
1

DEPARTMENT OF COMMERCE (CA)

DATABASE MANAGEMENT SYSTEM (Semester-III)

II B.COM(CA) Sub Code-18BCA32C

UNIT - V
Network Approach : Architecture of DBTG System. DBTG Data Structure : The set

construct, Singular sets, Sample Schema, the external level of DBTG – DBTG Data

Manipulation. Disaster Management recovery system

Basic concepts:

A network database consists of a collection of records, which are connected to one

another through links. A record is in many respects similar to an entity in the entity-

relationship model. Each record is a collection of fields (attributes), each of which

contains only one value. A link can be viewed as a restricted (binary) form of

relationship in the sense of the E-R model.

To illustrate, consider a database representing a customer-account relationship in a

banking system. There are two record types, customer and account. As we saw earlier,

the customer record type can be defined, using Pascal-like notation, as follows:

 type customer = record

 name: string;

 street: string;

 city: string;

 end

The account record type can be defined as follows:

 type account = record

 number: integer;

 balance: integer;

 end

 The sample database in figure A.1 shows that Lowman has account 305, Camp

has accounts 226 and 177, and kahn has account 155.

Lowman Square Dallas 305 500

Camp Downridge Garland

 Fig:1

 Sample database

Data-structure diagrams: [Architecture of network model]

Kahn Bayside Plano

226 336

 177 205

 155 62

2

A data-structure diagram is the scheme representing the design of a network database.

Such a diagram consists of two basic components:

 *Boxes, which correspond to record types.

 *Lines, which correspond to links.

A data-structure diagram serves the same purpose as an entity-relationship diagram;

namely, it specifies the overall logical structure of the database. We shall consider the

representation of binary, ternary etc. relationships of entity-relationship diagrams.

BINARY RELATIONSHIP

 The entity-relationship diagram for banking example is shown as follows:

 E-R diagram (a)

 (b)

 FIG:2

The above shown diagram (a) is the entity-relationship diagram and consists of

two entity-sets customer and account, and they are related through a binary ‘many-to-

many’ relationship ‘custacct’ with no descriptive attributes.

The diagram shows that a customer may have several accounts and that an

account may belong to several different customers. The corresponding data-structure

diagram is shown in figure (b). Here the record type customer corresponds to the entity

set customer. It includes three fields-name, street and city.

Similarly, account is the record type corresponding to account entity-set and

includes the attributes number and balance. Since, in the E-R diagram of above figure the

CustAcct relationship is many-to-many, we draw no arrows on the link CustAcct

diagram. If the relationship custacct were one-to-many from customer to account then the

link custacct would have an arrow pointing to customer record type. The representation is

shown as follows:

customer account
Cust

Acct

Number Balance

Street

City
Name

Name street city Number balance

3

Customer account

Customer account

A sample database corresponding to the data-structure diagram of figure as shown.

Since the relation is many-to-many, we show that katz has accounts 256 and 347 and

that account 347 is owned by katz and Doner. A sample database corresponding to the

data-structure diagram is shown here:

 Fig:4

Sample database corresponding t diagram of FIG:3a

Since the relationship is one-to-many

From customer to account, a customer may have more than one account, as is the case

with Camp, who owns both 226 and 177. An account, however, cannot belong to more

than one customer, as is indeed observed in the sample database.

Finally, a sample database corresponding to the data-structure diagram of fig:3b is shown

in the FIG:1.

How to replace the E-R diagram shown in FIG:2a if the descriptive attribute has to be

included?

The transformation is more complicated because the link cannot contain any data

value.So new record type has to be created and links need to be established as follows:

If for example we consider the E-R diagram shown in FIG:2a and we are trying to add the

descriptive attribute date to the custacct relationship to denote the last time the customer

has accessed the account.The newly derived E-R diagram is shown here

To transform this diagram to a data-structure diagram we need to:

1:Replace entities customer and account with record types customer and account

2:Create a new record type date with a single field to represent the date.

