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Computer Arithmetic 

Arithmetic instructions in digital computers manipulate data to produce  results  necessary  for  the solution 

of computational problems. These instructions perform arithmetic calculations and are responsible for the 

bulk of activity involved in processing data in a computer. The four basic arithmetic operations are addition, 

subtraction, multiplication and division. From these  four basic operations, it is possible to formulate other 

arithmetic functions and solve scientific problems by means of numerical analysis methods. An arithmetic 

processor is the part of a processor unit that executes arithmetic operations. An arithmetic instruction may 

specify binary or decimal data, and in each case the data may be in fixed-point or floating-point form. 

Fixed- point numbers may represent integers or fractions. Negative numbers may be in signed- magnitude 

or signed-complement representation. The arithmetic processor is  very  simple  if  only a binary fixed-point 

odd instruction is included. It would be  more  complicated  if  it  includes all four arithmetic operations for 

binary and decimal data in fixed-point and floating- point representation. 

 
Addition and Subtraction 

There are three ways of representing negative fixed-point binary numbers: signed-magnitude, signed-l's 

complement, or signed-2's complement. Most computers use the signed-2's  complement representation 

when performing arithmetic operations with integers. For floating- point operations, most computers use the 

signed-magnitude representation for the mantissa. In this section we develop the addition and subtraction 

algorithms for data represented in signed- magnitude and again for data represented in signed-2's 

complement. 

 
Addition and Subtraction with Signed-Magnitude Data 

The representation of numbers in signed-magnitude is familiar because it is used in everyday arithmetic 

calculations. The procedure for adding or subtracting two  signed  binary  numbers with paper and pencil is 

simple and straight-forward. We designate the magnitude of the two numbers by A and B. When the signed 

numbers are added or subtracted, we find that there are eight different conditions to consider, depending on 

the sign of the numbers and the operation performed. These conditions are listed in the first column of 

Table. The other columns in the   table show the actual operation to be performed with the magnitude of the 

numbers. The last column is needed to prevent a negative zero. In other words, when two equal numbers are 

subtracted, the result should be +0 not –0. 
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The algorithms for addition and subtraction are derived from the table and can be stated as follows (the 

words inside parentheses should be used for the subtraction algorithm): 

 
Addition (subtraction) algorithm: when the signs of A and B are identical (different), add the two 

magnitudes and attach the sign of A to the result. When the signs of A and B are different (identical), 

compare the magnitudes and subtract the smaller number from  the larger. Choose  the sign of the result to 

be the same as  A if A > B or the complement of the sign of A if A < B. If  the two magnitudes are equal, 

subtract B  from A and make the sign  of the result positive. The  two algorithms are similar except for the 

sign comparison. The procedure to be followed for identical signs in the addition algorithm is the same as 

for different signs in the subtraction algorithm, and vice versa. 

 
Hardware Implementation 

To implement the two arithmetic operations with hardware, it is first necessary that the two numbers be 

stored in registers. Let A and B be two registers that hold the magnitudes of the numbers, and A s and B s 

be two flip-flops that hold the corresponding signs. The result of the operation may be transferred to a third 

register: however, a saving is achieved if the result is transferred into A and As. Thus A and As  together 

form an accumulator register. Consider now  the hardware implementation of the algorithms above. First, a 

parallel-adder is needed to  perform the micro-operation A + B. Second, a comparator circuit is needed to 

establish if A > B,   A = B, or A < B. Third, two parallel-subtractor circuits are needed to perform the 

micro- operations A - B and B - A. The sign relationship can be determined from an exclusive-OR gate with 

A s and B s as inputs. This procedure requires a magnitude comparator, an adder, and two subtractors. 

However, a different procedure can be found that requires less equipment. First, we know that subtraction 

can be accomplished by means of complement and  add.  Second,  the  result of a comparison can be 

determined from the end carry after the subtraction. Careful investigation of the alternatives reveals that the 

use of 2's complement for subtraction and comparison is an efficient procedure that requires only an adder 

and a complementer. Figure shows a block diagram of the hardware for implementing the addition and  

subtraction  operations. 

 

It consists of registers A and B and sign flip-flops As and Bs. Subtraction is done by adding A to  the 2's 

complement of B. The output carry is transferred to flip-flop E, where it can be checked     to determine the 

relative magnitudes of  the  two  numbers.  The  add-overflow  flip-flop  AVF holds the overflow bit when 

A and B are added. The A register provides other micro-operations that may be needed when we specify 

the sequence of steps in the algorithm. 
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The addition of A plus B is done through the parallel adder. The S(sum) output of the adder is applied to the 

input of the A register. The complementer provides an output of B or the complement of B depending on the 

state of the mode control M. The complementer consists of exclusive-OR gates and the parallel adder 

consists of full-adder circuits. The M signal is also applied to the input carry of the adder. When M = 0, the 

output of B is transferred to the adder, the input carry is 0, and the output of the adder is equal to the sum 

A+B. When M = 1, the 2’s complement of B is applied to the adder the input carry is 1, and output S = A + 

B’ — 1. This is equal to A plus the 2's complement of B, which is equivalent to the subtraction A — B. 

