Department of Commerce (CA)

CORE PAPER-II-DATABASE SYSTEM
CONCEPTS

SEMESTER:I SUB CODE: 18MCC12C
M.COM(CA)

UNIT4: Hierarchical approach-physical database-
database decription-hierarchical sequence-external
level of IMS-Logical databases-program
communication block-1MS data manipulation-defining
the program communication block-DL/I examples.

REFERENCE BOOK:

An introduction to database system-C.J. Dates

An introduction to database system-Bipin

PREPARED BY: DR. E.N. KANJANA,
ASST PROFESSOR.

Introduction

This chapter provides an overview of the network data model and hierarchical data
model. The original network model and language were presented in the CODASYL Data
Base Task Group’s 1971 report; hence it is sometimes called the DBTG model. Revised
reports in 1978 and 1981 incorporated more recent concepts. In this chapter, rather than
concentrating on the details of a particular CODASY'L report, we present the general
concepts behind network-type databases and use the term network model rather than
CODASYL model or DBTG model.

The original CODASYL/DBTG report used COBOL as the host language. Regardless of
the host programming language, the basic database manipulation commands of the
network model remain the same. Although the network model and the object-oriented
data model are both navigational in nature, the data structuring capability of the network
model is much more elaborate and allows for explicit insertion/deletion/modification
semantic specification. However, it lacks some of the desirable features of the object
models.

There are no original documents that describe the hierarchical model, as there are for the
relational and network models. The principles behind the hierarchical model are derived
from Information Management System (IMS), which is the dominant hierarchical system
in use today by a large number of banks, insurance companies, and hospitals as well as
several government agencies.

10.2 Network Data Modeling Concepts

There are two basic data structures in the network model: records and sets.

10.2.1 Records, Record Types, and Data Items

Data is stored in records; each record consists of a group of related data values. Records
are classified into record types, where each record type describes the structure of a group
of records that store the same type of information. We give each record type a name, and
we also give a name and format (data type) for each data item (or attribute) in the record
type. Figure 10.1 shows a record type STUDENT with data items NAME, SSN,
ADDRESS, MAJORDEPT, and BIRTHDATE

We can declare a virtual data item (or derived attribute) AGE for the record type shown
in Figure 10.1 and write a procedure to calculate the value of AGE from the value of the
actual data item BIRTHDATE in each record.

A typical database application has numerous record types—from a few to a few hundred.

To represent relationships between records, the network model provides the modeling
construct called set type, which we discuss next.

10.2.2 Set Types and Their Basic Properties

A set type is a description of a 1:N relationship between two record types. Figure 10.2
shows how we represent a set type diagrammatically as an arrow. This type of
diagrammatic representation is called a Bachman diagram. Each set type definition
consists of three basic elements:

* A name for the set type.

* An owner record type.

* A member record type.

The set type in Figure 10.2 is called MAJOR_DEPT; DEPARTMENT is the owner
record type, and STUDENT is the member record type. This represents the 1:N
relationship between academic departments and students majoring in those departments.
In the database itself, there will be many set occurrences (or set instances)
corresponding to a set type. Each instance relates one record from the owner record
type—a DEPARTMENT record in our example—to the set of records from the member
record type related to it—the set of STUDENT records for students who major in that
department. Hence, each set occurrence is composed of:

* One owner record from the owner record type.

* A number of related member records (zero or more) from the member record

type.

A record from the member record type cannot exist in more than one set occurrence of a
particular set type. This maintains the constraint that a set type represents a 1:N
relationship. In our example a STUDENT record can be related to at most one major
DEPARTMENT and hence is a member of at most one set occurrence of the
MAJOR_DEPT set type.

A set occurrence can be identified either by the owner record or by any of the member
records. Figure 10.3 shows four set occurrences (instances) of the MAJOR_DEPT set
type. Notice that each set instance must have one owner record but can have any number
of member records (zero or more). Hence, we usually refer to a set instance by its owner
record. The four set instances in Figure 10.3 can be referred to as the ‘Computer
Science’, ‘Mathematics’, ‘Physics’, and ‘Geology’ sets. It is customary to use a different
representation of a set instance (Figure 10.4) where the records of the set instance are
shown linked together by pointers, which corresponds to a commonly used technique for
implementing sets.

In the network model, a set instance is not identical to the concept of a set in
mathematics. There are two principal differences:

* The set instance has one distinguished element—the owner record—whereas in

a mathematical set there is no such distinction among the elements of a set.

4

* In the network model, the member records of a set instance are ordered, whereas

order of elements is immaterial in a mathematical set. Hence, we can refer to the

first, second, ith, and last member records in a set instance. Figure 10.4 shows an
alternate "linked" representation of an instance of the set MAJOR_DEPT.

the record of ‘Manuel Rivera’ is the first STUDENT (member)

record in the ‘Computer Science’ set, and that of ‘Kareem Rashad’ is the last
member record. The set of the network model is sometimes referred to as an
owner-coupled set or co-set, to distinguish it from a mathematical set.

Special Types of Sets

System-owned (Singular) Sets

One special type of set in the CODASYL network model is worth mentioning: SYSTEMowned
sets.