3:Create the following many-to-one links:

Beck Maple San Francisco 200 55

Katz North San jose

256 100 000

347 667

Doner Sidehill Palo Alto 301 10 533

name street city number balance

name street city number balance

4

 *custdate from the date record type to the customer record type

 *acctdate from the date record type to the account recotd type

The DBTG CODASYL Model

The Database Task Group wrote the first database standard specification, called the

CODASYL DBTG 1971 report, in the late 1960s. Then a number of changes have been

suggested to that report, the last official one in 1978.The rules or standards advised by

DBTG group are

 Link restriction

 DBTG Sets

 Repeating Groups

Link Restriction

In the DBTG model, only many-to-one links can be used. Many-to-many links are

disallowed in order to simplify the implementation. One-to-one links are represented

using a many-to-one link. Let us illustrate this with the help of an example:

Consider a binary relationship that is either one-to-many or one-to-one. If for our

customer-account database, if the custacct relationship is one-to-many with no descriptive

attributes and with descriptive attribute is shown in the following figure:

Customer account

Customer account

Fig: Two data-structure diagrams

If the custacct relationship is many-to-many then our transformation algorithm must be

refined as follows. If the relationships have no descriptive attributes then the following

algorithm must be employed:

1:Replace the entity sets customer and account with record types customer and account.

2:Create a new dummy record type Rlink that may either have no fields or have a single

field containing an externally defined unique identifier.

3:Create the following two many-to-one links:

custrlink from rlink record type to customer record type

*acctlink from record type to account record type.

Name Street

City

Number

Balance

Name Street

City

Number

Balance

Date

5

D

DBTG sets

 Given that only many-to-one links can be used in the DBTG model, a data-

structure diagram consisting of two record types that are linked together has the

general form of the following figure:

 Fig:A

The above shown structure is referred in the DBTG model as a DBTG-set. The name of

the set is usually chosen to be the same as the name of the link connecting the two record

types.

In each such DBTG-set, the record type A is said as the owner (or parent) of the set, and

the record type B is said as the member (or child) of the set. Each DBTG-set can have any

number of set occurrences-that is actual instances of linked records.

For example in the figure we are having three occurrences corresponding to the DBTG-

set of figure A.

Since many-to-many links are disallowed, each set occurrence has precisely one owner

and zero or more member records. In addition, no member record of a set can participate.

Simultaneoulsy in several set occurrences of different DBTG-sets.

Customer Account custAc

ct

nam

e

stree

t

City
numbe

r

Balance

Name street city Number

 balance

B

A

6

To illustrate, consider the data-structure diagram shown here. There are two DBTG-sets.

• Custacct, having customer as the owner of the DBTG-set, and account as the

member of the DBTG-set.

• Brncacct, having branch as the owner of the DBTG-set, and account as the

member of the DBTG-set.

• The set custacct may be defined as follows:

 Set name is custacct

 Owner is customer

 Member is account

The set brncacct may be defined similarly as

 Set name is brncacct

 Owner is branch

 Member is account

An instance of the database is shown here:

Five set occurences are shown: three of set custacct,and two of set brncacct

1:owneer is customer record Lowman with a singke member account record 305

2:owner is customer record Camp with two member account records 177 and 226

3:Owner is cuatomer record Kahn with three member account records 155,402 and

408.

4:Owner is branch record Hillside with three member account records 305,226 and

155.

5:Owner is branch record Valleyview with three member account records 177,402 and

408

 Here the fact, an account record cannot appear in more than one set occurrence of

one individual set type. This is because an account can belong to exactly one

customer, and can be associated with only one bank branch. An account can appear in

two set occurrences of different set types. For example, acccount 305 is a member of

set occurrence 1 of type custacct and is also a member of set occurrence 4 of type

brncacct.

 The member records of a set occurrence may be ordered in a variety of ways.

