

1

DEPARTMENT OF COMMERCE (CA)

OBJECT ORIENTED PROGRAMMING WITH C++ (SEMESTER-IV)

II-B.COM (CA) SUBJECT CODE - 18BCA42C

UNIT – II

Tokens – basic and user – defined data types – operators in C++ - Operator overloading

– operator precedence – control structures – decision Making and looping statements –

functions in C++ - the main function – Functions prototyping – call by reference –

return by reference – inline Functions – functions overloading.

Tokens

The smallest individual units in a program are known as tokens. C++ has the following

tokens:

• Keywords

• Identifiers

• Constants

• Strings

• Operators.

A C++ program is written using these tokens, white spaces, and the syntax of the

language.

Keywords:

 They are explicitly reserved identifiers and cannot be used as program variables or

other user-defined program elements.

C++ Keywords

1. char

2. int

3. if

4. then

Identifiers:

Identifiers refer to the names of variables, functions, arrays, classes etc. created by

the programmer. Each language has its own rules for naming these identifiers. They are both

common to both C and C++:

• Only alphabetic characters,digits and underscores are permitted.

• The name cannot start with a digit.

• Uppercase and lowercase letters are distinct.

• A declared keywoird cannot be used as a variable name.

 A major difference between C and C++ is the limit on the length of a name. While

ANSI C recognizes only the first 32 characters in a name, C++ has no limit the length of a

name.

2

Basic Data Types:

 Both C and C++ compilers support all the built in data types. With the exception of

void, the basic data types may have several modifiers preceding then to the serve the needs of

various situations. The modifiers signed, unsigned , long, and short may be applied to

character and integer basic data types.

 Two normal uses of void are

1) to specify the return type of a function when it is not returning any value

2) to indicate an empty argument list to a function.

E.g. void fn1(void)

Size and range of C++ basic data types

Hierarchy of C++ data types

3

User-Defined Data Types

Structures and Classes :

Data types such as struct and union in C are also valid in C++. C++ also permits us to

define another user-defined data type known as class. The class variables are known as

objects, which are the central focus of object –oriented programming.

Enumerated Data type:An enumerated data type is another user-defined type which provides

a way for attaching names to number , thereby increasing comprehensibility of the code. The

enum keyword automatically enumerates a list of words by assigning then values(0,1,2,..).

For e.g.

 enum color(red,blue,green);

 color background; // background is of type color

Expressions:

➢ An expression is combination of operands(variables) and operators

4

Type of expressions :

• constant expression : ex: 100 + sum(marks)

• integral expression : ex:a+b (a and b are integer variables)

• float expression : ex: x+y (x and y are float variables)

• pointer expression : ex: & x, prt +1

• relational expression: ex: max > (a+b)

• logical expression : ex: (a >b) || (c< d)

• bitwise operator : a>>

Manipulators :

Manipulators are operators that are used to format the data display.

 The end1 manipulators, when used in an output statement.

 Cout<<”m=”<<m<<end1

Operators in c++:

 All C operators are valid in C++. Additionally C++ supports:

 << insertion operator

>> extraction operator

:: scope resolution operator

:: * pointer-to –member declarator

--> * pointer-to-member operator

delete memory release operator

new memory allocation operator

endl line feed operator

setw field width operator

Scope resolution operator:

 This operator is used to access global version of variable. Because a

variable declared inside a block is said to be local to that block.

5

// example for scope resolution operator

include <iostream.h>

int a=100; // global variable

main()

{

 int a=50;

 cout <<”Value of a is “<<a<<endl;

 cout << “Value of a is << :: a<< endl;

}

output Value of a is 50.

 Value of a is 100.

Operator overloading in C++:

Operator overloading is a compile-time polymorphism in which

the operator is overloaded to provide the special meaning to the user-defined data

type. Operator overloading is used to overload or redefines most of the operators available

in C++. It is used to perform the operation on the user-defined data type.

Operator Precedence:

➢ C++ enables multiple meanings to the meanings to the operators, their association

and precedence remains the same. For example, the multiplication operator will

continue having higher precedence than the add operator.