Figure 10.5A singular (SYSTEM-owned) set ALL_DEPTS.

A system-owned set is a set with no owner record type; instead, the system is the owner.
We can think of the system as a special "virtual™ owner record type with only a single
record occurrence. System-owned sets serve two main purposes in the network model:

« They provide entry points into the database via the records of the specified

member record type. Processing can commence by accessing members of that

record type, and then retrieving related records via other sets.

» They can be used to order the records of a given record type by using the set

ordering specifications. By specifying several system-owned sets on the same

record type, a user can access its records in different orders.

6

A system-owned set allows the processing of records of a record type by using the
regular set operations. This type of set is called a singular set because there is only one
set occurrence of it. The diagrammatic representation of the system-owned set
ALL_DEPTS is shown in Figure 10.5, which allows DEPARTMENT records to be
accessed in order of some field—say, NAME—with an appropriate set-ordering
specification. Other special set types include recursive set types, with the same record
serving as an owner and a member, which are mostly disallowed; multimember sets
containing multiple record types as members in the same set type are allowed in some
systems.

10.2.4 Stored Representations of Set Instances

A set instance is commonly represented as a ring (circular linked list) linking the owner
record and all member records of the set, as shown in Figure 10.4. This is also sometimes
called a circular chain. The ring representation is symmetric with respect to all records;
hence, to distinguish between the owner record and the member records, the DBMS
includes a special field, called the type field, that has a distinct value (assigned by the
DBMS) for each record type. By examining the type field, the system can tell whether the
record is the owner of the set instance or is one of the member records. This type field is
hidden from the user and is used only by the DBMS.

In addition to the type field, a record type is automatically assigned a pointer field by the
DBMS for each set type in which it participates as owner or member. This pointer can be
considered to be labeled with the set type name to which it corresponds; hence, the
system internally maintains the correspondence between these pointer fields and their set

types. A pointer is usually called the NEXT pointer in a member record and the FIRST
pointer in an owner record because these point to the next and first member records,
respectively. In our example of Figure 10.4, each student record has a NEXT pointer to
the next student record within the set occurrence. The NEXT pointer of the last member
record in a set occurrence points back to the owner record. If a record of the member
record type does not participate in any set instance, its NEXT pointer has a special nil

7

pointer. If a set occurrence has an owner but no member records, the FIRST pointer
points right back to the owner record itself or it can be nil.

The preceding representation of sets is one method for implementing set instances. In
general, a DBMS can implement sets in various ways. However, the chosen
representation must allow the DBMS to do all the following operations:

» Given an owner record, find all member records of the set occurrence.

* Given an owner record, find the first, ith, or last member record of the set

occurrence. If no such record exists, return an exception code.

* Given a member record, find the next (or previous) member record of the set
occurrence. If no such record exists, return an exception code.

» Given a member record, find the owner record of the set occurrence.

The circular linked list representation allows the system to do all of the preceding
operations with varying degrees of efficiency. In general, a network database schema has
many record types and set types, which means that a record type may participate as
owner and member in numerous set types. For example, in the network schema that
appears later as Figure 10.8, the EMPLOYEE record type participates as owner in four
set TYPES—MANAGES, IS_A_SUPERVISOR, E_WORKSON, and
DEPENDENTS_OF—and participates as member in two set types—WORKS_FOR and
SUPERVISEES. In the circular linked list representation, six additional pointer fields are
added to the EMPLOYEE record type. However, no confusion arises, because each
pointer is labeled by the system and plays the role of FIRST or NEXT pointer for a
specific set type.

10.2.5 Using Sets to Represent M:N Relationships

A set type represents a 1:N relationship between two record types. This means that a
record of the member record type can appear in only one set occurrence. This constraint
is automatically enforced by the DBMS in the network model. To representa 1:1
relationship, the extra 1:1 constraint must be imposed by the application program.

An M:N relationship between two record types cannot be represented by a single set type.
For example, consider the WORKS_ON relationship between EMPLOYEEs and

8

PROJECTSs. Assume that an employee can be working on several projects simultaneously
and that a project typically has several employees working on it. If we try to represent
this by a set type, neither the set type in Figure 10.6(a) nor that in Figure 10.6 (b) will
represent the relationship correctly. Figure 10.6(a) enforces the incorrect constraint that a
PROJECT record is related to only one EMPLOYEE record, whereas Figure 10.6(b)
enforces the incorrect constraint that an EMPLOYEE record is related to only one
PROJECT record. Using both set types E_P and P_E simultaneously, as in Figure
10.6(c), leads to the problem of enforcing the constraint that P_E and E_P are mutually
consistent inverses, plus the problem of dealing with relationship attributes.

The correct method for representing an M:N relationship in the network model is to use
two set types and an additional record type, as shown in Figure 10.6(d). This additional
record type—WORKS_ON, in our example—is called a linking (or dummy) record
type. Each record of the WORKS_ON record type must be owned by one EMPLOYEE
record through the E_W set and by one PROJECT record through the P_W set and serves
to relate these two owner records.

Figure 10.6 Representing M:N relationships. (a)—(c) Incorrect representations. (d)
Correct representation using a linking record type.

This is illustrated conceptually in Figure 10.6(e).