Repeating Groups:

The DBTG model provides a mechanism for a field to have a set of values, rather than

one single value.

For example, Suppose that a customer have several addresses. In this case, the

customer record type will have the (street, city) pair of fields is defined as repeating

group. So the customer record for Kahn is shown here:

The repeating groups construct is another way of representing the notion of weak entities

in the E-R model. To illustrate we shall split the entity set customer into two sets:

 *Customer, with descriptive attribute name

 *Address, with descriptive attribute street and city.

7

 The address entity set is weak entity set, since it depends on the strong entity set

customer.

DBTG data retrieval facility

The data manipulation language of the DBTG proposal consists of a number of

commands that are embedded in a host language. The commands are explained as

follows:

The Find and Get commands

 The two most frequently used DBTG commands are

*find-locates a record in the database and sets the appropriate

currency pointers

*get,which copies the record to which the current of run-unit points

from the database to the appropriate program work area template.

Access of individual records:

The find command has a number of forms. There are two different find commands for

locating individual records in the database. the simplest command has the form:

 Find any <record type> using <record-field>

Purpose: Locates a record of type <record type> whose <record-field> value is the

same as the value of <record-field> in the <record-type> template in the program

work-area. The following currency pointers are set to point to that record:

 *The currency of run-unit pointer

 *The record-type currency pointer for <record type>

 *For each set in which that record belongs, the appropriate set currency pointer

 For example: Construct the DBTG query that prints the street address of Lowman.

 Customer. name:=”Lowman”;

 Find any customer-using name;

 Get customer;

 Print (customer.street);

 To display the duplicate records the command is

 Find duplicate <record type> using <record-field>

Which locates the next record, which matches the <record-field>.

8

Example: Construct the DBTG-query that prints the names of all the customers who

live in Dallas:

 Customer.city:=”Dallas”;

 Find any customer-using city;

 While DB-status = 0 do

 Begin

 Get customer;

 Print(customer.name);

 Find duplicate customer using city;

 End;

Access of records within a set

Purpose: Locate records in a particular DBTG-set.

There are three different types of commands.

The basic find command is

 Find first <record type> within <set-type>

Which locates the first database record of type <record type> belonging to the current

<set-type>.

To locate the other members of a set the command is

 Find next <record-type> within <set-type>

This command finds the next elements in the set <set-type>

Example: Construct the DBTG query that prints the total balance of all accounts

belonging to Lowman.

 Sum: =0;

 Customer. name:=”Lowman”;

 Find any customer-using name;

 Find first account within custacct;

 While DB-status =0 do

 Begin

 Get account;

 Sum:=sum + account. Balance;

 Find next account within custacct;

 End

 Print (sum);

To find the owner of a particular DBTG-set .The command used is

 Find owner within <set-type>

9

Example: Construct the DBTG-query that prints all the customers of the Hillside

branch:

 Branch-name:=”Hillside”;

 Find any branch-using name;

 Find first account within brncacct;

 While DB-status=0 do

 Begin

 Find owner within custacct;

 Get customer;

 Print(customer. name);

 Find next account within brncacct;

 End

DBTG update facility

Creating new records

To create a new record of type <record type> we insert the appropriate values in the

corresponding <record type> template. And the command used is

 Store <record type>

Example: Construct the DBTG query to add a new customer Jackson to the database.

 Customer.name:=”Jackson”;

 Customer.street:=”Old road”;

 Customer.city:=”Richardson”;

 Store customer;

Modifying an existing record

In order to modify an existing record of type <record type> we must find the record in

the database, get that record into the memory, and then change the desired fields in

the template of <record type>. Once this is accomplished, we reflect the changes to

the record to which the currency pointer of <record type> points by executing the

command:

 Modify <record type>

The DBTG model requires the find command to be executed prior to modifying a

record must have the additional clause “for update” so that the system is aware of the

fact that the record is to be modified.