➢ The precedence and associativity of all the C++ operators are listed below in the order

of decreasing precedence.

Control Structures:

 One method of achieving the objective of an accurate, error –resistant and

maintainable code is to use one or any combinations of the following three control

structures:

1. Sequence structure (Straight line)

2. Selection structure (branching)

3. Loop structure (Iteration or repetition).

These structures are implemented using one-entry, one-exit concept .

The if statement

The if statement is implemented in two forms:

1) Simple statement

6

if (conditional exp)

{

 action1;

}

action2;

action3;

2) if..else statement.

if (conditional expression)

{

 action1;

}

else

{

 action2;

}

action3;

The switch Statement:

This is a multiple-branching statement where, based on a condition, the control is

transferred to one of the many possible points. This is implemented as follows:

switch (expression)

{

casel:

{

action 1;

}

case2:

{

action2:

}

case3:

{

actions:

}

default:

{

action4;

}

}

action 5;

7

The do-while Statement

The do-while is an exit-controlled loop. Based on a condition, the control is

transferred back to a particular point in the program. The syntax is as follows:

do

{

action 1;

}

while(condition is true);

action2;

The while Statement

This is also a loop structure, but is an entry-controlled one. The syntax is as follows:

While (condition is true)

{

action 1;

}

action 2;

The for Statement:

The for is an entry-entrolled loop and is used when an action is to be repeated for a

predetermined number of times. The syntax is as follows:

for (intial value;test;increment)

{

 action1;

 }

 action2;

Functions in c++:

• A complex problem can be divided into many functions.

• Dividing a program into functions is one of the major principles of top-down,

structured programming.

• Functions continue to be the building blocks of C++ program

• In C language, main() does not return any value.

• In C++, main() returns integer value (zero) to the operating system.

8

 By normal convention , a function should return 0 (zero) value to indicate successful

execution.

Call by value and call by reference in C++

There are two ways to pass value or data to function in C language: call by value and call by

reference. Original value is not modified in call by value but it is modified in call by

reference.

Let's understand call by value and call by reference in C++ language one by one.

Call by value in C++

In call by value, original value is not modified.

In call by value, value being passed to the function is locally stored by the function parameter

in stack memory location. If you change the value of function parameter, it is changed for the

current function only. It will not change the value of variable inside the caller method such as

main().

Let's try to understand the concept of call by value in C++ language by the example given

below:

#include <iostream>

9

using namespace std;

void change(int data);

int main()

{

int data = 3;

change(data);

cout << "Value of the data is: " << data<< endl;

return 0;

}

void change(int data)

{

data = 5;

}

Output:

Value of the data is: 3

Call by reference in C++

In call by reference, original value is modified because we pass reference (address).

Here, address of the value is passed in the function, so actual and formal arguments share the

same address space. Hence, value changed inside the function, is reflected inside as well as

outside the function.

Note: To understand the call by reference, you must have the basic knowledge of pointers.

Let's try to understand the concept of call by reference in C++ language by the example given

below:

#include<iostream>

using namespace std;

void swap(int *x, int *y)

{

 int swap;

 swap=*x;

 *x=*y;

 *y=swap;

}

int main()

10

{

 int x=500, y=100;

 swap(&x, &y); // passing value to function

 cout<<"Value of x is: "<<x<<endl;

 cout<<"Value of y is: "<<y<<endl;

 return 0;

}

Output:

Value of x is: 100

Value of y is: 500

Difference between call by value and call by reference in C++

No. Call by value Call by reference

1 A copy of value is passed to the

function

An address of value is passed to the

function

2 Changes made inside the function is

not reflected on other functions

Changes made inside the function

is reflected outside the function

also

3 Actual and formal arguments will be

created in different memory location

Actual and formal arguments will

be created in same memory

location

Static member functions:

• A static function is a member function of a class and static member function

 can operate only on static data member of the class.

• The static member function is instance dependent, it can be called directly by

 using the class name and scope resolution operator. Example:

 Class name : : static function name ;

• If it is declared and defined in a class, the keyword Static should be

 used only on the declaration part.