Figure 10.6(f) shows an example of individual record and set occurrences in the linked
list representation corresponding to the schema in Figure 10.6(d). Each record of the
WORKS_ON record type has two NEXT pointers: the one marked NEXT(E_W) points
9

to the next record in an instance of the E_W set, and the one marked NEXT(P_W) points
to the next record in an instance of the P_W set. Each WORKS_ON record relates its two
owner records. Each WORKS_ON record also contains the number of hours per week
that an employee works on a project. The same occurrences in Figure 10.6(f) are shown
in Figure 10.6(e) by displaying the W records individually, without showing the pointers.
To find all projects that a particular employee works on, we start at the EMPLOYEE
record and then trace through all WORKS_ON records owned by that EMPLOYEE,
using the FIRST(E_W) and NEXT(E_W) pointers. At each WORKS_ON record in the
set occurrence, we find its owner PROJECT record by following the NEXT(P_W)
pointers until we find a record of type PROJECT. For example, for the E2 EMPLOYEE
record, we follow the FIRST(E_W) pointer in E2 leading to W1, the NEXT(E_W)
pointer in W1 leading to W2, and the NEXT(E_W) pointer in W2 leading back to E2.
Hence, W1 and W2 are identified as the member records in the set occurrence of E. W
owned by E2. By following the NEXT(P_W) pointer in W1, we reach P1 as its owner;
and by following the NEXT(P_W) pointer in W2 (and through W3 and W4), we reach P2
as its owner. Notice that the existence of direct OWNER pointers for the P_W set in the
WORKS_ON records would have simplified the process of identifying the owner
PROJECT record of each WORKS_ON record.

10

Figure 10.6 (Continued) (e) Some instances. (f) Using linked representation.

In a similar fashion, we can find all EMPLOYEE records related to a particular
PROJECT. In this case the existence of owner pointers for the E_W set would simplify
processing. All this pointer tracing is done automatically by the DBMS; the programmer
has DML commands for directly finding the owner or the next member.

Notice that we could represent the M:N relationship as in Figure 10.6(a) or Figure
10.6(b) if we were allowed to duplicate PROJECT (or EMPLOYEE) records. In Figure
10.6(a) a PROJECT record would be duplicated as many times as there were employees
working on the project. However, duplicating records creates problems in maintaining
consistency among the duplicates whenever the database is updated, and it is not
recommended in general .

11

10.3 Constraints in the Network Model

In explaining the network model so far, we have already discussed "structural”

constraints that govern how record types and set types are structured. In the present
section we discuss "behavioral” constraints that apply to (the behavior of) the members of
sets when insertion, deletion, and update operations are performed on sets. Several
constraints may be specified on set membership. These are usually divided into two main
categories, called insertion options and retention options in CODASYL terminology.
These constraints are determined during database design by knowing how a set is
required to behave when member records are inserted or when owner or member records
are deleted. The constraints are specified to the DBMS when we declare the database
structure, using the data definition language. Not all combinations of the constraints are
possible. We first discuss each type of constraint and then give the allowable
combinations.

10.3.1 Insertion Options (Constraints) on Sets

The insertion constraints—or options, in CODASYL terminology—on set membership
specify what is to happen when we insert a new record in the database that is of a
member record type. A record is inserted by using the STORE command. There are two
options:

* AUTOMATIC: The new member record is automatically connected to an

appropriate set occurrence when the record is inserted.

* MANUAL: The new record is not connected to any set occurrence. If desired,

the programmer can explicitly (manually) connect the record to a set occurrence
subsequently by using the CONNECT command.

For example, consider the MAJOR_DEPT set type of Figure 10.2. In this situation we
can have a STUDENT record that is not related to any department through the
MAJOR_DEPT set (if the corresponding student has not declared a major). We should
therefore declare the MANUAL insertion option, meaning that when a member
STUDENT record is inserted in the database it is not automatically related to a
DEPARTMENT record through the MAJOR_DEPT set. The database user may later
insert the record "manually" into a set instance when the corresponding student declares a
12

major department. This manual insertion is accomplished by using an update operation
called CONNECT, submitted to the database system.

The AUTOMATIC option for set insertion is used in situations where we want to insert a
member record into a set instance automatically upon storage of that record in the
database. We must specify a criterion for designating the set instance of which each new
record becomes a member. As an example, consider the set type shown in Figure 10.7(a),
which relates each employee to the set of dependents of that employee. We can declare
the EMP_DEPENDENTS set type to be AUTOMATIC, with the condition that a new
DEPENDENT record with a particular EMPSSN value is inserted into the set instance
owned by the EMPLOYEE record with the same SSN value.

Figure 10.7 Different set options. (a) An AUTOMATIC FIXED set. (b) An
AUTOMATIC MANDATORY set.

10.3.2 Retention Options (Constraints) on Sets

The retention constraints—or options, in CODASY L terminology—specify whether a
record of a member record type can exist in the database on its own or whether it must
always be related to an owner as a member of some set instance. There are three retention
options:

* OPTIONAL: A member record can exist on its own without being a member

in any occurrence of the set. It can be connected and disconnected to set

13

occurrences at will by means of the CONNECT and DISCONNECT

commands of the network DML.

* MANDATORY:: A member record cannot exist on its own; it must always be

a member in some set occurrence of the set type. It can be reconnected in a

single operation from one set occurrence to another by means of the

RECONNECT command of the network DML.

» FIXED: As in MANDATORY, a member record cannot exist on its own.

Moreover, once it is inserted in a set occurrence, it is fixed; it cannot be

reconnected to another set occurrence.

We now illustrate the differences among these options by examples showing when each
option should be used. First, consider the MAJOR_DEPT set type of Figure 10.2. To
provide for the situation where we may have a STUDENT record that is not related to
any department through the MAJOR_DEPT set, we declare the set to be OPTIONAL. In
Figure 10.7(a) EMP_DEPENDENTS is an example of a FIXED set type, because we do
not expect a dependent to be moved from one employee to another. In addition, every
DEPENDENT record must be related to some EMPLOYEE record at all times. In Figure
10.7(b) a MANDATORY set EMP_DEPT relates an employee to the department the
employee works for. Here, every employee must be assigned to exactly one department at
all times; however, an employee can be reassigned from one department to another.

By using an appropriate insertion/retention option, the DBA is able to specify the
behavior of a set type as a constraint, which is then automatically held good by the
system.

14

Figure 10.8 A network schema diagram for the COMPANY database.

10.4 Data Manipulation in a Network Database

In this section we discuss how to write programs that manipulate a network database—
including such tasks as searching for and retrieving records from the database; inserting,
deleting, and modifying records; and connecting and disconnecting records from set
occurrences. A data manipulation language (DML) is used for these purposes. The
DML associated with the network model consists of record-at-a-time commands that are
embedded in a general-purpose programming language called the host language.
Embedded commands of the DML are also called the data sublanguage. In practice, the
most commonly used host languages are COBOL and PL/I. In our examples, however,
we show program segments in PASCAL notation augmented with network DML
commands.

15

10.4.1 Basic Concepts for Network Database Manipulation

To write programs for manipulating a network database, we first need to discuss some
basic concepts related to how data manipulation programs are written. The database
system and the host programming language are two separate software systems that are
linked together by a common interface and communicate only through this interface.
Because DML commands are record-at-a-time, it is necessary to identify specific records
of the database as current records. The DBMS itself keeps track of a number of current

records and set occurrences by means of a mechanism known as currency indicators. In
addition, the host programming language needs local program variables to hold the
records of different record types so that their contents can be manipulated by the host
program. The set of these local variables in the program is usually referred to as the user
work area (UWA). The UWA is a set of program variables, declared in the host
program, to communicate the contents of individual records between the DBMS and the
host program. For each record type in the database schema, a corresponding program
variable with the same format must be declared in the program.

Currency Indicators

In the network DML, retrievals and updates are handled by moving or navigating
through the database records; hence, keeping a trace of the search is critical. Currency
indicators are a means of keeping track of the most recently accessed records and set
occurrences by the DBMS. They play the role of position holders so that we may process
new records starting from the ones most recently accessed until we retrieve all the records
that contain the information we need. Each currency indicator can be thought of as a
record pointer (or record address) that points to a single database record. In a network
DBMS, several currency indicators are used:

« Current of record type: For each record type, the DBMS keeps track of the most
recently accessed record of that record type. If no record has been accessed yet

from that record type, the current record is undefined.

« Current of set type: For each set type in the schema, the DBMS keeps track of

the most recently accessed set occurrence from the set type. The set occurrence is
specified by a single record from that set, which is either the owner or one of the

16

member records. Hence, the current of set (or current set) points to a record, even
though it is used to keep track of a set occurrence. If the program has not accessed

any record from that set type, the current of set is undefined.

« Current of run unit (CRU): A run unit is a database access program that is

executing (running) on the computer system. For each run unit, the CRU keeps

track of the record most recently accessed by the program; this record can be from

any record type in the database.

Each time a program executes a DML command, the currency indicators for the record
types and set types affected by that command are updated by the DBMS.

Status Indicators

Several status indicators return an indication of success or failure after each DML
command is executed. The program can check the values of these status indicators and
take appropriate action—either to continue execution or to transfer to an error-handling
routine. We call the main status variable DB_STATUS and assume that it is implicitly
declared in the host program. After each DML command, the value of DB_STATUS
indicates whether the command was successful or whether an error or an exception
occurred. The most common exception that occurs is the END_OF_SET (EOS)
exception.

10.5 Hierarchical Database Structures

10.5.1 Parent-Child Relationships and Hierarchical Schemas

The hierarchical model employs two main data structuring concepts: records and parentchild
relationships. A record is a collection of field values that provide information on

an entity or a relationship instance. Records of the same type are grouped into record
types. A record type is given a name, and its structure is defined by a collection of named
fields or data items. Each field has a certain data type, such as integer, real, or string.

A parent-child relationship type (PCR type) is a 1:N relationship between two record
types. The record type on the 1-side is called the parent record type, and the one on the
N-side is called the child record type of the PCR type. An occurrence (or instance) of
17

the PCR type consists of one record of the parent record type and a number of records
(zero or more) of the child record type.

A hierarchical database schema consists of a number of hierarchical schemas. Each
hierarchical schema (or hierarchy) consists of a number of record types and PCR types.
A hierarchical schema is displayed as a hierarchical diagram, in which record type
names are displayed in rectangular boxes and PCR types are displayed as lines
connecting the parent record type to the child record type. Figure 10.9 shows a simple
hierarchical diagram for a hierarchical schema with three record types and two PCR
types. The record types are DEPARTMENT, EMPLOYEE, and PROJECT. Field names
can be displayed under each record type name, as shown in Figure 10.9. In some
diagrams, for brevity, we display only the record type names.

Figure 10.9 A hierarchical schema.

We refer to a PCR type in a hierarchical schema by listing the pair (parent record type,
child record type) between parentheses. The two PCR types in Figure 12.1 are
(DEPARTMENT, EMPLOYEE) and (DEPARTMENT, PROJECT). Notice that PCR
types do not have a name in the hierarchical model. In Figure D.01 each occurrence of
the (DEPARTMENT, EMPLOYEE) PCR type relates one department record to the
records of the many (zero or more) employees who work in that department. An
occurrence of the (DEPARTMENT, PROJECT) PCR type relates a department record to
the records of projects controlled by that department. Figure 10.10 shows two PCR
occurrences (or instances) for each of these two PCR types.

18

Figurel0.10 Occurrences of Parent-Child Relationships.

(a) Two occurrences of the PCR type (DEPARTMENT, EMPLOYEE).

(b) Two occurrences of the PCR type (DEPARTMENT, PROJECT).

10.5.2 Properties of a Hierarchical Schema

A hierarchical schema of record types and PCR types must have the following properties:
1. One record type, called the root of the hierarchical schema, does not participate

as a child record type in any PCR type.

2. Every record type except the root participates as a child record type in exactly

one PCR type.

3. A record type can participate as parent record type in any number (zero or

more) of PCR types.

4. A record type that does not participate as parent record type in any PCR type is

called a leaf of the hierarchical schema.

5. If arecord type participates as parent in more than one PCR type, then its child

record types are ordered. The order is displayed, by convention, from left to right

in a hierarchical diagram.

The definition of a hierarchical schema defines a tree data structure. In the terminology

of tree data structures, a record type corresponds to a node of the tree, and a PCR type
corresponds to an edge (or arc) of the tree. We use the terms node and record type, and
edge and PCR type, interchangeably. The usual convention of displaying a tree is slightly
different from that used in hierarchical diagrams, in that each tree edge is shown
separately from other edges (Figure 10.11). In hierarchical diagrams the convention is
19

that all edges emanating from the same parent node are joined together (as in Figure
10.9). We use this latter hierarchical diagram convention.

Figure 10.11 A tree representation of the hierarchical schema in Figure 10.9.

The preceding properties of a hierarchical schema mean that every node except the root
has exactly one parent node. However, a node can have several child nodes, and in this
case they are ordered from left to right. In Figure 10.9 EMPLOYEE is the first child of
DEPARTMENT, and PROJECT is the second child. The previously identified properties
also limit the types of relationships that can be represented in a hierarchical schema. In
particular, M:N relationships between record types cannot be directly represented,
because parent-child relationships are 1:N relationships, and a record type cannot
participate as child in two or more distinct parent-child relationships.

An M:N relationship may be handled in the hierarchical model by allowing duplication of
child record instances. For example, consider an M:N relationship between EMPLOYEE
and PROJECT, where a project can have several employees working on it, and an
employee can work on several projects. We can represent the relationship as a
(PROJECT, EMPLOYEE) PCR type. In this case a record describing the same employee
can be duplicated by appearing once under each project that the employee works for.
Alternatively, we can represent the relationship as an (EMPLOYEE, PROJECT) PCR
type, in which case project records may be duplicated

Example Consider the following instances of the EMPLOYEE:PROJECT relationship:
20

Project

Employees Working on the
Project

El, E3, E5

E2, E4, E6

El, E4

E2, E3, E4, E5

o0 m >

If these instances are stored using the hierarchical schema (PROJECT, EMPLOYEE)
(with PROJECT as the parent), there will be four occurrences of the (PROJECT,
EMPLOYEE) PCR type—one for each project. The employee records for E1, E2, E3,
and E5 will appear twice each as child records, however, because each of these
employees works on two projects. The employee record for E4 will appear three times—
once under each of projects B, C, and D and may have number of hours that E4 works on
each project in the corresponding instance.

To avoid such duplication, a technique is used whereby several hierarchical schemas can
be specified in the same hierarchical database schema. Relationships like the preceding
PCR type can now be defined across different hierarchical schemas. This technique,
called virtual relationships, causes a departure from the "strict™ hierarchical model. We

discuss this technique in next section.

10.6 Integrity Constraints and Data Definition in the Hierarchical Model
10.6.1 Integrity Constraints in the Hierarchical Model

A number of built-in inherent constraints exist in the hierarchical model whenever we
specify a hierarchical schema. These include the following constraints:

1. No record occurrences except root records can exist without being related to a
parent record occurrence. This has the following implications:

a. A child record cannot be inserted unless it is linked to a parent record.