 
Hardware Algorithm 

The flowchart for the hardware algorithm is presented in Figure. The two signs A s, and Bs are 

compared by an exclusive-OR gale. If the output of the gate is 0, the signs are identical; if it is 1, the 

signs are different for an add operation, identical signs dictate that the magnitudes be added. 
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For a subtract operation, different signs dictate that the magnitudes be added. The magnitudes  are added 

with a micro-operation EA  A +  B where EA is a register  that  combines E and A.  The carry in E after 

the addition constitutes an overflow if it is equal to 1 and  it  is  transferred into the add-overflow flip-flop 

AVF. The two magnitudes are subtracted  if  the  signs  are  different for an add operation or identical for a 

subtract operation. The magnitudes  are  subtracted by adding A to the 2's complement of B. No overflow 

can occur if the numbers are subtracted. A 1 in E indicates that A ≥ B and the number in A is the correct 

result. If this number  is zero, the sign As must be made positive to avoid a –0. A 0 in E indicates that A < B. 

For this  case it is necessary to take the 2's complement of  the value  in A.  This operation can  be done  

with one micro-operation A  A’ + 1. In other paths of the flowchart, the sign of the result is the same as 

the sign  of  A, so  no change in As is required.  However, when A < B, the sign of the  result is the 

complement of the original sign of A. It is then  necessary to  complement  As  to obtain the correct sign. 

The final result is found in register A and its  sign  in As.  The value  in  AVF provides an overflow 

indication. The final value of E is immaterial. 

 
Addition and Subtraction with Signed-2’s Complement Data 

The signed-2's complement representation of numbers together with arithmetic algorithms for addition and 

subtraction are summarized here for easy reference. The leftmost bit of a binary number represents the sign 

bit: 0 for positive and 1 for negative. If the sign bit is 1, the entire number is represented in 2's complement 

form. Thus +33 is represented as 00100001 and -33 as 11011111. Note that 11011111 is the 2's complement 

of 00100001, and vice versa. 

 
The addition of two numbers in signed-2's complement form consists of  adding  the numbers  with the sign 

bits treated the same as the other bits of the number. A carry-out of the sign-bit position is discarded. The 

subtraction consists of first taking the 2's complement of the  subtrahend and then adding it to the minuend. 

When two numbers of  n digits  each  are added and the sum occupies n + 1 digits, we say that an overflow 

occurred.  An  overflow  can  be  detected by inspecting the last two carries out of the addition. When the 

two carries are applied   to an exclusive-OR gate, the overflow is detected when the output of the gate is 

equal to 1. The register configuration for the hardware implementation is shown in Figure. The sign bits are 

not separated from the rest of the registers. We name the A register AC and the B register BR. The leftmost 

bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or subtracted together 

with the other bits in the complementer and parallel adder. The overflow flip-flop V is set to 1 if there is an 

overflow. The output carry in this case is discarded. 
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The algorithm for adding and subtracting two binary numbers in signed-2's complement representation is 

shown in the flowchart of Figure. The sum is obtained by  adding the contents   of AC and BR (including 

their sign bits). The overflow bit V is set to 1 if the exclusive-OR of the  last two carries is 1,  and it is 

cleared to 0 otherwise. The  subtraction operation is accomplished  by adding the content of AC to the 2's 

complement of BR. Taking the 2's complement of BR has the effect of changing a positive number to 

negative, and vice versa. An overflow  must  be  checked during this operation because the two numbers 

added could have the same sign. The programmer must realize that if an overflow occurs, there will be an 

erroneous result in the AC register. 

 

 
Comparing this algorithm with its signed-magnitude counterpart, we note that it  is  much  simpler to add 

and subtract numbers if negative numbers are maintained in signed-2's complement representation. For this 

reason most computers adopt this representation over the more familiar signed-magnitude. 

 
Multiplication Algorithm 

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with 

paper and pencil by a process of successive shift and add operations. This process is best illustrated 

with a numerical example. 
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The process consists of looking at successive bits of the multiplier, least significant bit first. If the 

multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied down. The numbers 

copied down in successive lines are shifted one position to the left from the previous number. Finally, 

the numbers are added and their sum forms the product. The sign of the product is determined from the 

signs of the multiplicand and multiplier. If they are alike, the sign of the product is positive. If they are 

unlike, the sign of the product is negative. 

 
Hardware Implementation for Signed-Magnitude Data 

When multiplication is implemented in a digital computer, it is convenient to change the process 

slightly. First, instead of providing registers to store and add simultaneously as many binary numbers 

as there are bits in the multiplier, it is convenient to provide an adder for the summation of only two 

binary numbers and successively accumulate the partial products in a register. Second, instead of 

shifting the multiplicand to the left, the partial product is shifted to the right, which results in leaving 

the partial product and the multiplicand in the required relative positions. Third, when the 

corresponding bit of the multiplier is 0, there is no need to add all zeros to the partial product since it 

will not alter its value. The hardware for multiplication consists of the equipment shown in Figure. The 

multiplier is stored in the Q register and its sign in Qs. The sequence counter SC is initially set to a 

number equal to the number of bits in the multiplier. The counter is decremented by 1 after forming 

each partial product. When the content of the counter reaches zero, the product is formed and the 

process stops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B forms a partial 

product which is transferred to the EA register. Both partial product and multiplier are shifted to the 

right. This shift will be denoted by the statement shr EAQ to designate the right shift depicted in 

Figure. The least significant bit of A is shifted into the most significant position of Q, the bit from E is 

shifted into the most significant position of A, and 0 is shifted into E. After the shift, one bit of the 

partial product is shifted into Q, pushing the multiplier bits one position to the right. In this manner, the 

rightmost flip-flop in register Q, designated by Q„, will hold the bit of the multiplier, which must be 

inspected next. 
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Hardware Algorithm 

Figure shows a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B and the 

multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are compared, and 

both A and Q are set to correspond to the sign of the product since a double- length product will be 

stored in registers A and Q. Registers A and E are cleared and the sequence counter SC is set to a 

number equal to the number of bits of the multiplier. We are assuming here that operands are 

transferred to registers from a memory unit that has words of n bits. Since an operand must be stored 

with its sign, one bit of the word will be occupied by the sign and the magnitude will consist of n — 1 

bits. 

