply entering the “P.”

in the table-name position of the blank table.

Retrieval of column-name for a given table

 Get names of all columns in table S.

 S P.

User enters the table-name (S) followed by “P.” against the row of (blank) column-names.

Creation of a new table

1.Create table branch

 I. branch I. Branch name branch city branch street

 The first I. Creates a dictionary entry for table branch; the 2nd I. Creates dictionary

entries for the four columns of the table branch. Also the information for each column must

be specified .The information includes the name of the underlying domain; the data-type of

the domain; if that domain is not already known to QBE.

15

Dropping a table

 Drop table branch.

 A table can be dropped only if it is currently empty.

 1) Delete all branch details

 branch branch name branch city branch street

 D.

 2) Drop the table

 D. Branch branch name branch city branch street

Expanding a table

 Add a asset coloumn to the table branch.

 QBE does not directly support the dynamic addition of a new column to an existing

table is currently empty.

 So the following steps should be followed.

1) Define a new table the same shape as the existing table plus the new column.

2) Load the new table from the old using a multiple-record insert.

3) Delete all data from the old table.

4) Drop the old table.

5) Change the name of the new table to that of the old table.

Normalization

Introduction

Normalization theory is build around the concept of normal forms. A relation is said to be in

a particular normal form if it satisfies a certain specified set of constraints. For example, a

relation is said to be in first normal form if and only if it satisfies the constraint that it

contains atomic values only. Various normal forms are First Normal Form, Second Normal

Form, Third Normal Form, DKNF, and BCNF etc. Concept of normalization arises in the

case to design a relational-database without unnecessary redundancy, easy way of retrieval

etc…So if we want to design such a database we go for normalization.

16

For the description of normalization, we shall consider the supplier-and-parts database. The

database or relation is as follows:

 PART---P

 SP------

 FIG:1

Functional Dependency

Definition:

Given a relation R, attribute Y of R is functionally dependent on attribute X of R if and only

if each X-value in R has associated with it precisely one Y-value in R.

 In the supplier-and-parts database the attributes SNAME, STATUS and CITY of a

relation S are each functionally dependent on attribute S#. For a particular value for S#

there exists precisely one corresponding value for each of SNAME, STATUS and

CITY.

 S.S# → S.SNAME

 S.S# → S.STATUS

 S.S# →S.CITY

Or we can say represent as

 S.S#→S. (SNAME, STATUS, CITY)

P# Pname Color Weight City

P1

P2

P3

P4

P5

P6

Nut

Bolt

Screw

Screw

Cam

Cog

Red

Green

Blue

Red

Blue

Red

12

17

17

14

12

19

London

Paris

Rome

London

Paris

London

S# Sname Status City

S1

S2

S3

S4

S5

Smith

Jones

Blake

Clark

Adams

20

10

30

20

30

London

Paris

Paris

London

Athens

S# P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

300

200

400

200

100

100

300

400

200

200

300

400

17

The statement S.S#→S.CITY is read as “attribute S.CITY is functionally dependent on

attribute S.S#”, or “attribute S.S# functionally determines attribute S.CITY”.

Alternate definition for functional dependence

Given a relation R, attribute Y of R is functionally dependent on attribute X of R if and

only if, whenever two tuples of R agree on their X-value, they also agree on their Y-

value.

S# P# Qty Status

S1

S1

S1

S1

P1

P2

P3

P4

300

200

400

100

20

20

20

20

Fig: Partial tabulation of relation SP’.

 For example in this relation SP’

 SP’.S#→SP’.STATUS

A functional dependence is a special form of integrity constraint. For example, if a

relation S satisfies the FD S.S#→S.CITY then we say that every legal extension of that

relation satisfies that constraint.

It is convenient to represent the FDs in a given set of relations by means of a functional

dependency diagram.

 Example:

 Fig: Functional dependencies in relations S, P, SP.

Various Normal Forms

 Brief description of Normal forms

First Normal Form

▪ Eliminates repetition of data that is converts each data value to its

atomic form

S# STATUS

SNAME CITY

P#

PNAME

COLOR

WEIGHT

CITY

QTY

S#

P#

18

▪ No two rows should be identical

▪ Each table entry should be single valued

▪ Every table has a primary key, which is a unique label or identifier for

each row

Second Normal Form

▪ Requires taking out data that is only dependent on a part of the key

▪ Each non-key attribute is functionally dependent on the entire key

 Third Normal form

▪ Involves getting rid of anything in the tables that does not depend

solely on the primary key

▪ 3NF is sometimes characterized as “the key, the whole key, and

nothing but the key”

FIRST NORMAL FORM

Definition:

A relation R is in first normal form(1NF) if and only if all underlying domain contain

atomic values only.

A relation that is only in first normal form has a structure that is undesirable for a

number of reasons.

For example:

Let us assume that information concerning suppliers and shipments, rather than being

split into two separate relations (S and SP) is combined into a single relation and let

the name be FIRST with fields (S#, STATUS, CITY, P#, QTY).

Where S# represents the supplier number, STATUS represents the supply details,

CITY represents the city where the supply has been made P# represents the Part

number, QTY represents the quantity of supply.

Here the constraint is STATUS is functionally dependent on CITY. That is the

meaning of this constraint is that a supplier’s status is determined by the

corresponding location: e.g., all LONDON suppliers must have a status of 20.Also we

ignore the attribute SNAME for simplicity The primary key of FIRST is the

combination of (S#, P#). The following is the functional dependency diagram for this

relation

 Fig: Functional dependencies in the relation FIRST

In the diagram

QTY

S#

P#

STATUS

CITY

19

i) STATUS and CITY are not functionally dependent on the primary key.

ii) STATUS and CITY are not mutually dependent.

Certain difficulties of the FIRST relation occurs while UPDATION.They are

explained as

Insert: We cannot enter the fact that a particular supplier is located in a particular city

until that supplier supplies at least one part. The following is the tabulation of FIRST.

S# STATUS CITY P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

20

20

202

20

20

20

10

10

10

20

20

20

London

London

London

London

London

London

Paris

Paris

Paris

London

London

London

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

300

200

400

200

100

100

300

400

200

200

300

400

Table: FIRST NORMAL FORM

The FIRST relation does not show that supplier S% is located in ATHENS. Because

until S5 supplies some part, we have not appropriate primary key value.

Deletion: If we delete the only FIRST tuple for a particular supplier, we destroy not

only the shipment connecting that supplier to some part but also the information that

the supplier is located in a particular city.

 For example if we delete the FIRST tuple with S# value S# and P# value P2, we

lose the information that S3 is located in Paris.

Updation: the city value for a given supplier appears in FIRST many times, this

redundancy causes update problems.

For example, if supplier S1 moves from London to Amsterdam then the two

difficulties occurs. They are

Searching the FIRST relation to find every tuple connecting S1 and London and this

produces an inconsistent result. The solution to these problems is to replace the

relation FIRST by the two relations SECOND (S#, STATUS, CITY) and SP (S#, P#,

QTY). The functional dependency diagrams for these two relations are as shown here.

 Fig: Functional dependencies in the relation SECOND and SP.

S#

STATUS

CITY

S#

P#

CITY

20

The following tables shows the sample tabulations corresponding to the data values of

FIG:1 except the information for supplier S5 has been included in SECOND and not

in SP.

 SECOND NORMAL FORM

S# Status City

S1

S2

S3

S4

S5

20

10

10

20

30

London

Paris

Paris

London

Athens

SP

S# P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

300

200

400

200

100

100

300

400

200

200

300

400

Fig: Sample tabulations of SECOND and SP.

After building the tables as shown we overcome the difficulties of FIRST relation.

Now we can easily do the operations on the tables. This is about first normal form.

SECOND NORMAL FORM:

DEFINITION: A relation R is in second normal form (2NF) if and only if it is in 1NF and

every nonkey attribute is fully dependent on the primary key.

 Relations SECOND and SP are both 2NF (the primary keys are S# and the combination

(S#,P#), respectively). Relation FIRST is not in 2NF. A relation that is in first normal form

and not in second can always be reduced to an equivalent collection of 2NF relations. The

reduction consists of replacing the relations by suitable projections; the collections of these

projections is equivalent to the original relations, in the sense that the original relation can

always be recovered by taking the natural join of these projections, so no information is lost

in the process. In other words, the process is reversible.

In our example: SECOND and SP relations are projections of FIRST, and

FIRST is the natural join of SECOND and SP over S#.

The reduction of FIRST to the pair (SECOND, SP) is an example of nonloss decomposition.