21

b. A child record may be deleted independently of its parent; however,

deletion of a parent record automatically results in deletion of all its child

and descendent records.

c. The above rules do not apply to virtual child records and virtual parent

records.

2. If a child record has two or more parent records from the same record type, the
child record must be duplicated once under each parent record.

3. A child record having two or more parent records of different record types can
do so only by having at most one real parent, with all the others represented as
virtual parents. IMS limits the number of virtual parents to one.

4. In IMS, a record type can be the virtual parent in only one VPCR type. That is,
the number of virtual children can be only one per record type in IMS.

10.7 Summary

1. There are two basic data structures in the network model: records and sets.

2. Data is stored in records; each record consists of a group of related data values.
3. Records are classified into record types, where each record type describes the
structure of a group of records that store the same type of information.

4. To represent relationships between records, the network model provides the
modeling construct called set type.

5. Each set type definition consists of three basic elements: * A name for the set
type. * An owner record type. * A member record type.

6. The constraints in network data model are usually divided into two main
categories, called insertion options and retention options in CODASYL
terminology.

7. A data manipulation language (DML) is used for inserting, deleting, and
modifying records; and connecting and disconnecting records from set
occurrences.

8. The hierarchical model employs two main data structuring concepts: records and
parent-child relationships.

22

9. A record is a collection of field values that provide information on an entity or a
relationship instance.

10. A parent-child relationship type (PCR type) is a 1:N relationship between two
record types.

11. The definition of a hierarchical schema defines a tree data structure.

12. To a hierarchical schema, many hierarchical occurrences, also called
occurrence trees, exist in the database. Each one is a tree structure whose root

is a single record from the root record type.

13. An occurrence tree can be defined as the subtree of a record whose type is of the
root record type.

14. A hierarchical database occurrence as a sequence of all the occurrence trees
that are occurrences of a hierarchical schema.

15. A number of built-in inherent constraints exist in the hierarchical model
whenever we specify a hierarchical schema.

Hierarchical DBMS

"~ Hierarchical Database Management Systems
Appendix [- 3% ed, (Appendix E — 4" ed, Appendix I — 5 and 6% ed.)

L/ * Hierarchical Schemas
+ record type
» parent-child relationship
* hierarchical occurrence trees
» linearized form of hierarchical occurrence
* Virtual parent-child relationships
» Data definition in the hierarchical model

+ Data manipulation language for the hierarchical model

Jan. 2012 Yangjun Chen ACS-3902 1

Hierarchical Schema Hierarchical DBMS

+ A hierarchical schema consists of record types and PCR types.
- Avrecord 15 a collection of field values
- Records of the same type are grouped mto record types
- APCR type (parent-child relationship type) 15 a 1N relationship between
two record Types
+ A hierarchical database schema consists of a number of

hierarchical schemas. N .’/__H“ ____— PCR
| | s

-

s .
/" department
dl:lﬂ.l}lé | thmnbe;ﬂn,c__:,‘rll\lmﬂ mgrs\a:\h:late

ra

/| / \ |
¢mployee N t
name | ss]f.i | bdate J/address pnhlqe lmmnl:ﬁpﬂplumtinn

A S~

Jan. 2012 Yangjun Chen ACS-3902 3

Hierarchical Schema Hierarchical DBMS

* PCR occurrence
- Each PRC oceurrence relates a record of a type (e.g.. a departinent) to some
records of another tvpe (e.g., emplovee).

PCR type: PCR occurrences:
Department research adiministration
ﬁ#ﬁ"ﬂr’[\xmm _____//|\
Employee Smith Wong Naravan Zelava Wallace Jabbar
Department research administration
N
|_ *’#H#THH“H N
Project Product]l Product2 Product3 Computerization
Jan. 2012 Yangjun Chen ACS-3902 5
Hierarchical Schema Hierarchical DBMS

* Properties of a Hierarchical Schema

1. One record type. called the root of the hierarchical schema. does not not
participate as a cluld record type in any PCR type.

2. Every record type except the root participants as a child record type in
exactly one PCR type.

3. Arecord type can participate as parent record type mn any munber
{zero or more) of PCR types.

4. A record type that does not participate as parent record type m any PCR.
15 called a leaf of the hierarchical schema.

5. If a record type participate as parent in more than one PCR type, then its
chald record types are ordered. The order 1s displayved. by convention, from
left to night 1 a hierarchical diagram.

Jan. 2012 Yangjun Chen ACS-3902 7

Hiearchical Schema Hierarchical DBMS

* Hierarchical occurrence
Each hierarchical oconrrence, called an ocenrrence tree, is a
tree structure whose root is a single record from some record
type. Each subtree of the root is again a hierarchical occurrence.

- type indicator

D

P
T | | 8§ W
dependent supervisee worker
\Jan. 2012 angjun Chen ACS3502 q
Hiearchical Schema Hierarchical DBEMS

- hierarchical occurrence

Level i D Administration

Level 1! E zalaya E wallace E mabbar
Level I: W onabbar WA Zalaya

|Jil‘|. 2012 Yangjun Chen ACS-3902 11

Hiearchical Schema Hierarchical DBMS

- linearized form of a hierarchical occurrence

procedure Fre_order_traversal (Toot_record)
begin
output{root_record):
if ro child node then return:
else for each clild_record of root_record in left to right order do
Pre_arder_troversal (child_record)

end
D admimstration
E Zelaya
E Wallace
T Abner
S Zelaya :|
5 Jabbar
E Jabbar
P computerization
W Wong
W Zelaya :|
P new-benefit
W Tabbar
W Zelava :|
Jan. 2012 Yangjun Chen ACS-3902 13
Virtual PCR Hierarchical DBEMS

* Virtual Parent-child Relationships
- Problems with luerarchical model
1. M:N relationship
causes redundancy
2. The case where a record tvpe participates as child in more than one
PCR. type
causes redundancy
3. N-ary relationships with more than two parficiparing record fype
can not be modelled
- Method dealing with the three problems:
virtual record type
virmal PCR relationship

Jan. 2012 Yangjun Chen ACS-3902 15

Virtual PCR Hierarchical DBMS

*Virtual Parent-child Relationships

- virfual record tvpe
A wirtnal {or pointer) record type VO is a record tvpe with the property that
each of its records contains a pointer to a record of another type VP,
WV plavs the role of “virtual child” and VP of “virtual parent™ in a “virtual
parent-child relationship™ (VPCR).

Arecord of a VO type is a pointer 1o a record of some VP tvpe,
Arecord of a VP type is a “real” record

Example:
MW relationship between Emplovee and Project:

P| Project | /vtEmploj,ree|E E lploj,ree| ./'I Project |P
| " ! |

Vigomal/ P R[Bpomar]

Ve

Jan. 2012 Yangjun Chen ACS-3902 17

WVirtual PCR Hierarchical DBMS

* Virtual Parent-child Relationships
- imtersection data in a virtual record
An employee may participate in several projects. But for each project, he/she
may work for different howrs per week.
Therefore, the data representing “different hours per week” should be
mncluded in the virtual records since each pointer to an employee record may
have a different value. Such data arve called intersection data.

- VPCR
The relationship between a virtual child and the comesponding virtual parent
15 called a Virtual Parent-Child-Relationship.

Jan. 2012 Yangjun Chen ACS-3902 19

Virtual PCR Hierarchical DBMS

+ Virtual Parent-child Relationships

- Example:
The relationship:
Project Employees working on the project
A El, E3,E5
B EZ, E4,Eo
C El. E4
D EZ E3, E4,E5

can be stored as follows:

Jan. 2012 Yangjun Chen ACS-3902 21
Virtual PCR Hierarchical DBMS
+ Virtual Parent-child Relationships
- Example:
A R
__'_'_,_,.--"""l"""ﬂ-\._____ __,.:-'/f;:-r"""'_'_‘_'_'_
Epl.10 Ep2.8 Ep3.5 — //‘_fc;__, E2
S =B
_ _,.ﬂ"l"h-q:_:“““-h-_ . [— Ed
Ep4,20 Eps, 8 Epé. 3 B
I — E6
-
Ep7.6 Ep8. 9 — /
\"“-____ -
Epd, 20 Ep10.3
\-\..____

Jan. 2012 Yangjun Chen ACS-3902 23

Virtual PCR

Hierarchical DBMS

ERD for Chapter 6

database example

Jan. 2012 Yangjun Chen

ACS-3902

25

Virtual PCR

Hierarchical DBMS

+ Virtual Parent-child Relationships
- Hierarchical schema using VPCR - for a Company database

D| Department

E

Emplovee

Ename| Mt |

F

Dname| Dmumn
L | P
Dlocation Project
Location le.rue|

T Dependent

DEPname | Minit |

|Jan. 2012 Yangjun Chen

ACS-3902

27

Data Definition

Hierarchical DBMS

* Data Definition in the Hierarchical Model
- Hierarchical data definition language (HDDL)
+ record type
data item of a record type
kev clanse
parent
+ virtual record type
virtual parent

« CHILD NUMBER clause (the lefi-to-right order)

« ORDER BY clanse

(the order of mdividual records of the same record type)

sequence key

Jan. 2012 Yangjun Chen ACS-3902 29

Data Definition

Hierarchical DBMS

* Data Definition in the Hierarchical Model
- Example

SCHEMA NAME = COMPANY

HIERARCHIES = HIERARCHY 1, HIERARCHY 2

RECORD
NAME = EMPLOYEE
TYPE = ROOT OF HIERARCHY2

DATATTEMS =
FNAME CHARACTER 15
MIMIT CHARACTER 1
LMNAME CHARACTER 15
55N CHARACTER 9
BDATE CHARACTER 9

ADDRESS CHARACTER 30

Jan. 2012 Yangjun Chen ACS-3902 il

Data Definition Hierarchical DBMS

* Data Definition in the Hierarchical Model

- Example
SEX CHARACTER 1
SALARY CHARACTER 10
KEY = S5M CHARACTER 10

ORDER BY LNAME, FNAME

RECORD

NAME = DEPARTMENT

TYPE = ROOT OF HIERARCHY1

DATAITEMS =
DNAME CHARACTER 15
DNUMBER INTEGER

KEY = DNAME

KEY = DNUMBER.

