
Department of Commerce (CA)

CORE PAPER-II-DATABASE SYSTEM

CONCEPTS

SEMESTER:I SUB CODE: 18MCC12C

M.COM(CA)

UNIT3: Embedded SQL-introduction-operations not

involving cursors-involving cursors-Dyanamic

statements-Query by example-Retreival operations-

built-in-functions-update operations-QBE dictionary-

normalization-functional dependency-

first,second,third normal forms-relations with more

than one candidate key-good and bad decompositions.

REFERENCE BOOK:

An introduction to database system-C.J. Dates

An introduction to database system-Bipin

PREPARED BY: DR. E.N. KANJANA,

 ASST PROFESSOR.

v

 Introduction to

Database Languages

The main objective of a database management system is to allow its users to perform a number of

operations on the database such as insert, delete, and retrieve data in abstract terms without

knowing

about the physical representations of data. To provide the various facilities to different types of

users, a

DBMS normally provides one or more specialized programming languages

called Database (or DBMS) Languages.

There are many popular RDBMS available to work. They are as follows:-

MySQL

MS SQL Server

ORACLE

MS ACCESS

SQL:-

SQL (Structured Query Language) is a database sublanguage for querying and modifying relational

databases. It was developed by IBM Research in the mid 70's and standardized by ANSI in 1986.

SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to communicate
with

a database.

SQL statements are used to perform tasks such as update data on a database, or retrieve data from a

database. Some common relational database management systems that use SQL are: Oracle, Sybase,

Microsoft SQL Server, Access, Ingres, etc.

Characteristics of SQL:-

Allows users to describe the data.

Allows users to define the data in database and manipulate that data.

Allows embedding within other languages using SQL modules, libraries & pre-compilers.

Allows users to create and drop databases and tables.

Allows users to create view, stored procedure, functions in a database.

Allows users to set permissions on tables, procedures, and views

SQL Functions:-

SQL has many built-in functions for performing calculations on data.

SQL Aggregate Functions

SQL aggregate functions return a single value, calculated from values in a column.

The Useful aggregate functions are as follows:

AVG() - Returns the average value

COUNT() - Returns the number of rows

FIRST() - Returns the first value

LAST() - Returns the last value

MAX() - Returns the largest value

MIN() - Returns the smallest value

SUM() - Returns the sum

SQL Scalar functions

SQL scalar functions return a single value, based on the input value.

The Useful scalar functions are as follows:

UCASE() - Converts a field to upper case

LCASE() - Converts a field to lower case

MID() - Extract characters from a text field

LEN() - Returns the length of a text field

ROUND() - Rounds a numeric field to the number of decimals specified

NOW() - Returns the current system date and time

FORMAT() - Formats how a field is to be displayed

Components of SQL:-

SQL commands are instructions used to communicate with the database to perform specific task

that

work with data. SQL commands can be used not only for searching the database but also to perform

various other functions like, for example, you can create tables, add data to tables, or modify data,

drop

the table, set permissions for users. SQL commands are grouped into four major categories

depending

on their functionality:

Data Definition Language (DDL) - These SQL commands are used for creating, modifying, and

dropping the structure of database objects. The commands are CREATE, ALTER, DROP, RENAME,

and TRUNCATE.

Data Manipulation Language (DML) - These SQL commands are used for storing, retrieving,

modifying, and deleting data. These commands are SELECT, INSERT, UPDATE, and DELETE.

Transaction Control Language (TCL) - These SQL commands are used for managing changes

affecting the data. These commands are COMMIT, ROLLBACK, and SAVEPOINT.

Data Control Language (DCL) - These SQL commands are used for providing security to

database objects. These commands are GRANT and REVOKE.

Some of the Most Important SQL Commands

SELECT - extracts data from a database

UPDATE - updates data in a database
DELETE - deletes data from a database

INSERT INTO - inserts new data into a database

CREATE DATABASE - creates a new database

ALTER DATABASE - modifies a database

CREATE TABLE - creates a new table

ALTER TABLE - modifies a table

DROP TABLE - deletes a table

CREATE INDEX - creates an index (search key)

DROP INDEX - deletes an index

Some of the Most Important SQL Commands with SQL statement

DML: Data Manipulation Language

SQL-Data Statements -- query and modify tables and columns

o SELECT Statement -- query tables and views in the database

o INSERT Statement -- add rows to tables

o UPDATE Statement -- modify columns in table rows

o DELETE Statement -- remove rows from tables

TCL:- Transaction Control Language

SQL-Transaction Statements -- control transactions

o COMMIT Statement -- commit the current transaction

o ROLLBACK Statement -- roll back the current transaction

DDL:- Data Definition Language

SQL-Schema Statements -- maintain schema (catalog)

o CREATE TABLE Statement -- create tables

o CREATE VIEW Statement -- create views

o DROP TABLE Statement -- drop tables

o DROP VIEW Statement -- drop views

o GRANT Statement -- grant privileges on tables and views to other users

o REVOKE Statement -- revoke privileges on tables and views from other users

The SQL SELECT Statement:-

The SELECT statement is used to select data from a database.

Syntax:

SELECT column_name,column_name

FROM table_name;

Or

SELECT * FROM table_name;

WHERE clause: - It is used to filter records.

SELECT column_name,column_name

FROM table_name

WHERE column_name operator value;

INSERT INTO table_name (column1,column2,column3,...)

VALUES (value1,value2,value3,...);

SQL UPDATE Statement

The UPDATE statement is used to update records in a table.

UPDATE table_name

SET column1=value1,column2=value2,...

WHERE some_column=some_value;

SQL DELETE Statement

The DELETE statement is used to delete records in a table.

DELETE FROM table_name

WHERE some_column=some_value;

SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a table in a database.

Tables are organized into rows and columns; and each table must have a name.

CREATE TABLE table_name

(

column_name1 data_type(size),

column_name2 data_type(size),
column_name3 data_type(size),

....

);

The DROP TABLE Statement

The DROP TABLE statement is used to delete a table.

DROP TABLE table_name;

The ALTER TABLE Statement

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

To add a column in a table, use the following syntax:

ALTER TABLE table_name

ADD column_name datatype

SQL GRANT Command

SQL GRANT is a command used to provide access or privileges on the database objects to the users.

The Syntax for the GRANT command is:

GRANT privilege_name

ON object_name

TO {user_name |PUBLIC |role_name}

[WITH GRANT OPTION];

privilege_name is the access right or privilege granted to the user. Some of the access rights are

ALL, EXECUTE, and SELECT.

object_name is the name of an database object like TABLE, VIEW, STORED PROC and SEQUENCE.

user_name is the name of the user to whom an access right is being granted.

user_name is the name of the user to whom an access right is being granted.

PUBLIC is used to grant access rights to all users.

ROLES are a set of privileges grouped together.

SQL Operator

An operator is a reserved word or a character used primarily in an SQL statement's WHERE clause

to

perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for

multiple

conditions in a statement.

Arithmetic operators

Comparison operators

Logical operators

Operators used to negate conditions
Set operators:-
SQL support few of set operators on the SQL tables. They are as follows:-

Union

Intersect

ORDER BY :-

The SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one
or

more columns. Some database sorts query results in ascending order by default.

Syntax:-

SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY column1, column2, .. columnN] [ASC | DESC];

GROUP BY

The SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange identical

data

into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER

BY

clause.

Syntax:

SELECT column1, column2

FROM table_name

WHERE [conditions]

GROUP BY column1, column2

ORDER BY column1, column2

HAVING

The HAVING clause enables you to specify conditions that filter which group results appear in the

final

results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause places

conditions on groups created by the GROUP BY clause.

Syntax

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

SELECT column1, column2

FROM table1, table2
WHERE [conditions]

GROUP BY column1, column2

HAVING [conditions]

ORDER BY column1, column2

Subquery

A Subquery or Inner query or Nested query is a query within another SQL query and embedded

within

the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further

restrict

the data to be retrieved.

ubqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the

operators like =, <, >, >=, <=, IN, BETWEEN etc.
There are a few rules that subqueries must follow:

Subqueries must be enclosed within parentheses.

A subquery can have only one column in the SELECT clause, unless multiple columns are in the
main query for the subquery to compare its selected columns.

An ORDER BY cannot be used in a subquery, although the main query can use an ORDER BY. The

GROUP BY can be used to perform the same function as the ORDER BY in a subquery.

Subqueries that return more than one row can only be used with multiple value operators, such
as the IN operator.

The SELECT list cannot include any references to values that evaluate to a BLOB, ARRAY, CLOB,
or NCLOB.

A subquery cannot be immediately enclosed in a set function.

The BETWEEN operator cannot be used with a subquery; however, the BETWEEN operator can

be used within the subquery.

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

(SELECT column_name [, column_name]

FROM table1 [, table2]

[WHERE])

Join

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a

means for combining fields from two tables by using values common to each.

SQL Join Types:

There are different types of joins available in SQL:

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in the right table.

RIGHT JOIN: returns all rows from the right table, even if there are no matches in the left table.

FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables, temporarily renaming at

least

one table in the SQL statement.

CARTESIAN JOIN: returns the Cartesian product of the sets of records from the two or more joined

tables.

SQL Functions:-

There are two types of functions in SQL

1) Single Row Functions: Single row or Scalar functions return a value for every row that is

processed in

a query.

2) Group Functions: These functions group the rows of data based on the values returned by the

query.

This is discussed in SQL GROUP Functions. The group functions are used to calculate aggregate

values

like total or average, which return just one total or one average value after processing a group of

rows.

There are four types of single row functions.

Functional dependency

In a given table, an attribute Y is said to have a functional dependency on a set of

attributes X (written X → Y) if and only if each X value is associated with precisely one Y value.

For example, in an "Employee" table that includes the attributes "Employee ID" and "Employee Date

of

Birth", the functional dependency {Employee ID} → {Employee Date of Birth} would hold. It follows

from the previous two sentences that each {Employee ID} is associated with precisely one

{Employee

Date of Birth}.

Full functional dependency

An attribute is fully functionally dependent on a set of attributes X if it is:

functionally dependent on X, and

not functionally dependent on any proper subset of X. {Employee Address} has a functional

dependency on {Employee ID, Skill}, but not a full functional dependency, because it is also

dependent on {Employee ID}.Even by the removal of {Skill} functional dependency still holds

between {Employee Address} and {Employee ID}.

Transitive dependency

A transitive dependency is an indirect functional dependency, one in which X→Z only by virtue

of X→Y and Y→Z.

Trivial functional dependency

A trivial functional dependency is a functional dependency of an attribute on a superset of itself.

{Employee ID, Employee Address} → {Employee Address} is trivial, as is {Employee Address} →

{Employee Address}.

Multivalve dependency

A multivalued dependency is a constraint according to which the presence of certain rows in a

table implies the presence of certain other rows.

Join dependency

A table T is subject to a join dependency if T can always be recreated by joining multiple tables

each having a subset of the attributes of T.

Normalization Process

Relations can fall into one or more categories (or classes) called Normal Forms

Normal Form: A class of relations free from a certain set of modification anomalies.

Normal forms are given names such as:

First normal form (1NF)

Second normal form (2NF)

Third normal form (3NF)

Boyce-Codd normal form (BCNF)

Fourth normal form (4NF)

Fifth normal form (5NF)

Domain-Key normal form (DK/NF)

These forms are cumulative. A relation in Third normal form is also in 2NF and 1NF.

The Normalization Process for a given relation consists of:

a. Specify the Key of the relation

b. Specify the functional dependencies of the relation.

Sample data (tuples) for the relation can assist with this step.

c. Apply the definition of each normal form (starting with 1NF).

d. If a relation fails to meet the definition of a normal form, change the relation (most often

by splitting the relation into two new relations) until it meets the definition.

e. Re-test the modified/new relations to ensure they meet the definitions of each normal

form.

In the next set of notes, each of the normal forms will be defined along with an example of the

normalization steps.

First Normal Form (1NF)

A relation is in first normal form if it meets the definition of a relation:

Each attribute (column) value must be a single value only.

All values for a given attribute (column) must be of the same type.

Each attribute (column) name must be unique.

The order of attributes (columns) is insignificant

No two tuples (rows) in a relation can be identical.

The order of the tuples (rows) is insignificant.

If you have a key defined for the relation, then you can meet the unique row requirement.

Example relation in 1NF (note that key attributes are underlined):

STOCKS (Company, Symbol, Headquarters, Date, Close_Price)

Second Normal Form (2NF)

A relation is in second normal form (2NF) if all of its non-key attributes are dependent on all of the

key.

Another way to say this: A relation is in second normal form if it is free from partial-key

dependencies

Relations that have a single attribute for a key are automatically in 2NF.

This is one reason why we often use artificial identifiers (non-composite keys) as keys.

In the example below, Close Price is dependent on Company, Date

The following example relation is not in 2NF:

STOCKS (Company, Symbol, Headquarters, Date, Close_Price)

Third Normal Form (3NF)

A relation is in third normal form (3NF) if it is in second normal form and it contains no transitive

dependencies.

Consider relation R containing attributes A, B and C. R(A, B, C)

If A → B and B → C then A → C

Transitive Dependency: Three attributes with the above dependencies.

Example: At CUNY:

Course_Code → Course_Number, Section

Course_Number, Section → Classroom, Professor

Boyce-Codd Normal Form (BCNF)

A relation is in BCNF if every determinant is a candidate key.

Recall that not all determinants are keys.

Those determinants that are keys we initially call candidate keys.

Eventually, we select a single candidate key to be the key for the relation

Fourth Normal Form (4NF)
A relation is in fourth normal form if it is in BCNF and it contains no multivalued dependencies.
Multivalued Dependency: A type of functional dependency where the determinant can determine
more than one value.
More formally, there are 3 criteria:
1. There must be at least 3 attributes in the relation. call them A, B, and C, for example.
2. Given A, one can determine multiple values of B.
3. Given A, one can determine multiple values of C.
4. B and C are independent of one another.
Book example:

Student has one or more majors.
Student participates in one or more activities.

StudentID Major Activities
100 CIS Baseball
100 CIS Volleyball
100 Accounting Baseball
100 Accounting Volleyball
200 Marketing Swimming

FD1: StudentID →→ Major
FD2: StudentID →→ Activities

Portfolio ID Stock Fund Bond Fund
999 Janus Fund Municipal Bonds

999 Janus Fund
Dreyfus Short-Intermediate
Municipal Bond Fund

45, Anurag Nagar, Behind Press Complex, Indore (M.P.) Ph.: 4262100, www.rccmindore.com
33

999 Scudder Global Fund Municipal Bonds

999 Scudder Global Fund
Dreyfus Short-Intermediate
Municipal Bond Fund

888 Kaufmann Fund
T. Rowe Price Emerging
Markets Bond Fund

A few characteristics:

No regular functional dependencies

All three attributes taken together form the key.

Latter two attributes are independent of one another.

Insertion anomaly: Cannot add a stock fund without adding a bond fund (NULL Value). Must

always maintain the combinations to preserve the meaning.

Stock Fund and Bond Fund form a multivalued dependency on Portfolio ID.

PortfolioID →→ Stock Fund

PortfolioID →→ Bond Fund

Resolution: Split into two tables with the common key:
Portfolio ID Stock Fund
999 Janus Fund
999 Scudder Global Fund
888 Kaufmann Fund

Portfolio ID Bond Fund
999 Municipal Bonds

999
Dreyfus Short-Intermediate
Municipal Bond Fund

888
T. Rowe Price Emerging
Markets Bond Fund

Fifth Normal Form (5NF)

Also called “Projection Join” Normal form.

There are certain conditions under which after decomposing a relation, it cannot be reassembled

back

into its original form.

We don’t consider these issues here.

Domain Key Normal Form (DK/NF)

A relation is in DK/NF if every constraint on the relation is a logical consequence of the definition

of keysand domains.

Constraint: An rule governing static values of an attribute such that we can determine if this

constraint

is True or False. Examples:

Functional Dependencies

Multivalued Dependencies

Inter-relation rules

Key: Unique identifier of a tuple.

Domain: The physical (data type, size, NULL values) and semantic (logical) description of what

values

an attribute can hold.

There is no known algorithm for converting a relation directly into DK/NF.

What is Normalization?

Normalization is the process of efficiently organizing data in a database. There are two goals of the

normalization process: eliminating redundant data (for example, storing the same data in more

than

one table) and ensuring data dependencies make sense (only storing related data in a table). Both

of

these are worthy goals as they reduce the amount of space a database consumes and ensure that

data is

logically stored.

Summary of the Normal Forms

The database community has developed a series of guidelines for ensuring that databases are

normalized. These are referred to as normal forms and are numbered from one (the lowest form of

normalization, referred to as first normal form or 1NF) through five (fifth normal form or 5NF). In

practical applications, you'll often see 1NF, 2NF, and3NF along with the occasional 4NF. Fifth

normal

form is very rarely seen and won't be discussed in this article.

Before we begin our discussion of the normal forms, it's important to point out that they are

guidelines

and guidelines only. Occasionally, it becomes necessary to stray from them to meet practical

business

requirements. However, when variations take place, it's extremely important to evaluate any

possible

ramifications they could have on your system and account for possible inconsistencies. That said,

let's

explore the normal forms.

First Normal Form (1NF)

First normal form (1NF) sets the very basic rules for an organized database:

Eliminate duplicative columns from the same table.

Create separate tables for each group of related data and identify each row with a unique column or

set of columns (the primary key).

Second Normal Form (2NF)

Second normal form (2NF) further addresses the concept of removing duplicative data:

Meet all the requirements of the first normal form.

Remove subsets of data that apply to multiple rows of a table and place them in separate tables.

Create relationships between these new tables and their predecessors through the use of foreign

keys.

Third Normal Form (3NF)

Third normal form (3NF) goes one large step further:

Meet all the requirements of the second normal form.

Remove columns that are not dependent upon the primary key

Boyce-Codd Normal Form (BCNF or 3.5NF)

The Boyce-Codd Normal Form, also referred to as the "third and half (3.5) normal form", adds one

more

requirement:

Meet all the requirements of the third normal form.

Every determinant must be a candidate key.

Fourth Normal Form (4NF)

Finally, fourth normal form (4NF) has one additional requirement:

Meet all the requirements of the third normal form.

A relation is in 4NF if it has no multi-valued dependencies.

Remember, these normalization guidelines are cumulative. For a database to be in 2NF, it must first

fulfill all the criteria of a 1NF database.