• Example:

11

// Program for both static data member and static member function

#include <iosteam.h>

class sample

{

 private:

 static int count ; // static data member

 public:

 sample();

 static void display (); // static member function

};

// static data definition

int sample : : count =0; // static data member initialization

sample : : sample ()

{

 ++ count;

}

// static member function definition

void sample : : display ()

{

 cout <<” Counter value = “ << count <<endl;

}

// main function begins……….

int main ()

{

 cout <<”Before creating an object “ << endl;

 sample : : display (); // calling static member function

 cout <<” After creating objects “<<endl;

 sample obj1,obj2,obj3;

 sample : : display ();

}

output :

Before creating an object

Counter value = 0

After creating objects

Counter value= 3

12

The main Function

C does not specify any return type for the main()function which is the starting point

the execution of a program.

Main(){

{

//main program statements

}

Function Prototyping:

Function prototyping is one of the major improvements added to C++functions. The

prototype describes the function interface to the compiler by giving details such as the

number and type of arguments and the type of return values.

Syn:

Type function –name (argument-list);

Friend functions:

C++ allows a mechanism, in which a non-member function has access permissions to

the private member of the class. This can be done by declaring the non member function

‘friend’ to the class whose private data is to be accessed.

➢ friend is the keyword which is used for this purpose.

➢ The keyword friend must precede the function declaration whereas function definition

must not.

➢ The function can be defined at any place in the program like normal function.

Syntax for friend function:

 class<class_name>

 {

 private:

 private member variables;

 private member functions;

 public:

 public member variables;

 public member functions;

 friend return_type function_name(); //declaring a member

function as a friend to the class

 };

➢ The friend function has the following properties:

➢ There is no scope restriction for the friend function; hence can be called directly

without using objects.

13

➢ Unlike member functions of the class, friend function cannot access the member

directly. It uses the object and the dot operator to access the private and public

member of the class.

➢ By default friendship is not shared. Ex: If class X is considered to be the friend of

class Y., this doesn’t mean that Y has privileges to access private member of the class.

➢ Use friend functions rarely as it violates the rule of encapsulation and data hiding.

➢ The function can be declared in either public or the private section without changing

its meaning.

Sample Program-10

#include<iostream.h>

#include<conio.h>

class acc

{

 private:

 char name[20];

 int accno;

 float bal;

public:

 void read()

 {

 cout<<‘‘name:”;

 cin>>name

 cout<<‘‘a/c no:”;

 cin>>accno;

 cout<<‘‘balance:”;

 cin>>bal;

 }

friend void showbal(ac); //friend function declaration

};

void showbal(ac a)

{

cout<<‘‘Balance of acc no.”<<a.accno<<‘‘is Rs.”<<a.bal;

 }

void main()

{

 ac k;

 k.read();

 showbal(k);

}

 In this pgm, ‘showbal()’ is the non member function that has the access over the

private member i.e., ’name’, ‘accno’, ‘bal’ of the class, just because it has been declared as

friend to the class. So access to private member is possible.

14

Inline Functions (similar to macro definition and expansion).

• When a function is called, the control is transferred to the function and various

register contents are saved on the stack.

• When the function is small, a substantial percentage of execution time may be

spent in such overheads.

• To eliminate the overheads for small function, C ++ supports new function called

inline function.

• An inline function is a small function that is expanded in line when it is called

(similar to macro definition and macro expansion).

• The compiler substitutes function codes for function calls.

Example : finding area of various surfaces Refer class notes.

Function Overloading in C++:

You can have multiple definitions for the same function name in the same scope. The

definition of the function must differ from each other by the types and/or the number of

arguments in the argument list. You cannot overload function declarations that differ only by

return type.

REFERENCE:

1. E. Balaguruswamy , “ Object oriented programming with C++”, TataMcGraw

Hill publishing company Limited, 1998.

2. K.R, Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”,

tata mc graw – Hill publishing company Limited, 1998.

3. D. Ravichandran, Programming with C++”, Tata McGraw –

Hill published Company Limited.

Prepared By Dr.N.Shanmugavadivu

