

1

DEPARTMENT OF COMMERCE (CA)

OBJECT ORIENTED PROGRAMMING WITH C++ (SEMESTER-IV)

II-B.COM (CA) SUBJECT CODE - 18BCA42C

UNIT V

 Inheritance – extending classes – defining derived classes – single, multilevel, multiple,

hierarchical and hybrid inheritance – classes for file stream Operations – opening and

closing a file - sequential I/O operations.

Inheritance

• Inheritance is a process of creating new classes from an existing class.

• It is a mechanism to derive a new class from an existing class.

• The existing (old) class is called as base class and the newly created class is called

as derived class(subclass).

• The derived class inherits all properties from the base class.

• The derived class can also add some more features to this class.

• The base class is unchanged by its process.

Forms of inheritance:

Single inheritance

 A derived class with only one base class is called, single inheritance

Multiple inheritance

One derived class with several Base classes is called multiple inheritance.

Multilevel inheritance

 Deriving a class from another derived class is called as multilevel inheritance

2

Hierarchical inheritance

Many derived class from single base class is called as hierarchical inheritance

Hybrid inheritance

A derived class can have more than one base class from more than one level.

Defining derived class:

A derived class can be defined by specifying its relationship with the base class along with

its own details

General format:

3

 Class derived_ Class_ name visibility_mode base _class _name

 {

 ---- data members and member functions of derived class

 }

visibility mode:

It specifies how the features of the base class is derived. They are: Private (by default)

and Public.

Private mode :

• When we specify ‘private‘ mode, the ‘public members’ of the base class

 become private members of the derived class.

• So it can be accessed only be the member functions of the derived class.

• They can not be accessed by the object of the derived class.

Public mode:

• When we specify ‘ public’ mode , the ‘public members ‘ of the base class

become ‘public members’ of the derived class and therefore they are

accessible to the objects of the derived class

Note: In both cases, the private members are not inherited.

Example : class alpha : public beta

 {

 1. statements:

 }

 class abc :: xyz

 {

 2. statements;

 }

Single inheritance:

It is a process of creating new class from an existing base class.

 The existing base class is known as the direct base class and the newly

created class is called as a singly derived class.

Example.

 // program for single inheritance

 #include <iostream.h>

 class basic_info

4

 {

 int rollno;

 char name[30];

 public:

 void getdata();

 void display();

 };

 class physical_fit : public basic_info

 {

 float height, weight;

 public:

 void accept();

 void show ();

 };

 void basic_info :: getdata()

{

 cout<< “Enter Rollno :”<<endl;

 cin >>rollno;

 cout<<”Enter name “<<endl’

 cin >>name;

 }

 void basic_info :: display()

 {

 cout <<rollno << name;

 }

 void physical_fit : : accept ()

 {

 getdata ();

 cout <<”Enter Height and Weight “

 cin >>height >> weight;

 }

 void physical_fit : : show ()

 {

 display ();

 cout << height << weight ;

 }

 int main ()

 {

 physical_fit a;

 cout <<”Enter the details “<<endl;

a. accept();

a. show ();

return 0; }

5

 In this example , base class (basic_info) data members and member functions are

inherited into the derived class (physical_fit). This derived class has its own data members and

member Functions.

Making a private member inheritable:

• C++ supports three visibility modifier i.e. private, public, protected.

• With the help of the modifier ‘protected’ , we can access the private member

.

• A data member declared as ‘protected’ is accessible by the member

functions with its class and any class immediately derived from it.

• It can not be accessed by the functions outside these two classes.

• A class with all modifiers:

Class alpha

{

 private: // optional, visible to member function with in its class.

 protected: // visible to member function of its own and

 derived class

 public : //visible to all functions in the program.

 When the protectedmember is inherited in public mode , it becomes protected in the

derived class and it can be access by the member functions of the derived class. It is ready

for further inheritance

When the protectedmember is inherited in the private mode, it becomes private in the

derived class.It is available to the member functions of the derived class, but is not available

for further inheritance.

 It is also possible to inherit a base class in protected mode. In protected derivation,

both the public and protected members of the base class become protected member of the

derived class

Example:

// program to access private member in private mode.