 

 
After the initialization, the low-order bit of the multiplier in Qn is tested. If it is a 1, the multiplicand in B is 

added to the present partial product in A. If it is a 0, nothing  is done.  Register EAQ is then shifted once to 

the right to form the new partial product. The sequence 
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counter is decremented by 1 and its new value checked. If it is not equal to zero, the process is repeated and 

a new partial product is formed. The process stops when SC = 0. Note that the partial product formed in A is 

shifted into Q one bit at a time and eventually replaces the multiplier. The final product is available in both 

A and Q, with A holding  the  most significant  bits and Q holding the least significant bits. The previous 

numerical  example  is  repeated  in Table is shown to clarify the hardware multiplication process. The 

procedure follows the steps outlined in the flowchart. 

 
 

Booth Multiplication Algorithm 

Booth algorithm gives a procedure for multiplying binary integers in signed-2’s complement representation. 

It operates on the fact that strings of 0's in the multiplier require no addition but just shifting, and a string of 

Ts in the multiplier from bit weight 2* to weight 2 m can be  treated  as 2 k+1 — 2 m . For example, the 

binary number 001110 (+14) has a string of 1’s from  2^k to  2^m (k = 3, m = 1). The number can be 

represented as 2k+1 - 2m = 16 - 2 = 14. Therefore, the multiplication M x 14, where M is the multiplicand 

and 14 the multiplier, can be done as M x 24 

- M x 21. Thus the product can be obtained by shifting the binary multiplicand  M four  times to  the left and 

subtracting M shifted left once. As in all multiplication schemes. Booth algorithm requires examination of 

the multiplier bits and shifting of the partial product. Prior to the  shifting, the multiplicand may be added to 

the partial product, subtracted from the partial product, or left unchanged according to the following rules: 

1. The multiplicand is subtracted from the partial product upon encountering the first least 

significant 1 in a string of 1’s in the multiplier. 

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there 

was a previous 1) in a string of 0's in the multiplier. 

3. 3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit. 

The algorithm works for positive or negative multipliers in 2's  complement representation. This  is because 

a negative multiplier ends with a string of 1’s and the last operation will be a  subtraction of the appropriate 

weight. For example,  a multiplier equal to  -14 is represented  in  2's complement as 110010 and is treated 

as -2^4 + 2^2 – 2^1 = –14. 
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The hardware implementation of Booth algorithm requires the register configuration shown in Figure. We 

rename registers A, B, and Q, as AC, BR,  and  QR, respectively. Qn  designates the  least significant bit of 

the multiplier in register QR. An extra flip-flop Qn+1 is appended to QR to facilitate a double bit inspection  

of  the multiplier. The flowchart for  Booth algorithm is shown   in Figure. AC and the appended bit Qn+1 

are initially cleared to 0 and the sequence counter SC is set to a number n equal to the number of bits in the 

multiplier. The two bits of  the multiplier in  Qn and Qn+1 are inspected. If the two bits are equal to 10, it 

means that the first 1 in a string of l's has been encountered. This requires a subtraction of  the multiplicand 

from the  partial  product  in AC. If the two bits are equal to 01, it means that the first 0 in a string of 0's has 

been encountered. This requires the addition of the multiplicand to the partial product in AC. When  the two 

bits are equal, the partial product does not change.  An overflow cannot occur  because  the addition and 

subtraction of the multiplicand follow each other. As a consequence, the two numbers that are added always 

have opposite signs, a condition that excludes an overflow. The next step is to shift right the partial product 

and the multiplier (including bit Qn+1). This is an arithmetic shift right (ashr) operation which shifts AC  and 

QR to the right and leaves the sign     bit in AC unchanged. The sequence counter is decremented and the 

computational loop is repeated n times. 
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A numerical example of Booth algorithm is shown in Table for n = 5. It shows the step-by-step 

multiplication of (-9) x (-13) = +117. Note that the multiplier in QR is negative and that the multiplicand in 

BR is also negative. The 10-bit product appears in AC and QR  and  is positive.  The final value of Qn+1 is 

the original sign bit of the multiplier and should not be taken as part of the product. 
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Division Algorithms 

Division of two fixed-point binary numbers in signed-magnitude representation is done with paper and 

pencil by a process of successive compare, shift, and subtract operations. Binary division is simpler 

than decimal division because the quotient digits are either 0 or 1 and there is no need to estimate how 

many times the dividend or partial remainder fits into the divisor. The division process is illustrated by 

a numerical example in Figure. The divisor B consists of five bits and the dividend A, of ten bits. The 

five most significant bits of the dividend are compared with the divisor. Since the 5-bit number is 

smaller than B, we try again by taking the six most significant bits of A and compare this number with 

B. The 6-bit number is greater than B, so we place a 1 for the quotient bit in the sixth position above the 

dividend. The divisor is then shifted once to the right and subtracted from the dividend. The difference is 

called a partial remainder because the division could have stopped here to obtain a quotient of 1 and a 

remainder equal to the partial remainder. The process is continued by comparing a partial remainder 

with the divisor. If the partial remainder is greater than or equal to the divisor, the quotient bit is equal 

to 1. The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder 

is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is shifted once 

to the right in any case. Note that the result gives both a quotient and a remainder. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Hardware Implementation for Signed-Magnitude Data 

When the division is implemented in a digital computer, it is convenient to change the process slightly. 