ORDER BY DNAME

Jan. 2012 Yangjun Chen ACS-30902 33
Data Definition Hierarchical DBMS
* Data Definition in the Hierarchical Model
- Example
RECORED

NAME = DLOCATION
PARENT = DEPARTMENT
CHILD NUMBER = 1
DATATTEMS =
LOCATION CHARACTER 15

RECORD
NAME = DMANAGER
PARENT = DEPARTMENT
CHILD NUMBER = 3

DATATTEMS =
MGRSTARTDATE CHARACTER 9
MPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

Jan. 2012 Yangjun Chen ACS-3902 35

Data Definition

Hierarchical DBMS

» Data Definition in the Hierarchical Model
- Example

RECORD

NAME = PROJECT

PARENT = DEPARTMENT

CHILD NUMBER = 4

DATATITEMS =
PNAME CHARACTER 15
PNUMBER INTEGER
PLOCATION CHARACTER 15

KEY = PNAME

KEY = PNUMBER

ORDER BY PNAME

Jan. 2012 Yangjun Chen ACS-3902 37

Data Definition

Hierarchical DBMS

* Data Definition in the Hierarchical Model

- Example

RECORD
NAME = PWORKER
PARENT = PROJECT
CHILD NUMBER = 1
DATATTEMS =
HOURS CHARACTER 4

WPTR POINTER WITH VIRTUAL PARENT = EMLPOYEE

RECORD
NAME = DEMPLOYEES
PARENT = DEPARTMENT
CHILD NUMBER = 2
DATATTEM =

EPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

Jan. 2012 Yangjun Chen ACS-3902 39

Data Manipulation Hierarchical DBMS

+ Data Manipulation in the Hierarchical Model
- Update: INSERT. DELETE., REPLACE

HGET FIRST PATH DEPARTMENT. DEMPLOYEE

WHERE DNAME = ‘Reseach’;

while DB_STATUS = 0 do
begin
SGET HOLD VIRTUAL PARENT EMPLOYEE OF DEMPLOYEES
P EMPLOYEE.SALARY =P EMPLOYEE SALARY * L.1;
SREPLACE EMPLOYEE FROM P EMPLOYEE
MGET NEXT DEMPLOYEES WHERE PARENT DEPARTMENT

end:
Jan. 2012 Yangjun Chen ACS-3902 59
Parent/child relationships Hierarchical DBMS

Two parent/child relationships are in the above schema:
*department/employee

sdepartment/project

Jan. 2012 Yangjun Chen ACS-3902 bl

Parent/child instances Hierarchical DBMS

e
o T i e S

Using the data we had previously seen in Ch 7, we can depict the
following 3 instances of department/employee:

Headquarters

Research | Administration

Smith || Wong | |Narayan || English Zelaya || Wallace || Jabbar

\Jan. 2012 angjun Chen ACS-3902 (%)

Parent/child instances Hierarchical DBMS

e a—
e T st e b

Using the data we had previously seen in Ch 7, we can depict the
following 3 instances of department/project:

| ProductX || ProductY | |ProduciZ |

Research
| Administration |

| Computerization || Newbenefits |

|.lun. 2012 Yangjun Chen ACS-3902 65

Hierarchical records Hierarchical DBMS

In the following 3 hierarchical records are depicted. This is another
way that such information is often depicted in practice.

Nore that a child record cannot
exist withowut its pavent record - this
is similar to the concepis of

FR integrity and

sweal entify

| Boig | | Reorganization |
Zelav izati
Newhenefits
Jan. 2012 Yangjun Chen ACS-3902 67
Schema definition Hierarchical DBEMS
Schema name = company
fecord
name=department «____
fizld dname ~T———ghagacter 15
field drmber ﬁnbg?'““——________h_ Need:
field MEITATE character 30 = Names af necords
field mgrstartdate date -
kev=dnwmber e
record — JRR—t LT
name=cmployes ™ R © relmionships
parent=department *- 7
field na1me
field w51 ¢ flelels
field bdate te . !
field addrass ch.qra:efcr 30 kevs
key=ssn 4
record
DATE=PI0] ect - sywta will veny, bair
m.:dcpam,:up"'- these are the nopes of
fizld phame character 15 things that must be
field pramber integer PSS,
field lescation character 1%
kev=pnwmber

Jan. 2012 Yangjun Chen ACS-3902 69

Data manipulation

Hierarchical DBMS

Navigational - not set-oriented - you
retrieve one record at a time

Retrieval

GU, Get unique

retrieve a specific record

nusing your current position, get the next
GN, Get next record in the database

GNP, Get next within parent

SAN PRIPEI Y Sy

an T Y LT DHST AN ND T

using your current position,
zet the next child record for

Updating that parent

ISRT, Insert
DLET, Delete
REPL, Replace

Jan. 2012 Yangjun Chen ACS-3902 71

Navigating through the database Hierarchical DBMS

Consider the database

| Borg | | Reorganization |

MNewbenefits

G Department {dname=headquarters)
Loop

NP Program wonld refrieve the Deperiment
exit when status code = 7777 recard and all af its dependents
End Loop

Jan. 2012 Yangjun Chen ACS-3902 73