#include <iostream.h>

class baseA

{

 protected :

 int value;

 public :

 baseA()

 {

 cout<<”Enter a number “;

 cin >> value;

 }

}; // end of base class declaration

6

class deriveB : : private baseA

{

 public:

 void display ()

 {

 ++ value; // accessing private member

 cout <<” The Value is : “<<value<< endl;

 }

}; // end of derived class definition

int main ()

{

 deriveB d;

 d. display();

}

output:

Enter a number : 10 , The Value is : 11

Multiple inheritance:

 It is a process of creating a new class which is derived from more than one base

classes. A derived class can inherit attributes of two or more base classes.

 Syntax:

 Class D : : visibility B-1, visibility B-2, . . .

 {

 ---- // derived class data members and functions

 };

Example:

// program for multiple inheritance

include <iostream.h>

include<iomanip.h>

class basic_info

7

{

 int rollno;

 char name[20];

 public:

 void getdata();

 void display();

}; // end of class definition…

class academic_fit

{

 char course[20];

 char semester[10];

 public:

 void getdata();

 void display();

}; // end of class definition…

class financial_assit : : private basic_info, private academi_fit

{

 float amount;

 public:

 void getdata();

 void display();

}; // end of class definition with multiple inheritance

void basic_info : : getdata ()

{

 cout <<”Enter Rollno :”<<endl;

 cin >>rollno;

 cout<<”Enter name :”

 cin >> name;

}

void basic_info : : display ()

{

 cout <<rollno << name;

}

void academic_fit () :: getdata()

{

 cout <<”Enter course name:”;

 cin >>course;

 cout<< “Enter semester”;

 cin >>semester;

}

void academic_fit() :: display

{

 cout <<course<<semester;

}

void financial_assit() :: getdata()

{

 basic_info : : getdata ();

 academic_fit : : getdata();

 cout <<”Enter amount in rupess :”;

 cin>> amount;

8

}

void financial_assit : : display()

{

 basic_info : : display ();

 academic_fit : : display () ;

 cout << amount ;

}

int main ()

{

 financial_assit f;

 cout<<”Enter the following details for financial assistance …\n”;

 f. getdata()’

 cout <<”Rollno Name course semester amount \n”;

 f.display ();

return 0;

}

}

Hierarchical inheritance:

In hierarchical inheritance , a base class will include all features that are common to the

Subclasses.

A subclass can inherit properties of the base class.

A subclass can serve as a base class for the lower level classes and so on.

Example: Hierarchical classification of students

Hybrid inheritance:

* Sometimes two or more type of inheritance can be needed.

9

• This type of inheritance is called as hybrid inheritance or multilevel , multiple

inheritance

• Let us consider the student result processing based on sports weightage.

// PROGRAM FOR HYBRID INHERITANCE

include <iostream.h>

class student

{

 protected:

 int rollno;

 public:

 void getno()

 {

 cout <<”Enter Rollno”;

 cin >> rollno;

 }

 void putno()

 {

 cout<<”Roll number “<<rollno<<endl;

}

};

 class test : public student

{

 protected:

 float part1,part2;

 public:

 void get_marks()

 {

 cout <<”Enter two marks “;

 cin >>part1>>part2;

 }

 void put_marks()

 {

10

 cout <<”Marks scored “<<part1 << part2;

 }

};

class sports

{

 protected:

 float score:

 public:

 void get_score()

 {

 cout <<”Enter sports weightage:”;

 cin >>score ;

 }

 void put_score()

 {

 cout<<”Sports weightage”<<score;

 }

};

class result : public test, public sports //….HYBRID

 INHERITANCE

{

 float total;

 public:

 void display ()

};

void result :: display ()

{

 total =part1 + part2 + score;

 putno();

 put_marks();

 put_score();

 cout <<”Total mark : “<<total ;

}

int main ()

{

 result s1;

 s1.getno();

 s1.get_marks();

 s1.get_score();

 s1.display ();

 return 0;

}

11

Virtual base classes:

 Virtual base class is a base class which is used to avoid multiple repetition of

data members in the multiple inheritance.

 Example :

Here we are assuming the class SPORTS derives rollno from the class STUDENT.

// PROGRAM FOR VIRTUAL BASE CLASS

include <iostream.h>

class student

{

 protected:

 int rollno;

 public:

 void getno()

 {

 cout <<”Enter Rollno”;

 cin >> rollno;

 }

 void putno()

 {

 cout<<”Roll number “<<rollno<<endl;

}

};

 class test : virtual publicstudent

{

 protected:

 float part1,part2;

12

 public:

 void get_marks()

 {

 cout <<”Enter two marks “;

 cin >>part1>>part2;

 }

 void put_marks()

 {

 cout <<”Marks scored “<<part1 << part2;

 }

};

class sports : public virtual student

{

 protected:

 float score:

 public:

 void get_score()

 {

 cout <<”Enter sports weightage:”;

 cin >>score ;

 }

 void put_score()

 {

 cout<<”Sports weightage”<<score;

 }

};

class result : public test, public sports

{

 float total;

 public:

 void display ()

};

void result :: display ()

{

 total =part1 + part2 + score;

 putno();

 put_marks();

 put_score();

 cout <<”Total mark : “<<total ;

}

int main ()

{

 result s1;

 s1.getno();

 s1.get_marks();

 s1.get_score();

13

 s1.display ();

 return 0;

}

In this example ,the class student is inherited in test and sports classes. So the object

of the derived class(result) can have only one copy of the student class.

 Abstract classes:

• An abstract class is a class that is not used to create objects.

• An abstract class is used as a base class that is to be inherited by other classes.In the

previous example “STUDENT “ class is an abstract class since it was not used to

create any object.

Managing Console I/O operations

✓ Every program takes some data as input and generates the processed data as output

following the familiar input-output-process cycle.

✓ Cin and cout with the operators >> and << for the input and output operations. C++

supports a rich set of I/O functions and operations to control the I/O operations.

✓ C++ uses the concept of stream and stream classes to implement its I/O operations

with the console and disk files.

C++ Streams :

➢ The I/O system in C++ is designed to work with a wide variety of devices including

terminals, disks and tape drives. The I/O system, supplies an interface to the

programmer that is independent of the actual device being accessed. This interface is

known as stream.

➢ A stream is a sequence of bytes. It acts either as a source from which the input data

can be obtained or as a destination to which the output data can be sent. The source

stream that provides data to the program is called the input stream and the destination

stream that receives output from the program is called the output stream.

➢ A program extracts the bytes from an input stream and inserts bytes into an output

stream . The data in the input stream can come from the keyboard or any other storage

device. A stream acts as an interface between the program annd the input/output

device. Therefore, a C++ program handles data independent of the devices used.

➢ C++ contains several pre-defined streams that are automatically opened when a

program begins its execution. Some of the these include cin and cout. Cin represents

14

input stream connected to the standard input device (i.e. keyboard) and cout

represents output stream connected to the standard output device(i.e. screen).

C++ Stream Classes:

 The C++ I/O system contains a hierarchy of classes that are used to define various

streams to deal with both the console and disk files. These classes are called stream classes.

 The following figure shows the hierarchy of the stream classes used for input and

ouptput operations with the console unit. These classess are declared in the header file

iostream.h. This file should be included in all the programs that communicate with the

console unit.

 ios is the base class for istream and ostream which are, in turn, base classes for

iostream. The class ios is declared as virtual base class so that only one copy of its members

are inherited by the iostream. The class ios provides the basic support for formatted and

unformatted input while the class ostream provides the facilities for formatted output. The

class iostream provides the facilities for handling both input and ouput streams.

 Class : ios

• Contains the basic facilities that are used by all the input and output classes

• Declares constants and functions that are necessary for handling formatted

input and output operations

Class: istream

• Inherits the properties of ios.

• Declares input functions such as get(), getline() and read()

• Contains overloaded extreaction operator >>.

Class : ostream

• Declares for the output functions such as put() and write().

• Contains the overloaded insertion operator <<.

• Inherits the properties of ios.

Class : iostream

• Inherits the properties of ios, istream, ostream through multiple inheritance and thus

contains all the input and output functions.

15

Stream classes for console I/O operations:

Unformatted I/O Operations:

Overloaded operators >> and <<

 Objects cin and cout for the input and output of data of various types. This has been

made possible by overloading the operators .. and << to recognize all the basic data types.

 The input operator >> is overloaded in the istream class and the >> is overloaded in

the ostream class.