Instead of shifting the divisor  to the right, the dividend, or partial remainder, is shifted  to the left, thus 

leaving the two numbers in the required relative position. Subtraction may be achieved by adding A to the 

2's complement of B. The information  about  the  relative  magnitudes is then available from the end-carry. 

The hardware for implementing the division operation is identical to that required for  multiplication and 

consists of the  components shown  in Figure. Register EAQ is now shifted to the left with 0 inserted into 

Qn and the previous value   of E lost. The numerical example is repeated in Figure to clarify the proposed 

division process.  The divisor is stored in the B register and  the  double-length dividend  is  stored  in 

registers A and Q. The dividend is shifted to the left and the divisor is subtracted by adding its 2's 

complement value. The information about the relative magnitude is available in E. If E = 1, it signifies that 

A is greater than or equal to B. 
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A quotient bit 1 is inserted into Qn and the partial remainder is shifted to the left to repeat the process. If E = 

0, it signifies that A < B so the quotient in Qn remains a 0 (inserted during the shift). The value of B is then 

added to restore the partial remainder in A to  its previous  value.  The partial remainder is shifted to the left 

and the process is repeated again  until  all  five  quotient bits are formed. Note that while the partial 

remainder is shifted left,  the quotient bits  are shifted also and after five shifts, the quotient is in Q and the 

final remainder is in A. 

 
Before showing the algorithm in flowchart form, we have to consider the sign of the result and a possible 

overflow condition. The sign of the quotient is determined from the  signs  of  the dividend and the divisor. 

If the two signs are alike, the sign of the quotient is plus. If they are unalike, the sign is minus. The sign of 

the remainder is the same as the sign of the dividend. 
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Divide Overflow 

The division operation may result in a quotient with an overflow. This is not a problem when working 

with paper and pencil but is critical when the operation is implemented with hardware. This is because 

the length of registers is finite and will not hold a number that exceeds the standard length. To see this, 

consider a system that has 5-bit registers. We use one register to hold the divisor and two registers to 

hold the dividend. From the example of Figure we note that the quotient will consist of six bits if the 

five most significant bits of the dividend constitute a number greater than the divisor. The quotient is to 

be stored in a standard 5-bit register, so the overflow bit will require one more flip-flop for storing the 

sixth bit. This divide- overflow condition must be avoided in normal computer operations because the 

entire quotient will be too long for transfer into a memory unit that has words of standard length, that 

is, the same as the length of registers. Provisions to ensure that this condition is detected must be 

included in either the hardware or the software of the computer, or in a combination of the two. 

 
When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:  

A divide-overflow condition occurs if the high-order half bits of the dividend constitute a number 

greater than or equal to the divisor. Another problem associated with division is the fact that a division 

by zero must be avoided. The divide-overflow condition takes care of this condition as well. This 

occurs because any dividend will be greater than or equal to a divisor which is equal to zero. Overflow 

condition is usually detected when a special flip-flop is set. We will call it a divide-overflow flip-flop 

and label it DVF. 

 
 Hardware Algorithm 

The hardware divide algorithm is shown in the flowchart of Figure. The dividend is in A and Q  and the 

divisor in B. The sign of the result is transferred into Qs to be part of the quotient. A constant is set into the 

sequence counter SC to specify the number of bits in the quotient. As in multiplication, we assume that 

operands are transferred to registers from  a  memory unit that  has words of n bits. Since an operand must 

be stored with its sign, one bit of the word will be occupied by the sign and the magnitude will consist of n - 

1 bits. 

 
A divide-overflow condition is tested by subtracting the divisor in B from half of the bits of the 

dividend stored in A. If A is greater than or equal to B, the divide-overflow flip-flop DVF is set and the 

operation is terminated prematurely. If A < B, no divide overflow occurs so the value of the dividend is 

restored by adding B to A. The division of the magnitudes starts by shifting the dividend in AQ to the 

left with the high-order bit shifted into E. If the bit shifted into E is 1, we know that EA > B because 

EA consists of a 1 followed by n-l bits while B consists of only n-1 bits. In this case, B must be 

subtracted from EA and 1 inserted into Qn for the quotient bit. Since register A is missing the high-order 

bit of the dividend (which is in E), its value is EA – 2n-1. Adding to this value the 2's complement of B 

results in (EA – 2n-1) + (2n-1 - B) = EA - B The carry from this addition is not transferred to E if we want 

E to remain a 1. 