In general, given a relation R with possibly composite attributes A, B, C satisfying the FD

R.A→ R.B, R can always be “nonloss-decomposed” into its projections R1 (A, B) and R2

21

(A, C).Since no information is lost in the reduction process, any information that can be

derived from the original structure can also be derived from the new structure. The converse

is not true, however: The new structure may contain information (such as the fact that S5 is

located in Athens) that could not be represented in the original. In the sense the new

structure is a slightly more faithful reflection of the real world.

The SECOND /SP structure still causes problems, however. Relation SP is satisfactory; as a

matter of fact, relation SP is now in the normal form, and we shall ignore it for the reminder

of this section. Relation SECOND, on the other hand, still suffers from a lack of mutual

independence among its nonkey attributes. The dependence diagram for SECOND is still

more complex than a 3NF diagram. To be specific, the dependency of the STATUS on S#,

thought it is functional, is transitive (via CITY): Each S# value determines a CITY value,

and this in returns determines the STATUS value. This transitivity leads, once again, to

difficulties over update operations. (We now concentrate on the association between cities

and status values-ie.,on the functional dependency of STATUS on CITY .)

INSERTING: We cannot enter the fact that a particular city has a particular status

value-for example, we cannot state that any supplier in Rome must have a status of

50-until we have some supplier located in that city. The reason is, again, that until

such a supplier exists we have no appropriate primary key value.

DELETING: If we delete the only SECOND tuple for a particular city, we destroy

not only the information for the supplier concerned but also the information that that

the city has that particular status value. For example, if we delete the SECOND tuple

for S5, we lose the information that the status for the Athens is 30.

UPDATING: The status value for a given city appears in SECOND many times.

Thus, if we need to change the status value for London from 20 to 30 we are faced

with either the problem of searching the SECOND relation to find every tuple for

London or the possibility of producing an inconsistent result.

The solution to the problems is to replace the original relation (SECOND) by two

projections SC(S#,CITY) and CS(CITY,STATUS).And the corresponding functional

dependency diagram is shown here.

 The tabulations corresponding to these is

SC

 CS---→

 Fig:2 Sample tabulations of SC and CS.

S# City

S1

S2

S3

S4

S5

London

Paris

Paris

London

Athens

City Status

Athens

London

Paris

30

20

10

S# CITY CITY STATUS

22

It should be clear that this new structure overcomes all the problems over update

operations concerning the CITY-STATUS association.

Third Normal Form

Definition: A relation R is in third normal form (3NF) if and only if is in 2NF and

every non-key attribute is non-transitively dependent on the primary key.

Relations SC and CS (shown in Fig:2)are both 3NF;relation SECOND (shown in page

20)is not in 3NF.A relation that is not in second normal form and not in third can

always be reduced to an equivalent collection of 3NF relations.

Relations with more than one candidate key or BCNF (Boyce-codd

normal form)

Definition:

A relation R is in BCNF if and only if every determinant is a candidate key.

The objective of BCNF is to handle a relation having two or more composite and

overlapping candidate keys. Although BCNF is stronger than 3NF,it is still true that

any relation can be decomposed in a non-less way into an equivalent collection of

BCNF relations.

Relation FIRST consists of three determinants: S#, CITY and the combination (S#,

P#). Among these (S#, P#) alone is a candidate key; hence FIRST is not in BCNF.

Relation SECOND is also not in BCNF because the determinant CITY is not a

candidate key.

Relations SP, SC and CS are in BCNF because in each case the primary key is the

only determinant in the relation.

Example: involving two disjoint (non-overlapping) candidate keys. Let us consider

relation S (S#, SNAME, STATUS, CITY) .the relation S is BCNF.However, it is

desirable to specify both keys in the definition of the relation:

 a) To inform the DBMS, so that it may enforce the constraints implied by the

two-way dependency between the two keys-namely, that corresponding to each

supplier number there exists a unique supplier name, and conversely

 b) To inform the users, since of course the uniqueness of the two attributes is

an aspect of the semantics of the relation and is therefore of interest to people using it.

Example -where the candidate keys overlap.

Two candidate keys overlap if they involve two or more attributes each and have an

attribute in common.

23

1) We suppose that the supplier names are unique, and we consider the relation SSP

(S#, SNAME, P#, QTY). The keys are (S#, P#) and (SNAME, P#). This is

relation is not in BCNF because we have two determinants# and SNAME, which

are not keys for the relation (S# determines SNAME, and conversely). But the

relation is in 3NF if we consider the definition----A relation R is in 3NF if and

only if it is in 2NF and every non-key attribute is non-transitively dependent on

the primary key. Here in this definition it does not require an attribute to be fully

dependent on the primary key if it was itself a component of some other key in the

relation, and so the fact that SNAME is not fully dependent on (S#, P#). But this

fact leads to redundancy and hence to update problems in the relation SSP.If we

go for updating the name of supplier S from Smith to Robinson leads either to

search problems or to possibly inconsistent results. The solution to the problems

as usual is to decompose the relation SSP into two projections, in this case SS (S#,

SNAME) and SP (S#, P#, QTY) for SP (SNAME,P#,QTY).These projections are

both BCNF.

2) Second example;

Consider the relation SJT with attributes S(student),J(subject) and T(teacher).The

meaning of an SJT tuple is that the specified student is taught the specified

subject by the specified teacher. The semantic rules follow:

 1.Only one teacher teaches each student of thet subject

 2.Each teacher teaches only one subject

 3.Several tachers teach each subject.

The sample tabulation of this relation is as follows

SJT

S J T

Smith

Smith

Jones

Jones

Math

Physics

Math

Physics

Prof.white

Prof.Green

Prof.White

Prof.Brown

The functional dependencies of SJT are:

From the first semantic rule we have functional dependency of T on the composite

attributes (S, J).

Form the second semantic rule we have a functional dependency of J on T.

From the third semantic rule it is understood that there is no functional

dependency of T on J.

So the diagram is as follows

 Fig: Functional dependencies in the relation SJT.

S

J

T

24

Here again we are having two overlapping candidate keys: the combination (S, J) and the

combination (S, T). Once again the relation is 3NF and not BCNF; and once again the

relation suffers from certain anomalies in connection with update operations. For example, if

we wish to delete the information that Jones is studying physics, we cannot do so without at

the same time losing information that professor Brown teaches physics.

The difficulties are caused by the fact that T is determinant but not a candidate key. Again we

can get over the problem by replacing the original relation by two BCNF projections, in this

case ST (S, T) and T, J (T, J).

Finally we say that the concept of BCNF eliminates certain problem cases that could occur

under the old definition of 3NF.Moreover,BCNF is conceptually simpler than 3NF,in that it

involves no reference to the concepts of primary key, transitive dependence and full

dependence. The reference of candidate keys can also be replaced by a reference to the more

fundamental notion of functional dependence. The reference to candidate keys can also be

replaced by a reference to the more fundamental notion of functional dependence.

Good and Bad decompositions

 During the reduction process it is frequently the case that a given relation can be

decomposed in a variety of different ways. Consider the relation SECOND (S#, STATUS,

CITY) with functional dependencies (FDs).

 SECOND.S#→SECOND.CITY

 SECOND.CITY→SECOND.STATUS

And therefore by transitivity

 SECOND.S#→SECOND.STATUS

The representation of SECOND relation is

 Fig: Functional dependencies in relations S, P, SP

S#

SNAME

STATUS

CITY

P#

PNAME

COLOR

WEIGHT

CITY

S#

P#

QTY

25

The above diagram clearly states that the update problems encountered with SECOND could

be overcome by replacing it by its decomposition into the two 3NF projections

 SC (S#, CITY) and CS (CITY, STATUS)------------------→A

Let this composition be A.

 An alternative decomposition is

 SC (S#, CITY) and SS (S#, STATUS)---------------------------→B

Decomposition B is also nonloss, and the two projections are again BCNF.But decomposition

B is less satisfactory than decomposition A.

 For example, it is still not possible (in B) to insert the fact that a particular city has a

particular status value unless supplier is located in that city. The explanation of this example

is as follows:

In decomposition A the two projections are independent of each other, in the sense that

updates can be made to either one without regard for the other; So joining them will not

violate the FD constraints on SECOND.

In decomposition B updates to either of the two projections must be monitored to ensure that

the FD SECOND.CITY→SECOND.STATUS is not violated. Thus projections SC and SS

are not independent of each other.

A relation that cannot be decomposed into independent component is said to be atomic.

BOOKS FOR REFERENCE:

1. Database systems concepts by Abraham Silberschatz, Henry F. Korth.

2. An Introduction to Database System – C. Dsai.

3. An introduction to Database Systems (Seventh Edition) – C.J. Date

Prepared by Dr. N. SHANMUGAVADIVU