Statement for reading data from the keyboard.

cin>>variable1>>variable2>>…..

The input can be entered separated by white spaces or by line space like

 Data1 data2 data3…

The >> operator gets character by character and assigns to the indicated location. The

reading for a variable is terminated when the operator encounters an white space or a

character that does not match the destinationtype.

 For e.g.

 int code;

 cin>>code;

Ios

istream
ostream

Streambuf

Iostream

Istream with assig

 assign

idijdjjdjistrIstream

_withassign

Iostream_withassi

gn

Ostream_withassign

16

 then the data such as

 45

 or

 45D causes a termination.

 The general format for displaying a data is

 cout<<item1<<item2<<item3<<….

put() and get() functions:

 The istream and ostream classes define two member functions get() and put()

respectively to handle single character input/output operations.

 Two types of get() functions.

 1. get(char *) – Assigns the input character to its argument.

 char c;

 cin.get(c); //gets a character from the keyboard

 2. get((void) – Returns the input character.

 char c;

 c=cin.get(); //cin.get(c) is replaced

 In this case, the value returned by the function get() is assigned to the variable

c.

 The function put(), a member ostream class is used to output a line of text,

character by character.

 For e.g.,

 cout<<put(‘x’); // displays the character x

 cout.put(ch); // displays the value of the variable ch.

 Number can be as an argument to the function put(). For e.g.,

 cout.put(68);

Getline() And Write() Functions:

 A line of text can be read and displayed using line-oriented input/output functions

getline() and write() functions. The getline() function reads a whole line of text that ends with

a newline chracter which is transmitted by the RETURN key. It is invoked by using the

object cin as follows

 cin.getline(line, size);

17

 This function reads character input into the variable line. The reading is terminated

when it encounters a newline character such as ‘\n’ or when the size-1 characters are read.

 For e.g.,

 char name[20];

 cin.getline(name,20);

 ‘How are u’ is typed as input and if return is pressed then the input is assigned to the

array variable name. If the length of the text exceeds 20 characters then the reading is

terminated. Here the blank spaces are also included in the text length.

 In case of cin, it can read strings that do not contain white spaces.

 The write() function displays an entire line and has the following form:

 cout.write(line,size);

 The first argument line represents the name of the string to be displayed and the

second argument size indicates the number of characters to be displayed.

 For eg.

 cout.write(string1,3);

 Displays the 3 characters of the string1.

Working With Files

Introduction

 A file is a collection of related data stored in a particular area on the disk. Programs

can be designed to perform the read and write operations on these files.

 A program involes either or both of the following kinds of data communication:

 1.Data transfwer between the console unit and the program.

 2. Data transfer between the program and a disk file.

 The I/O system of C++ handles file operations which are very similar to the console

input and output operations. It uses file streams as an interface between the programs and the

files.

The stream that supplies data to the program is known as input stream and the one

that receives data from the program is known as output stream. In other words, input streams

extracts data from the file and output stream inserts data to the file.

Classes for File Stream Operations

 The I/O system of C++ contains a set of classes that define the file handling methods.

They include ifstream, ofstream and fstream. They are derived from fstreambase class and

from the corresponding iostream.h class. These classes are designed to manage the disk files

and are declared in fstream.h and therefore this file should be included in any program that

uses these files. The other file stream classes available are:

18

Class Contents

 filebuf Its purpose is to set the file buffers to

 read and write.

Fstreambase Provides operations common to file

streams. Serves as a base for fstream,

ifstream and ofstream classes. Contain

open() and close() functions.

Ifstream Provides for input operations. It contains

open() with default input mode. Inherits

the functions get(),getline(),

read(),seekg() and tellg() from istream.

ofstream Provides for output operations. It

contains open() as the default output

mode. It inherits put(),seekp(),tellp() and

write() functions from ostream.

fstream Provides support for simultaneous input

and output operations.Contains open() as

the default input mode. It inherits all the

functions from istream and ostream

classes through iostream.

Opening and Closing a file:

 A filestream can be defined using the classes ifstream, ofstream and fstream that are

contained in the header file fstream.h. The class to be used depends upon the purpose i.e., to

read data from the file or write data to it. The two ways of opening a file are:

 1.Using the constructor function of the class

 2.Using the member function open () of the class

The first method is useful only one file in the stream is used and Second method is used

when multiple files are to be managed using one stream.

Opening files using constructor

 A constructor is used to initialize an object while it is created. In this case, a filename

is used to initialize the file stream object. The steps involved here are:

 1. Create a file stream object to manage the stream using the appropriate class. That

is, the class ofstream is used to create the output stream.

 2. Initialize the file object with the desired filename.

 For e.g., if we want to open a file named “result”, then the command is

 Program1

 ofstream outfile(“results”); //open for output only

19

 The above statement creates an object to manage the output stream. If the file result is

to be opened for reading only then the syntax could be of the form:

 Program2

 ifstream infile(“result”); //open for input only.

 Since the same file is used for both the purposes, the connection with a file is closed

automatically when the stream object expires i.e, when the program terminates. In the above

case the ‘result’ file is closed when the program1 is terminated and the file is disconnected

from the outfile stream and the same process happens with the program2.

 Instead of using two programs, for reading and writing of data, a single program to do

both the functions. The use of a statement

 outfile.close(“result”);

disconnects the file ‘result’ from the output stream.

Program1

 ofstream outfile(“results”); //open for output only

 outfile.close(“result”);

 ifstream infile(“result”); //open for input only.

 intfile.close(“result”);

 When a file is opened for writing only, then a new file is created if there is no file of

that name. If it already exists then the contents are deleted.

Opening files using open()

 The function open() can be used to open multiple files that use the same stream

object. In case of processing a set of sequential files a single stream object can be created

and used to open each file in turn. The syntax for the same is:

 filestreamclassstream-object;

 stream-object.open(“filename”);

 For eg.

 ofstream outfile; //create stream for output

 outfile.open(“data1); //connect stream to data1

 outfile.close(); //disconnect stream from data1

 outfile.open(“data2); //connect stream to data2

20

 outfile.close(); //disconnect stream from data2

Detecting End-Of-File

 Detection fo the end-of-file is necessary for preventing any further attempt to read

data from file. The syntax for is:

 while(fin);

 fin is an ifstream object and it returns 0 if any error occurs in the file operation

including the end-of-file situation. Thus the while loop terminates when fin returns a value of

zero on reaching the end of file.

 The end of file can be detected by another method such as:

 If (fin1.eof() != 0){exit(1);}

 eof() is a member function of ios class. It returns a non-zero value if the end of file is

encountered and a zero otherwise.

More about open() : file modes

The general form of open() with two arguments is

 stream-object.open(“filename”,mode);

 The mode parameter specifies the purpose for which the file is being opened. The

mode has default values for reading and writing such as

 ios::in for ifstream meaning open for reading only.

 ios::out for ofstream meaning open for writing only.

The file mode parameter can take one or more of scuh constants defined in the class ios.:

Parameter Meaning

ios::app append to end of file

ios::ate go to end of file on opening

ios::binary binary file

ios::in open file for reading only

ios::nocreate open fails if the file does not exist

ios::noreplace open fails if the file already exists

ios::out open file for writing only

ios::trunc delete contents of the file if its exists

The other points to be noted here are:

❖ Opening a file in ios::out mode also opens it in ios::trunc mode by default

21

❖ Both ios::app and ios::ate has the cursor at the end of the file when it is opened, but

the difference is that

❖ ios::app allows to add data at the end of the file only and the ios::ate permits to add

data or modify the existing data anywhere in the file.

❖ The parameter ios::app can be used only with the files capable of output

❖ Creating a stream using ifstream implies input and creating a stream using ofstream

implies output.

❖ The fstream class does not provide a mode by default and therefore it should be stated

explicitly

❖ The mode can combine two or more values using the bitwise OR operator. For e.g.

 For eg.

 fout.open(“data”,ios::app| ios::nocreate)

The above statement opens the file in the append mode but fails to open if does not exist.

REFERENCE:

1. E. Balaguruswamy , “ Object oriented programming with C++”, TataMcGraw

Hill publishing company Limited, 1998.

2. K.R, Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”,

tata mc graw – Hill publishing company Limited, 1998.

3. D. Ravichandran, Programming with C++”, Tata McGraw –

Hill published Company Limited.

Prepared By Dr.N.Shanmugavadivu

