
GOVERNMENT ARTS COLLEGE (AUTONOMOUS)

DEPARTMENT OF COMMERCE (CA)

CLASS: I M.COM (CA) SEMESTER II

SUBJECT CODE: 18MCC23C

OBJECT ORIENTED PROGRAMMING WITH C++

UNIT 2

 Data types – character set – Tokens, Identifiers and Keywords – variables –

operator and expressions – control flow – IF, IF….else, nested IF….else, For loop,

While…. loop, do…while loop, break statements, switch statements continue

statement and go to statement. Arrays – operations on arrays – multidimensional

arrays – strings – string manipulations. Functions – function- components – library

functions – inline functions.

Reference Books:

 E. Balagurusamy, ―Object Oriented Programming with C++‖, TataMcGraw

Hill Publishing Company Ltd.

 K.R.Venugopal, Raj kumar, T.Ravishanker., ―Mastering C++‖,TataMcGraw

Hill Publishing Company Ltd.

Prepared by

 Dr. S. Vasantha

UNIT 2

 Data types – character set – Tokens, Identifiers and Keywords – variables –

operator and expressions – control flow – IF, IF….else, nested IF….else, For loop,

While…. loop, do…while loop, break statements, switch statements continue

statement and go to statement. Arrays – operations on arrays – multidimensional

arrays – strings – string manipulations. Functions – function- components – library

functions – inline functions.

TOKENS

 Key words

 Identifiers

 constants

 Strings

 Operators

KEY WORDS

 They are explicitly reserved identifiers and cannot be used as names for the

program variables or other user defined program elements.

EXAMPLE

 Auto, break, case, catch, char, const, class, continue, default, delete, do,

double, else, float, for, friend, go to, if, inline int, long, new, operator, private,

public, return, short, signed, size of, static, struct, switch etc.

IDENTIFIERS AND CONSTANTS

 Identifiers refer to the names of variables, functions, classes, etc, created by

the programmer.

 They are the fundamental requirement of any language.

RULES FOR NAMING THESE IDENTIIERS (VARIABLES):

 Only alphabetic characters, digits and underscores are permitted.

 The name cannot start with a digit.

 Uppercase and lowercase letters are district.

 A declared key word cannot be used as a variable name.

 The maximum number of characters used in forming an identifier must not

exceed 32 characters.

DATA TYPES

VARIABLES

 A variable is the symbolic address of a location in memory where data can

be stored. Variables are object of the program elements that may change it contents

of the value during program execution.

SIZE OF DATA

TYPE BYTES TYPE BYTES

Char 1 Signed short int 2

Unsigned char 1 Long int 4

Signed char 1 Signed long int 4

Int 2 Unsigned long int 4

Unsigned int 2 Float 4

Signed int 2 Double 8

Unsigned short int 2 Long double 10

C++ DATA TYPES USER DEFINED

TYPES

 Structure

 Union

 Class

 Enumerati

on

DERIVED TYPE

 Array

 Function

 Pointer

 Reference

BUILD IN TYPE

Void Floating

type

Integral type

Double Float Char int

OPERATORS:

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operators

 Bitwise operators

 Special operators in C++

ARTHIMETIC OPERATORS:

 C++has both unary and binary arithmetic operators.

 Unary operators are those, which operate on a single operand whereas,

binary operators operate on two operands.

UNARY MINUS OPERATOR (NAGATIVE):

 The unary minus operator can be used to negate the value of variable. It is

also used to specify a negative number.

(e.g) int x=5; y=x; y values = -5.

 Here a minus (-) sign is preferred to the umbers. The use of unary + operator

does not save any purpose.

 A= =100

By default, numeric constants are assumed to be positive.

BINARY OPERATORS:

 Binary arithmetic operators such as +,-,*,/ and% require two operands of

standard data types, depending on the data types of the operands, these operators

perform either integer or floating point arithmetic operation.

 An arithmetic expression without parentheses will evaluate from left to right

using the following rules of precedence for operators.

 High priority: *, /, %

 Low priority: +, -

 When parentheses are used, the expression within the innermost parentheses

gains highest priority.

RELATIONAL OPERATORS:

 A relational operator is used to make comparisons between two expressions.

All these operations are binary and require two operands.

 Logically similar quantities are often compared for taking decisions. These

comparisons can be done with the help of relational operators.

 Each one of these operators compares its left hand side operand with its right

hand side open and the whole expression involving the relational operator then

evaluates to an integer. It evaluates to zero if the condition is false and non zero

value if it is true.

OPERATOR MEANING

< Less then

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

ꜝ= Not equal to

EXAMBLE:

include <iostream.h>

void main ()

{

 Int my_age, your_age;

 Cout<< ―enter my_age:‖;

 Cin>> my_age;

 Cout<< ―Enter your_age:‖;

 Cin your_age;

 If(my _age==your_age)

 Cout<< ―We are born in the same year‖;

 Else

 Cout<< ― We are born in different years‖;

}

 In main(), the statement if(my_age==your_-age) has the expression

my_age==your_age as conditional expression. If my_age and your _age is equal to

the return is true(i.e) value is one(1), otherwise the return is not true(ie) the value is

zero(0).