 
If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding  its  2's  complement value 

and the carry is transferred into E. If E = 1, it signifies that A greater than or equal to B; therefore, Qn is set 

to 1. If E = 0, it signifies that A < B and the original number is restored by adding B to A. In the latter case 

we leave a 0 in Qn (0 was inserted during the shift). 
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This process is repeated again with register A holding the partial remainder. After n-l times, the quotient 

magnitude is formed in register Q and the remainder is found in register  A.  The  quotient sign is in Qs and 

the sign of the remainder in As is the same as the original sign of the dividend. 
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Floating-Point Arithmetic Operations 

Many high-level programming languages have a facility for specifying  floating-point numbers. Any 

computer that has a compiler for such high-level programming language must have a provision for handling 

floating-point arithmetic operations. The operations are quite often included in the internal hardware. If no 

hardware is available for the operations, the compiler must be designed with a package  of  floating-point  

software  subroutines.  Although  the hardware method is more expensive, it is so much more efficient than 

the software method that floating-point hardware is included in4nost computers and is omitted only in 

very small ones. 

 
A floating-point number in computer registers consists of two parts: a mantissa m and an exponent e. The 

two parts represent a number obtained from multiplying  m  times a radix r  raised to the value of e ; thus m 

x re.  The mantissa  may be  a fraction or  an integer. The location of the radix point and the value of the 

radix r are assumed and are not included in the registers. For example, assume a fraction representation and 

a radix 10. The decimal number 537.25 is represented in a register with m = 53725 and e = 3 and is 

interpreted to represent the floating- point number 0.53725 x 10^3. A floating-point number is normalized if 

the most significant digit of the mantissa is nonzero. In this way the mantissa contains the maximum 

possible number of significant digits. A zero cannot be normalized because it does not have a nonzero digit. 

It is represented in floating-point by all 0's in the mantissa and exponent. 

 
Arithmetic operations with floating-point numbers are more complicated than with fixed-point numbers and 

their execution takes longer and requires more complex hardware. Adding or subtracting two numbers 

requires first an alignment of the radix point since the exponent parts must be made equal before adding or 

subtracting the mantissas. The alignment is done  by  shifting one mantissa while its exponent is adjusted 

until it is equal to the other exponent. Consider the sum of the following floating-point numbers: 

It is necessary that the two exponents be equal before the mantissas can be added. We can either shift the 

first number three positions to the left, or shift the second number three positions to the right. When the 

mantissas are stored in registers, shifting to the left causes a loss of most significant digits. Shifting to the 

right causes a loss of least significant digits. The second method  is preferable because it only reduces the 

accuracy, while the first  method  may cause an  error.  The usual alignment procedure is to shift the 

mantissa that has the smaller exponent to the right by a number of places equal to the difference between the 

exponents. After this is done, the mantissas can be added: 

 

 

When two normalized mantissas are added, the sum  may  contain  an  overflow  digit.  An overflow can be 

corrected easily by shifting the sum once to the right and incrementing the exponent. When two numbers are 

subtracted, the result may contain most significant zeros as shown in the following example: 
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A floating-point number that has a 0 in the most significant position of the mantissa is said to have an 

underflow. To normalize a number that contains  an underflow,  it is necessary to shift  the mantissa to the 

left and decrement the exponent until a nonzero digit appears in the first position. In the example above, it is 

necessary to shift left twice to obtain .35000 x 10 3 . In most computers, a normalization procedure is 

performed after each operation to ensure  that  all  results are in a normalized form. 

 
Floating-point multiplication and division do not require an alignment of the mantissas. The product can be 

formed by multiplying the two mantissas and adding the exponents. Division is accomplished by dividing 

the mantissas and subtracting the exponents.  The  operations performed with the mantissas are the same as 

in fixed-point numbers, so the two can share the same registers and circuits. The operations performed with 

the exponents are compare and increment (for aligning the mantissas), add and subtract (for multiplication 

and division), and decrement (to normalize the result). The exponent may be represented in any one of the 

three representations: signed-magnitude, signed-2 , s complement, or signed-l's complement. 

 
A fourth representation employed in many computers is known as a biased exponent. In this representation, 

the sign bit is removed from being a separate entity. The bias is  a  positive  number that is added to each 

exponent as the floating-point number  is  formed,  so  that internally all exponents are positive. The 

following example may clarify this type of representation. Consider an exponent that ranges from -50 to 49. 

Internally, it is represented by two digits (without a sign) by adding to it a bias of 50. The exponent  register  

contains  the number e + 50, where e is the actual exponent. This way, the exponents are represented in 

registers as positive numbers in the range of 00 to 99. Positive exponents in registers have the range of 

numbers from 99 to 50. The subtraction of 50 gives the positive values from 49 to 0. Negative exponents are 

represented in registers in the range from 49 to 00. The subtraction of 50 gives the negative values in the 

range of -1 to -50. The advantage of  biased exponents is that     they contain only positive numbers. It is 

then simpler to compare their relative magnitude  without being concerned with their signs. As a 

consequence, a magnitude comparator can  be  used to compare their relative magnitude during the 

alignment of the mantissa. Another advantage is that the smallest possible biased exponent contains all 

zeros. The floating-point representation of zero is then a zero mantissa and the smallest possible exponent. 

 

Register Configuration 

The register configuration for floating-point operations is quite similar to the layout for fixed- point 

operations. As a general rule, the same registers and adder used for fixed-point arithmetic are used for 

processing the mantissas. The difference lies in the way the exponents are handled. The register 

organization for floating-point operations is shown in Figure. There are three registers, BR, AC, and 

QR. Each register is subdivided into two parts. The mantissa part has the same uppercase letter symbols 

as in fixed-point representation. The exponent part uses the corresponding lower-case letter symbol. It 

is assumed that each floating-point number has a mantissa in signed-magnitude representation and a 

biased exponent. Thus the AC has a mantissa whose sign is in A s and a magnitude that is in A. The 

exponent is in the part of the register denoted by the lowercase letter symbol a. The diagram shows 

explicitly the most significant bit of A, labeled by A1. The bit in this position must be a 1 for the 

number to be normalized. Note that the symbol AC represents the entire register, that is, the 

concatenation of As, A1, and a. Similarly, register BR is subdivided into Bs, B, and b, and QR into Qs, 

Q, and q. 



17 
 

 
 

 
 

A parallel-adder adds the two mantissas and transfers the sum into A and the carry into E. A separate 

parallel-adder is used for the exponents. Since the exponents are biased, they do not  have a distinct sign bit 

but are represented as a biased positive quantity. It is assumed that the floating-point numbers are so large 

that the chance of an exponent overflow is very remote, and for this reason the exponent overflow will be 

neglected. The exponents are also connected to a magnitude comparator that provides three binary outputs 

to indicate their relative magnitude. The number in the mantissa will  be taken as a fraction, so the binary 

point is  assumed to reside  to the left of the magnitude part. Integer representation for floating-point causes 

certain scaling problems during multiplication and division. To avoid these problems, we adopt a fraction 

representation. The numbers in the registers are assumed to be initially normalized. After each arithmetic 

operation, the result will be normalized. Thus all  floating-point  operands  coming from and going to the 

memory unit are always normalized. 

 
Addition and Subtraction 

During addition or subtraction, the two floating-point operands are in AC and BR. The sum or difference is 

formed in the AC. The algorithm can be divided into four consecutive parts: 

1. Check for zeros. 

2. Align the mantissas. 

3. Add or subtract the mantissas. 

4. Normalize the result. 

 
A floating-point number that is zero cannot be normalized. If this number is used during the computation, 

the result may also be zero. Instead of checking  for  zeros  during  the  normalization process we check for 

zeros at the beginning and terminate the  process  if  necessary. The alignment of the mantissas must be 

carried out prior to their operation. After the mantissas are added or subtracted, the result may be 

unnormalized.  The  normalization procedure ensures that the result is normalized prior to its transfer to 

memory. 

 
The flowchart for adding  or  subtracting two floating-point binary numbers is shown in Figure.    If BR is 

equal to zero, the  operation is  terminated, with the value in the AC being the result.  If  AC is equal to 

zero, we transfer the content of BR into AC and also complement its sign if the numbers are to be 

subtracted. If neither number is equal to zero, we proceed to align the mantissas. 
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The magnitude comparator attached to exponents a and b provides three outputs that indicate their relative 

magnitude. If the two exponents are equal, we go to perform the arithmetic operation. If the exponents are 

not equal, the mantissa having the smaller exponent is shifted to the right and its exponent incremented. 

This process is repeated until the two exponents are  equal. 

 
The addition and subtraction of the two mantissas is identical to the fixed-point addition and subtraction 

algorithm. The magnitude part is added or subtracted depending on the operation  and the signs of the two 

mantissas. If an overflow occurs when the magnitudes are added, it is transferred into flip-flop E. If E is 

equal to 1, the bit is transferred into A1 and all other bits of A are shifted right. The exponent must be 

incremented to maintain the correct number. No underflow may occur in this case because the original 

mantissa that was not shifted during the alignment was already in a normalized position. If the magnitudes 

were subtracted, the result  may be zero or may have an underflow. If the mantissa is zero,  the entire 

floating-point number  in the AC is made zero. Otherwise, the mantissa must have at least one bit that is 

equal to 1. The mantissa has an underflow if the most significant bit in position A1 is 0. In that case,  the  

mantissa is shifted left and the exponent decremented. The bit in A1 is checked again and the process is 

repeated until it is equal to 1. When A1 = 1, the mantissa is normalized and the operation is completed. 

 

Multiplication 

The multiplication of two floating-point numbers requires that we multiply  the mantissas and  add the 

exponents. No comparison of exponents or alignment of mantissas is necessary. The multiplication of the 

mantissas is performed in the same way as in fixed-point to provide a double-precision product. The double-

precision answer is used in fixed-point numbers  to  increase the accuracy of the product. In floating-point, 

the range of a single-precision mantissa combined with the exponent is usually accurate enough so that only  

single-precision  numbers  are maintained. Thus  the half most significant bits of the mantissa product and  

the exponent   will be taken together to form a single-precision floating-point product. 

 
The multiplication algorithm can be subdivided into four parts: 

1. Check for zeros. 

2. Add the exponents. 

3. Multiply  the mantissas. 

4. Normalize  the product. 

 
Steps 2 and 3 can be done simultaneously if separate adders are available for the mantissas and exponents. 

The flowchart for floating-point multiplication is  shown  in  Figure.  The  two operands are checked to 

determine if they contain a zero. If either operand is equal to zero, the product in the AC is set to zero and 

the operation is terminated. If  neither  of the operands is equal to zero, the process continues with the 

exponent  addition. The  exponent  of the multiplier is in q and the adder is between exponents a and b. It is 

necessary to  transfer  the  exponents  from q to a, add the two exponents, and transfer the sum into a. Since 

both exponents are biased by the addition of a constant, the exponent sum will have double this bias. The 

correct biased exponent for the product is obtained by subtracting the bias number from the sum. The 

multiplication of the mantissas is done as in the fixed-point case with the product residing in A and Q. 

Overflow cannot occur during multiplication, so there is no need to check for it. 
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The product may have an underflow, so the most significant bit in A is checked. If it is a 1, the product 

is already normalized. If it is a 0, the mantissa in AQ is shifted left and the exponent decremented. 

Note that only one normalization shift is necessary. The multiplier and multiplicand were originally 

normalized and contained fractions. The smallest normalized operand is 0.1, so the smallest possible 

product is 0.01. Therefore, only one leading zero may occur. Although the low-order half of the 

mantissa is in Q, we do not use it for the floating- point product. Only the value in the AC is taken as 

the product. 
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Division 

Floating-point division requires that the exponents be subtracted  and  the  mantissas  divided. The mantissa 

division is done as in fixed-point except that the dividend has a single-precision mantissa that is placed in 

the AC. Remember that the mantissa dividend is a fraction and not an integer. For integer representation, a 

single-precision dividend must be placed in register Q and register A must be cleared. The zeros in A are to 

the left of the binary point and have no significance. In fraction representation, a single-precision dividend 

is placed in register A and register Q is cleared. The zeros in Q are to the right of the binary point and have 

no significance. The check for divide-overflow is the same as in fixed-point representation. However, with 

floating-point numbers the divide-overflow imposes no problems. If  the  dividend  is  greater  than or equal 

to the divisor, the dividend fraction is shifted to the right and its exponent incremented by 1. For normalized 

operands this is a sufficient operation to ensure that no mantissa divide-overflow will occur. The operation 

above is  referred  to  as  a  dividend  alignment. The division of two normalized floating-point numbers will 

always result in a normalized quotient provided that a dividend alignment is carried out before the division. 

Therefore, unlike the other operations, the quotient obtained after the division does not require    a 

normalization. 

 

The division algorithm can be subdivided into five parts: 

5. Check for zeros. 

6. Initialize registers and evaluate the sign. 

7. Align the dividend. 

8. Subtract the exponents. 

9. Divide the mantissas. 

 
The flowchart for floating-point division is shown in Figure. The two operands are checked for zero. If the 

divisor is zero, it indicates an attempt to divide by  zero,  which  is  an  illegal  operation. The operation is 

terminated with an error  message. An alternative  procedure would  be to set the quotient in QR to the most 

positive number possible (if the dividend  is positive) or  to the most negative possible (if the dividend is 

negative). If the dividend in AC is zero, the quotient in QR is made zero and the operation terminates. 

 
If the operands are not zero, we proceed to determine the sign of the quotient and store it in Qs. The sign 

of the dividend in As is left unchanged to be the sign of the remainder. The Q register is cleared and the 

sequence counter SC is set to a number equal to the number of bits in the quotient. The dividend 

alignment is similar to the divide-overflow check in the fixed-point operation. The proper alignment 

requires that the fraction dividend be smaller than the divisor. The two fractions are compared by a 

subtraction test. The carry in E determines their relative magnitude. The dividend fraction is restored to 

its original value by adding the divisor. If A is greater than or equal to B, it is necessary to shift A once 

to the right and increment the dividend exponent. Since both operands are normalized, this alignment 

ensures that A < B. Next, the divisor exponent is subtracted from the dividend exponent. Since both 

exponents were originally biased, the subtraction operation gives the difference without the bias. The 

bias is then added and the result transferred into q because the quotient is formed in QR. The 

magnitudes of the mantissas are divided as in the fixed-point case. After the operation, the mantissa 

quotient resides in Q and the remainder in A. The floating-point quotient is already normalized and 

resides in QR. 
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The exponent of the remainder should be the same as the exponent of the dividend. The binary point for the 

remainder mantissa lies (n—1) positions to the left of A1. The remainder can be converted to a normalized 

fraction by subtracting n - 1 from the dividend exponent and by shift and decrement until the bit in A1 is 

equal to 1. This is not shown in the flow chart. 

 

Decimal Arithmetic Operations 

The algorithms for arithmetic operations with decimal data are similar to the algorithms for the 

corresponding operations with binary data. In fact, except for a slight modification in the multiplication and 

division algorithms, the same flowcharts can be used for both types of data provided that we interpret the 

micro-operation symbols properly. Decimal numbers in BCD are stored in computer registers in groups of 

four bits. Each 4-bit group represents a decimal digit  and must be taken as a unit when performing decimal 

micro-operations.  For  convenience, we  will use the same symbols for binary and decimal arithmetic 

micro-operations but give them a different interpretation. As shown in Table, a bar over the register letter 

symbol denotes the 9's complement of the decimal number stored in the register. Adding 1 to the 9's 

complement produces the 10's complement. 

 

Thus, for decimal numbers, the symbol A <- A+B’+1 denotes a transfer of the  decimal  sum formed by 

adding the original content A to the 10's complement of B. The use of  identical  symbols for the 9's 

complement and the l's complement may be confusing if both types of  data  are employed in the same system 

Incrementing or decrementing a register is the same for binary and decimal except for the  number of states 

that the register is allowed to have. A binary counter goes through 16 states,  from 0000 to 1111, when 

incremented. A decimal counter goes through 10 states from 0000 to 1001 and back to 0000, since 9 is the last 

count. Similarly, a binary counter sequences from 1111  to 0000 when decremented. A decimal counter goes 

from 1001 to 0000. A decimal shift right or left is preceded by the letter d to indicate a shift over the four  bits 

that  hold the decimal digits.   As a numerical illustration consider a register A holding decimal 7860 in BCD. 