Example:

Construct the DBTG program to change the street address of Kahn to North Loop.

 Customer.name:=”Kahn”;

 Find for update any customer using name;

 Get customer;

 Customer.city:=”North Loop”;

10

 Modify customer;

Deleting a record

 To delete an existing record of type <record type> we use the command:

 Erase <record type>

Example:

The query to construct the DBTG program to delete account 402 belonging to Kahn:

Finish:=false;

 Customer.name:=”Kahn”;

 Find any customer using name;

 Find for update first account within custacct;

 While DB-status=0 and not finish do

 Begin

 Get account;

 If account.number =402 then

 Begin

 Erase account;

 Finish: = true;

 End;

Else

 Find for update next account within custAcct

End;

It is possible to delete an entire set occurrence by finding the owner of the set – say, a

record of type <record type> - and executing.

 Erase all<record-type>

This will delete the owner of the set as well as its entire member. If a member of the set is

an owner of another set the members of that set are also deleted. That the erase all

operation is recursive.

Eg.

Consider the DBTG program to delete customer “Camp” and all of her accounts.

 Customer.name :=”Camp”;

 Find for update any customer using name;

 Erase all customer.

DBTG set-processing facility

This mainly concerns with the mechanism of inserting records into and removing records

from a particular set occurrence.

The connect statement

11

To insert a new record of type <record type> into a particular occurrence of <set-type>

we must first insert the record into the database, then set the currency pointers of <record

type> and <set type> to point to the appropriate record and set occurrence.

The command used is

 Connect <record type> to <set-type>

A new record can be inserted as follows:

1:create a new record of type <record type> .

2:Find the appropriate owner of the set <set type>.

3:Insert the new record into the set by executing the connect statement.

Example:

Create the DBTG query for creating new account 267 which belongs to Jackson:

 Account.number:=267;

 Account.balance:=0;

 Store account;

 Customer.name:=”Jackson”;

 Find any customer using name;

 Connect account to custacct;

The Disconnect statement

In order to remove a record of type <record type> from a set occurrence of <set-type>, we

need to set the currency pointer of <record type> and <set-type> to point to the

appropriate record and set occurrence. Once this is accomplished, the record can be

removed from the set by executing

 Disconnect <record-type> from <set-type>

 Eg. To remove account 177 from the set occurrence of type custacct.

 Account.number :=177;

 Find for update any account using number;

 Get account;

 Find owner within custacct;

 Disconnect account from custacct;

The reconnect statement

In order to move a record of type <record-type> from one set occurrence to another set

occurrence of type <set-type>, we need to find the appropriate record and the owner of

the set occurrence to which the record is to be moved. Once this is done, we can move the

record by executing:

 Reconnect <record-type> to <set-type>

Consider the DBTG program to move all accounts of Lowman that are currently at the

hillside branch to the valley view branch.

12

 Customer.name :=”Lowman”;

 Find any customer-using name;

 Find first account within custacct;

 While DB-status =0 do

 Begin

 Find owner within brncacct;

 Getbranch;

 If branch.name = “hillside” then

 Begin

 Branch.name:=”Valley view”;

 Find any branch-using name;

 Reconnect account to brncacct;

 End;

 Find next account within custacct;

 End;

Set Insertion and Retention

When a new set is defined, we must specify how member records are to be inserted. In

addition, we must specify the conditions under which a record must be retained in the set

occurrence in which it was initially inserted.

Set Insertion

A newly created record of type <record type > of a set type <set type > can be added to a

set occurrence either explicitly (MANUALLY) or implicitly (automatically). This

distinction is specified at set definition time via

 Insertion is < insert mode >

Where < insert mode > can take one of two forms.

 Manual : The new record can be inserted into the set manually (explicitly) by

executing .

 Connect < record type > to <set-type>

 Automatic : The new record is inserted into the set automatically (implicitly)

when it is created , that is , when we execute .