LOGICAL OPERATORS:

 Any expression that evaluates to zero denotes a false logical condition, and

that evaluating to non zero value denotes a true logical condition. Logical operators

are useful in combining one or more conditions.

OPERATOR MEANING

&& Logical AND

 Logical OR

ꜝ Logical NOT

 The first two operators && and are binary where as the exclamation is

a binary operator and is used to negate a condition.

 The result of logical operations when applied to operands with all possible

values.

LOGICAL AND:

(e.g) a>b&&==0

 The expression on the left is a>b and that on the right is x==10. The whole

expression values to true only if both expressions are true.

OPERAND-

1 a

OPERAND-

2 b

a&&b a b ~a ~b

F F F F T T

F T F T T F

T F F T F T

T T T T F F

LOGICAL OR():

 a <m a<n

The expression is true if one of them is true or both of them are true.

LOGICAL NOT(ꜝ)

 The NOT operator takes a single expression and evaluates to true if the

expression is false and evaluates o false if the expression is true.

 The unary negation operator has a higher precedence amongst these,

followed by the logical AND(&&) operator and then the logical OR() operator

and are evaluated from left to right.

BITWISE OPERATORS:

OPERATOR MEANING

& Bitwise AND

 Bitwise OR

˄ Bitwise EX-OR

~ Bitwise complement

<< Shift left

>> Shift right

 The support of Bitwise manipulation on integer operands is useful in

various applications.

Bitwise AND

C=a&b; int a=13

 Int b=7

 The variables a, b and c as 16 bit integer.

 a= 0000 0000 0000 1111

 b= 0000 0000 0000 0111

a&b= 0000 0000 0000 0101 c value is = 5.

BITWISE OR

c= a|b

 a= 0000 0000 0000 1101

 b= 0000 0000 0000 0111

a|b= 0000 0000 0000 1111 c value is = 15.

BITWISE XOR:

C=a˄b;

 After this statement is executed, a bit in c will be 1 whenever the

corresponding bits in a and b differ.

 a= 0000 0000 0000 1101

 b= 0000 0000 0000 0111

 a˄b= 0000 0000 0000 1010 c value is = 10.

SHIFT OPERATORS:

LEFT SHIFT OPERATOR

C= a<<3

 The value of integer is shifted left by three bit positions. The result is

assigned to the integer c. since the value of a is 0000 0000 0110 1000(104 in

decimal)

Left shift<<

 Drop off insert o’s

After left bit shift by 3 places.

A<<3

0000 0000 0110 1000

The three left most nits drop off due to the left shift. The zero’s are inserted in the

right.

RIGHT SHIFT OPERATOR:

C=a>>2

The value of a is shifted right by 2 positions

The value of a is 0000 0000 0000 1101

The value of c after the execution of the above statement is 0000 0000 0000 0011

The value of c is (in decimal)= 3

COPOUND ASSIGMENT OPERATORS

0000 0000 0000 1101

 The assignment operator =(equal sign) evaluates the expression on the right

and assigns the resulting value to the variable on the left.

Variable operator = expressions/ constant/ function;

i=i+10;

if can be rewritten in the compact from the follows:

 i+=10;

the operator += is known as compound assignment operator.

INCREMENT AND DECREMENT OPERATORS:

 ++ is known as increment and – is known as decrement operator.

 These operators increase or decrease the value of a variable on which they

operate by one.

SYNTAX

++ variable -- variable

Variable ++ variable—

The prefix and postfix for increment expressions ++m and m++

 a 0

b 10

 a=0, b=10

a=++b a=b++

10 a

11 b

11 a

11 b

CONDITIONAL OPERATORS (TERNARY OPERATORS)

 An alternative method to using a simple if else construct is the conditional

expression operator. It is called the ternary operators, which operates on three

operands.

Expression 1 ? expression2 : expression 3

Z= (a>b) ? a: b

Z= ((num%2)? ―ODD‖: ―EVEN‖)

CONTROL FLOW

BRANCHING STATEMENTS

(a) If statement Conditional statement

(b) If else statement Conditional statement

(c)switch statement Conditional statement

(c) Goto statement Unconditional statement

LOOPING STATEMENTS

 Loop cause a section of code to be executed repeatedly until a termination

condition is met.

(a) For statement

(b) While statement

(c) Do-while statement

BRANCHING STATEMENTS

IF STATEMENTS

 The if construct is a powerful decision making statement which is used to

control the sequence of the execution of statement.

SYNDAX:

If (test expression)

Statement;

 The test expression should always enclosed in parentheses. If

test_expression is true then the statement immediately following it is executed

otherwise, control passes to the next statement following the if construct.

 If(expression)

{ { TRUE

FALSE

} }

 Statement;

IF_ELSE STATEMENT:

