
1

DEPARTMENT OF COMMERCE (CA)

OBJECT ORIENTED PROGRAMMING WITH C++ (SEMESTER-IV)

II-B.COM (CA) SUBJECT CODE - 18BCA42C

UNIT – IV

Constructor and destructors: Introduction – copy constructors. Dynamic Constructors

– destructors operator overloading: Definition of operator overloading – Overloading

binary operators using friends – manipulation of string using operators – Rules for

overloading operators – Types conversion.

Constructors :

• Constructor is a special member function that has the same name of the class

and provides the way to initialize the objects of the class.

• The Constructor is invoked implicitly whenever an object of the class is created.

• It is called as Constructor because it reserves memory for newly created object

and initialize members of an object with value.

• Example:

// Class with a Constructor

class sample

{

 int m,n;

 public :

 sample(); //….. constuctor declared…..

};

sample : : sample() // ….constructor defined….

{

 m=0;

 n=0;

}

// ….main function ….

int main()

{

 sample s1.

}

This statement creates the object ‘s1’ of the type ‘sample’ and also initializes its data

members ‘m’ and ‘n’ to zero.

2

Types Of Constructors

• Default Constructor

• User defined Constructor(parameterized Constructor)

• Copy Constructor.

Characteristics of Constructor function:

• They should be declared in the public section.

• They are invoked automatically when the objects are created.

• The name must be the same as its class name

• They cannot return values (not even void)

• They can not be Static or Virtual.

• Each time an object of a class is defined, its Constructor is applied to it

implicitly.

Default Constuctor

 Default Constructor is a constructor that accepts no parameters. Here no processing

is needed and the Constructor simply reserves memory by default.

 Example:

// example for default Constructor

include < iostream.h>

class student

{

 int rollno;

 char name[30];

 float height,weight;

 public:

 student (); // constructor

 void display ();

};

student ::student ()

{

 name [0]=’\0’;

 rollno=0;

 height=0;

 weight=0;

}

3

void student : : display ()

{

 cout << “Name “ << name << endl;

 cout << “Rollno“ << rollno << endl;

 cout << “Height “ << height << endl;

 cout << “Weight “ << weight << endl;

}

int main ()

{

 student s;

 cout <<”The values from default Constructor are :” << endl’

 s.display();

 return 0;

 }

output

The values from default Constructor are :

Name=

Rollno=0

Height=0

Weight=0

Parameterized constructors:

The parameterized Constructor are Constructor with arguments in order to pass

different values to initialize the data members from the main ().

 Example:

// Mark pattern for UG and PG using parameterized Constructor

include <iostream.h>

class mark

{

 int internal,external;

 public:

 mark(int,int); // constructor declared.

 Void display(void)

 {

 cout <<”Internal mark =”<< internal <<endl;

 cout <<”External mark=”<<external << endl;

4

 }

};

mark :: mark(int i,int e) // constructor defined.

{

 internal =i

 external=e;

}

int main ()

{

 mark ug(0,100) ;

 mark pg(25,75);

 cout <<” UG pattern “<<endl;

 ug.display ();

 cout <<” PG pattern”<<endl;

 pg.display();

 return 0;

}

Constructors with default arguments:

• We can define Constructor with default arguments

• In the above example , the Constuctor integer can be declared as follows,

integer (int a, int b=10)

The statement integer eg(20) assigns the value 20 to ‘a’ and the value 10

to ‘b’ (by default)

Difference between default Constructor and default argument:

• When the Constructor is called with no argument , it becomes default

Constructor.

• But a default argument Constructor call be called with either one argument or

no argument

5

Copy constructors:

 A copy Constructor takes a reference to an object of the same

class as itself as an argument. Example:

// Generation oof Fibonacci series using copy Constructor

include <iostream.h>

class fibonacci

{

 int f0,f1,fib;

 public:

 fibonacci (); // constructor

 fibonacci(fibonacci & ptr); // copy Constructor

 void increment ();

 viod display();

};

fibonacci : : fibonacci ()

{

 f0=0;

 f1=1;

 fib=f0+f1;

}

fibonacci : : fibonacci (fibonacci & ptr)

{

 f0=ptr . f0 ;

 f1=ptr . f1 ;

 fib = ptr . fib ;

}

 void fibonacci :: increment ()

{

 f0= f1;

 f1= fib;

 fib=f0 +f1;

}

void fibonacci : : display ()

{

 cout << fib << endl;

}

int main ()

{

 int n;

 fibonacci number;

6

 cout <<”How many numbers do you want to create”<<endl;

 cin >> n;

 fibonacci gen(number);

 for(int i=0;i<n;++i)

{

 gen.display ();

 gen.increment ();

}

}

Dynamic Constructors

 Allocation of memory to objects at the time of Constructon is known as dynamic

Construction of objects. The memory is allocated with the help of new operator.

Example :

// Program to join strings

include <iostream.h>

include <string.h>

class string

{

 char * name;

 int length;

 public:

 string() // constructor –1

 {

 length=0;

 name=new char [length +1];

 // one additional character to store ‘\0’

 }

 string(char *s) // constructor-2

 {

 length=strlen(s);

 name= new char[length +1];

 strcpy(name,s);

 }

 void display()

 {

7

 cout << name << endl;

 }

 void join (string &a, string &b);

};

void string : : join (string & a, string &b)

{

 length = a.length + b. length;

 delete name;

 name = new char[length+1]; // dynamic allocation

 strcpy(name, a.name);

 strcpy(name,b.name);

};

int main()

{

 char *first =”AJK ”;

 string n1(first),n2(“COLLEGE ”),n3(“OF ARTS AND SCIENCE”),s1,s2;

 s1.join(n1,n2);

 s2.join(s1,n3);

 n1.display();

 n2.display();

 n3.display();

 s1.display ();

 s2.display();

 return 0;

}

output:

AJK

COLLEGE

OF ARTS AND SCIENCE

AJK COLLEGE

AJK COLLEGE OF ARTS AND SCIENCE

8

Destructors

 *A destructor is a member function used to destroy the objects created by

constructor.

*The destructor has the same name as the class name preceded by a tilde (~)

 *It implicitly calls a delete operator.The destructor frees

storage occupied by an object .

• A destructor never takes any argument nor return value.

• It will be called implicitly by the compiler when the control

 exits from block or function.

Example:

 // program to explain destructor

include <iostream.h>

int count=0;

class

{

 public:

 alpha()

 {

 count++;

 cout << “Number of objects created …”<< count<<endl;

 }

 ~ alpha() // …. destructor ….

 {

 cout <<” Number of objects destroyed…”<<count<<endl;

 }

};

int main()

{

 cout <<” Main function ….”<<endl;

 alpha a1,a2,a3,a4;

 {

 cout <<” ….Block 1 ….”<<endl;

 alpha a5;

 }

 {

 cout <<”….Block 2…..”<<endl;

 alpha a6;

9

 }

 cout << “Again to main function….”<<endl;

 return 0;

}

output:

Main function…

Number of object created… 1

Number of object created… 2

Number of object created… 3

Number of object created… 4

….Block 1…

Number of object created… 5

Number of object destroyed…5

….Block 2…

Number of object created… 5

Number of object destroyed… 5

Again to main function….

Number of object destroyed …4

Number of object destroyed… 3

Number of object destroyed… 2

Number of object destroyed… 1

Note:

• The group of objects a1,a2,a3,a4 are created first and next a5 is created.

• While encountering the closing brace, the object a5 is destroyed.

• Next the object a6 is created and destroyed when the closing brace occurs.

• Similarly the rest of the objects are also destroyed.

• When the closing brace encounters, the destructors for each object in the

scope are called.

Operator Overloading

• Operator overloading refers to the creation of new definition for most of

the C++ operators.

• It is a mechanism to give special meanings to an operator.

10

• We can overload (giving additional meaning to) all the

 C++ operators except the following:

➢ Scope resolution operator(::)

➢ Sizeof operator.

➢ Conditional operator(? :)

➢ Class member access operator(. , .*)

Defining of operator overloading :

 * In order to give additional meaning to an operator, an operator function is

 needed.

 * General form of an operator function is :

 return_type classname : : operator op(arguments)

 {

 function statements;

 }

• operator overloading can be carried out by means of either member function or friend function.

• A friend function will have only one argument for unary operators and two for binary operators.

• A member function has no argument for unary operators and only one or binary

operators.

• This is because the object used to call a member function is passed implicity

and therefore it is available for the member function.

Steps for overloading operators:

 1. Create a class that defines a data type that is to be used in the overloading

operation.

 2. Declare the operator function operator op() in the public part of the class.

 3. It may be either a member function or a friend function.

 4.Define a operator function to do the required operation.

Example(1)

// Program to overload increment ++ operator

#include <iostream.h>

class counter

{

 int count;

 public:

11

 counter () { count=0; }

 int display () { return count ; }

 void operator ++ ()

 {

 count ++;

 }

};

int main()

{

 counter c1,c2;

 cout << “C1 = “ << c1.display ();

 cout << “C2 = “ << c2.display ();

 c1++;

 c2++;

 ++c2;

 cout << “ \n C1 = “ << c1.display ();

 cout << “\n C1 = “ << c1.display ();

 return 0;

}

output:

C1=0

C2=0

C1=1

C2=2

Example (2).

// overloading unary minus operator

class convert

{

 int m,n;

 public:

12

 void receive ();

 void show ();

 void operator -- (); // …. overloaded unary minus…

};

void convert : : receive ()

{

 cout<<”Enter m and n values :”<<endl;

 cin >>m,n;

}

void convert : : show ()

{

 cout << m<<n <<endl;

}

void convert : : operator -- ()

{

 m = - m;

 n = - n;

}

int main ()

{

convert c;

 c. receive();

 cout <<”The object C is “<<endl;

 c.show ();

 -- c; // activate operator --()

 cout <<”\n Now the object C is” <<endl;

 c.show ();

}

output :

The object C is 10 -20

Now the object C is –10 20

13

Overloading Binary Operators:

A friend function will have only one argument for unary operators and two for binary operators.

* A member function has no argument for unary operators and only one for binary

operators.

* This is because the object used to call a member function is passed implicity and

therefore it is available for the member function.

Example:

// Simple arithmetic operation of two complex numbers using overloaded binary

operators.

Class complex

{

 float x, y;

 public:

 void accept()

 {

 cout<<”Enter two values”<<endl;

 cin >>x>>y;

 }

 complex operator + (complex);

 complex operator - (complex);

 complex operator * (complex);

 void display ();

};

// overloading the binary operator+

complex complex : : operator +(complex c)

{

 complex temp;

 temp.x = x + c.x;

 temp.y= y + c.y;

 return (temp);

}

// overloading the binary operator -

complex complex : : operator -(complex c)

{

 complex temp;

 temp.x = x - c.x;

 temp.y= y - c.y;

14

 return (temp);

}

// overloading the binary operator *

complex complex : : operator *(complex c)

{

 complex temp;

 temp.x = (x *c.x) –(y*c.y);

 temp.y= (x+ c.y) +(y*c.x);

 return (temp);

}

void complex::display ()

{

 cout << x<< “+i “ <<y << endl;

}

int main ()

{

 complex c1,c2,c3;

 c1.accept();

 c2.accept();

 c3=c1+c2; // calls operator + () function

 cout <<”Addition “ << c3.display () << endl;

 c3=c1-c2; // calls operator - () function

 cout <<”Subtraction “ << c3.display () << endl;

 c3=c1*c2; // calls operator * () function

cout <<”Multiplication “ << c3.display () << endl;

 return 0;

}

Note:

 Consider the following statement :

c3= c1+c2;

It invokes operator +.The object c1 takes the responsibility of calling the function

(operator function) and c2 is sent as an argument. This statement is equivalent to

c3=c1.operator + (c2).

 Therefore in the operator function, the members of c1are accessed directly and the

data members of c2 are accessed using the dot operator.In overloading binary operators,

the left- hand operator is used to call the operator Function and the right-hand operator is

passed as an argument.

15

Overloading Binary Operators Using Friend Function

• A friend function is used to overload a binary operator with different types of operands.

• In the above example: c3=c1+c2 will work perfectly with member function.

• But c3= 10 +c2 will not work ,because the left-hand operator is

 responsible for calling the member function ,but it is not an object.

• In friend function ,overloaded unary operator take one argument and binary operators

 take two arguments.Both arguments are passed explicitly.

// example for overloading * operator using friend funcion

class assign

{

 int x;

 public:

 void receive()

 {

 cout <<”ENTER VALUE FOR X “<<endl;

 cin>>x;

 }

 friend int operator * (assign a1,assign a2);

};

// defining overloaded operator * using friend funcion

int operator * (assign a1,assign a2)

{

 int t= a1.x * a2.x;

 return t;

}

int main()

{

 assign v1,v2;

 int res;

 cout <<”Enter a value”<<endl;

 v1.receive ();

 v2.receive();

 res=v1 * v2; // calling overloaded operator *

 cout << res <<endl;

 return 0;

}

16

Manipulating of strings in C++

Manipulating of strings in C++ by operator overloading using character arrays,

pointers and string functions. There are no operators for manipulating the strings. There are

no direct operator that could act upon the strings or manipulate the strings.

Although there are these limitations exist in C++, it permits us to create our own definitions

of operators that can be used to manipulate the strings very much similar to the decimal

number. We can manipulate strings by operator overloading as this is not achieved by

operators only.

For example :

We should be able to use statement like this in manipulating strings using operator

overloading -

string3 = string1 + string2;

Let us see an simple example of above statement and use to manipulate the strings :

#include<iostream>

using namespace std;

int main ()

{

 string First = "This is First String and ";

 string Second = "This is Second String.";

 string Third = First + Second;

 cout << Third;

 return 0;

}

String Manipulation in C++ contains many string functions which we can use to manipulate

the strings. In some compilers we can use them only by including iostream but in compilers

which gives error have to include string library(#include<string>). Those functions can be

Stringname.length , Stringname[expression](this expression is a number of character to

show from the string), and many more.

program example in C++ :

#include<iostream>

#include<string>

using namespace std;

17

int main ()

{

 string Example = "Techoschool !";

 cout << Example.length() << "\n\n";

 // This length manipulator tells the length of string entered

 cout << Example[5] << "\n\n";

 // This manipulator takes the number in parameter to show the character on that value

 cout << Example.substr(0, 5) << "\n\n";

 // This substr manipulator prints the character upto 5 character in string

 cout << Example.erase(0, 5) << "\n\n";

 // This erase the number of characters mentioned from string and print rest string

 cout << Example.insert(0, "Hello ") << "\n\n";

 // This inserts the string to exist string on the number of place of string mentioned

 cout << Example.append(5, '*') << "\n\n";

 // This appends the given string to the existing string from the last position

 cout << Example.replace(0, 5, "Replaced Character");

 // This replace string according to position entered with the string mentioned

 return 0;

}

RULES FOR OVERLOADING OPERATOR :-

1) Operators already predefined in the C++ compiler can be only overloaded.

2) Overloading cannot change operator's templates.for eg: the increment operator ++ is used

only as unary operator, it cannot be used as binary operator.

3) Overloading an operator does not change its basic meaning. for eg: the ++ operator

cannot be overloaded to subtract two objects.

4) Unary operator, overloaded by means of a member of a member function, takes no

explicit argument and return no explicit values.But those overloaded by means of a friend

function take one reference argument (the object of the relevent class).

5) Binary operators overloaded through a member function take one explicit argument and

those overloaded through a friend function take two explicit arguments.

Type Conversion in C++

A type cast is basically a conversion from one type to another. There are two types of type

conversion:

18

1. Implicit Type Conversion Also known as ‘automatic type conversion’.

• Done by the compiler on its own, without any external trigger from the user.

• Generally takes place when in an expression more than one data type is

present. In such condition type conversion (type promotion) takes place to

avoid lose of data.

• All the data types of the variables are upgraded to the data type of the variable

with largest data type.

• bool -> char -> short int -> int ->

•

• unsigned int -> long -> unsigned ->

•

• long long -> float -> double -> long double

• It is possible for implicit conversions to lose information, signs can be lost

(when signed is implicitly converted to unsigned), and overflow can occur

(when long long is implicitly converted to float).

Example of Type Implicit Conversion:

// An example of implicit conversion

#include <iostream>

using namespace std;

int main()

{

 int x = 10; // integer x

 char y = 'a'; // character c

 // y implicitly converted to int. ASCII

 // value of 'a' is 97

 x = x + y;

 // x is implicitly converted to float

 float z = x + 1.0;

 cout << "x = " << x << endl

 << "y = " << y << endl

 << "z = " << z << endl;

 return 0;

}

Output:

x = 107

y = a

z = 108

19

2. Explicit Type Conversion: This process is also called type casting and it is user-

defined. Here the user can typecast the result to make it of a particular data type.

In C++, it can be done by two ways:

• Converting by assignment: This is done by explicitly defining the required

type in front of the expression in parenthesis. This can be also considered as

forceful casting.

Syntax:

 (type) expression

where type indicates the data type to which the final result is converted.

Example:

// C++ program to demonstrate

// explicit type casting

#include <iostream>

using namespace std;

int main()

{

 double x = 1.2;

 // Explicit conversion from double to int

 int sum = (int)x + 1;

 cout << "Sum = " << sum;

 return 0;

}

Output:

Sum = 2

• Conversion using Cast operator: A Cast operator is an unary

operator which forces one data type to be converted into another data type.

C++ supports four types of casting:

1. Static Cast

2. Dynamic Cast

3. Const Cast

4. Reinterpret Cast

Example:

#include <iostream>

using namespace std;

20

int main()

{

 float f = 3.5;

 // using cast operator

 int b = static_cast<int>(f);

 cout << b;

}

Output:

3

Advantages of Type Conversion:

• This is done to take advantage of certain features of type hierarchies or type

representations.

• It helps to compute expressions containing variables of different data types.

Attention reader! Don’t stop learning now. Get hold of all the important C++

Foundation and STL concepts with the C++ Foundation and STL courses at a student-

friendly price and become industry ready.

REFERENCE:

1. E. Balaguruswamy , “ Object oriented programming with C++”, TataMcGraw

Hill publishing company Limited, 1998.

2. K.R, Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”,

tata mc graw – Hill publishing company Limited, 1998.

3. D. Ravichandran, Programming with C++”, Tata McGraw –

Hill published Company Limited.

Prepared By Dr.N.Shanmugavadivu