 Store < record type >

 In either case, just prior to insertion, the <set-type> currency pointer must point to

the set occurrence into which the insertion is to be made.

Set Retention

13

 There are various restrictions on how and when a member record can be removed

from a set occurrence into which it has been inserted previously. These restrictions are

specified at set definition time via

 Retention is < retention-mode >

Where <retention-mode> can take one of the three forms

Fixed : Once a member record has been inserted into a particular set occurrence

, it cannot be removed from that set . If retention is fixed , then to reconnect a

record to another set , we must first erase that record , re-create it , and then insert

it into the new set occurrence .

Mandatory : Once a member record has been inserted into a particular set

occurrence , it can be reconnected only to another set occurrence of type <set-

type>. It can neither be disconnected nor be reconnected to a set of another type .

Optional : No restrictions are placed on how and when a member record can be

reconnected , disconnected ,and connected at will .The decision as to which to

option to choose is dependent on the application .

Deletion

 When a record is deleted (erased) and that record is the owner of set occurrence of

type <set-type> , the best way of handling this deletion depends on the specification of

the set retention of <set-type>

 If the retention status is optional, then the record will be deleted and every

member of the set it owns will be disconnected. These records, however, are

kept in the database.

 If the retention status is fixed, then the record and all of its owned

members will be deleted. This follows from the fact that the fixed status

indicates that a member record cannot be removed from the set occurrence

without being deleted.

If the retention status is mandatory, then the record cannot be erased this is

because the mandatory status indicates that a member record must belong to

a set occurrence; it cannot be disconnected form that set.

Set Ordering

 The members of a set occurrence of <set-type> may be ordered in a variety of

ways. A programmer specifies these orders when the set is defined

 Order is <order-mode>

Where <order-mode> can be

 First : When a new record is added to a set , it is inserted in the first positive .

Thus, the set is in reverse chronological ordering

 Last : When a new record is added to a set , it is inserted in the ;last position .

Thus, the set is in chronological ordering

 Next : Suppose that the currency pointer of <set-type> points to record X . if X

is a member type , then when a new record is added to the set . It is

inserted in the position following X. If X is an owner type, then when a new

record is added, it is inserted in the last position.

14

 Prior : Suppose that the currency pointer of ,set-type> points to record X . If X

is a member type, then when a new record is added to the set it is

inserted in the position just prior to X. If X is an owner type, then

when a new record is added, it is inserted in the last position.

 System default : When a new record is added to a set , it is inserted in an

arbitrary position determined by the system .

 Sorted : When a new record is added to a set , it is inserted in a position that

ensures that the set will remain sorted . The sorting order is specified by a

particular key value when a programmer defines the set. The programmer must

specify whether members are ordered in ascending or descending order relative to

that key.

Database systems, like any other computer system, are subject to failures but the data

stored in it must be available as and when required. When a database fails it must possess

the facilities for fast recovery. It must also have atomicity i.e. either transactions are

completed successfully and committed (the effect is recorded permanently in the

database) or the transaction should have no effect on the database.

There are both automatic and non-automatic ways for both, backing up of data and

recovery from any failure situations. The techniques used to recover the lost data due to

system crash, transaction errors, viruses, catastrophic failure, incorrect commands

execution etc. are database recovery techniques. So to prevent data loss recovery

techniques based on deferred update and immediate update or backing up data can be

used.

Disaster Management recovery system

Recovery techniques are heavily dependent upon the existence of a special file known as

a system log. It contains information about the start and end of each transaction and any

updates which occur in the transaction. The log keeps track of all transaction operations

that affect the values of database items. This information is needed to recover from

transaction failure.

• The log is kept on disk start_transaction(T): This log entry records that

transaction T starts the execution.

• read_item(T, X): This log entry records that transaction T reads the value of

database item X.

• write_item(T, X, old_value, new_value): This log entry records that

transaction T changes the value of the database item X from old_value to

new_value. The old value is sometimes known as a before an image of X,

and the new value is known as an afterimage of X.

• commit(T): This log entry records that transaction T has completed all

accesses to the database successfully and its effect can be committed

(recorded permanently) to the database.

• abort(T): This records that transaction T has been aborted.

• checkpoint: Checkpoint is a mechanism where all the previous logs are

removed from the system and stored permanently in a storage disk.

Checkpoint declares a point before which the DBMS was in consistent state,

and all the transactions were committed.

A transaction T reaches its commit point when all its operations that access the database

have been executed successfully i.e. the transaction has reached the point at which it will

not abort (terminate without completing). Once committed, the transaction is

15

permanently recorded in the database. Commitment always involves writing a commit

entry to the log and writing the log to disk. At the time of a system crash, item is searched

back in the log for all transactions T that have written a start_transaction(T) entry into the

log but have not written a commit(T) entry yet; these transactions may have to be rolled

back to undo their effect on the database during the recovery process

• Undoing – If a transaction crashes, then the recovery manager may undo

transactions i.e. reverse the operations of a transaction. This involves

examining a transaction for the log entry write_item(T, x, old_value,

new_value) and setting the value of item x in the database to old-value.There

are two major techniques for recovery from non-catastrophic transaction

failures: deferred updates and immediate updates.

• Deferred update – This technique does not physically update the database

on disk until a transaction has reached its commit point. Before reaching

commit, all transaction updates are recorded in the local transaction

workspace. If a transaction fails before reaching its commit point, it will not

have changed the database in any way so UNDO is not needed. It may be

necessary to REDO the effect of the operations that are recorded in the local

transaction workspace, because their effect may not yet have been written in

the database. Hence, a deferred update is also known as the No-undo/redo

algorithm

• Immediate update – In the immediate update, the database may be updated

by some operations of a transaction before the transaction reaches its commit

point. However, these operations are recorded in a log on disk before they are

applied to the database, making recovery still possible. If a transaction fails

to reach its commit point, the effect of its operation must be undone i.e. the

transaction must be rolled back hence we require both undo and redo. This

technique is known as undo/redo algorithm.

• Caching/Buffering – In this one or more disk pages that include data items

to be updated are cached into main memory buffers and then updated in

memory before being written back to disk. A collection of in-memory buffers

called the DBMS cache is kept under control of DBMS for holding these

buffers. A directory is used to keep track of which database items are in the

buffer. A dirty bit is associated with each buffer, which is 0 if the buffer is

not modified else 1 if modified.

• Shadow paging – It provides atomicity and durability. A directory with n

entries is constructed, where the ith entry points to the ith database page on

the link. When a transaction began executing the current directory is copied

into a shadow directory. When a page is to be modified, a shadow page is

allocated in which changes are made and when it is ready to become durable,

all pages that refer to original are updated to refer new replacement page.

Some of the backup techniques are as follows :

• Full database backup – In this full database including data and database,

Meta information needed to restore the whole database, including full-text

catalogs are backed up in a predefined time series.

• Differential backup – It stores only the data changes that have occurred

since last full database backup. When same data has changed many times

since last full database backup, a differential backup stores the most recent

version of changed data. For this first, we need to restore a full database

backup.

16

• Transaction log backup – In this, all events that have occurred in the

database, like a record of every single statement executed is backed up. It is

the backup of transaction log entries and contains all transaction that had

happened to the database. Through this, the database can be recovered to a

specific point in time. It is even possible to perform a backup from a

transaction log if the data files are destroyed and not even a single committed

transaction is lost.

REFERENCE:

1. Database systems concepts by Abraham Silberschatz, Henry F. Korth.

2. An Introduction to Database System – C. Dsai.

3. An introduction to Database Systems (Seventh Edition) – C.J. Date

4.www.geeksforgeeks.com

Prepared by Dr.N.SHANMUGAVADIVU

http://www.geeksforgeeks.com/