The bit pattern of the 12 flip-flops is 0111 1000 0110 0000. The micro-operation dshr A shifts the decimal 

number one digit to the right to give 0786. This shift is over the four bits and changes the content of the 

register into 0000 0111 1000 0110. 
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Addition and Subtraction 

The algorithm for addition and subtraction of binary signed-magnitude numbers applies also to decimal 

signed-magnitude numbers provided that we interpret the micro-operation symbols in the proper 

manner. Similarly, the algorithm for binary signed-2's complement numbers applies to decimal signed-

10's complement numbers. The binary data must employ a binary adder and a complementer. The 

decimal data must employ a decimal arithmetic unit capable of adding two BCD numbers and forming 

the 9's complement of the subtrahend. Decimal data can be added in three different ways, as shown in 

Figure. The parallel method uses a decimal arithmetic unit composed of as many BCD adders as there 

are digits in the number. The sum is formed in parallel and requires only one micro-operation. 

 

 

In the digit-serial bit-parallel method, the digits are applied to  a  single  BCD  adder  serially, while the bits 

of each coded digit are transferred in parallel. The sum is formed by shifting the decimal numbers through 

the BCD adder one at a time. For k decimal digits, this configuration requires k micro-operations, one for 

each decimal shift. In the all serial adder,  the  bits  are shifted one at a time through a full-adder. The binary 

sum formed after four shifts must be corrected into a valid BCD digit. If the binary sum is greater than or 

equal  to 1010, the binary  sum is corrected by adding to it 0110 and generating a carry for the next pair of 

digits. 
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The parallel method is fast but requires a large number of adders. The digit-serial bit-parallel method 

requires only one BCD adder, which is shared by all the digits. It is slower than the parallel method because 

of the time required to shift the digits. The all serial method requires a minimum amount of equipment but 

is very slow. 

 
Multiplication 

The multiplication of fixed-point decimal numbers is similar to binary except for the way the partial 

products are formed. A decimal multiplier has digits that range in value from 0 to 9, whereas a binary 

multiplier has only 0 and 1 digits. In the  binary  case,  the  multiplicand  is added to the partial product if 

the multiplier bit is  1. In the decimal case, the multiplicand  must be multiplied by the digit multiplier and 

the result added to the partial product. This operation  can be accomplished  by adding the multiplicand to 

the partial product a  number of times equal  to the value of the multiplier digit. The registers organization 

for the decimal multiplication is shown in Figure. We are assuming here four-digit numbers, with each digit 

occupying four bits, for a total of 16 bits for each number. There are three registers, A, B, and Q, each 

having a corresponding sign flip-flop As, Bs, and Qs. 
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Registers A and B have four more bits designated by Ae and Be that provide an extension of one more digit 

to the registers. The BCD arithmetic unit  adds the five digits in parallel  and  places  the sum in the five-

digit A register.  The end-carry  goes  to flip-flop E. The purpose of digit Ae is  to accommodate an 

overflow while adding the multiplicand to the partial product during multiplication. The purpose of digit Be 

is to form the 9's complement of the divisor when subtracted from the partial remainder during the division  

operation.  The least  significant digit  in register Q is denoted by QL. This digit can be incremented or 

decremented.  A  decimal  operand coming from memory consists of 17 bits. One bit (the sign) is 

transferred to Bs and the magnitude of the operand is placed in the lower 16 bits of B. Both Be and Ae are 

cleared initially. The result of the operation is also 17 bits long and does not use the Ae part of the A 

register. The decimal multiplication algorithm is shown in Figure. Initially, the entire A register and Be are 

cleared and the sequence counter SC is set to a number k equal to the number of digits in the multiplier. The 

low-order digit of the multiplier in QL is checked. If it is not equal to 0, the multiplicand in B is added to the 

partial product in A once and QL is  decremented.  QL  is  checked again and the process is repeated until it 

is equal to 0. In this way, the multiplicand in B  is added to the partial product a number of times equal to 

the multiplier digit. Any temporary overflow digit will reside in Ae and can range in value from 0 to 9. 

Next, the partial product and the multiplier are shifted once to the right. This places zero in Ae and transfers 

the  next  multiplier quotient into QL. The process is then repeated k times to form  a  double-length  

product in AQ. 

 
Division 

Decimal division is similar to binary division except of course that the quotient digits may have any of the 

10 values from 0 to 9. In the restoring division method, the divisor is subtracted from the dividend or partial 

remainder as many times as  necessary  until  a  negative  remainder results. The correct remainder is then 

restored by adding the divisor. The digit in the quotient reflects the number of subtractions up to but 

excluding the one that caused the negative difference. The decimal division algorithm is shown in Figure. It 

is similar to the algorithm with binary data except for the way the quotient  bits are formed. The dividend 

(or  partial remainder) is shifted to the left, with its most significant digit  placed  in Ae.  The divisor  is then 

subtracted  by adding its 10's complement value. Since Be is initially cleared, its complement value is 9 as 

required. The carry in E determines the relative magnitude of A and B.  If E =  0,  it  signifies that A < B. In 

this case the divisor is added to restore the partial remainder and Q l stays at  0  (inserted there during the 

shift). If E = 1, it signifies that A greater than or equal to B. The  quotient digit in QL is incremented once 

and the divisor subtracted again. This process is  repeated until the subtraction results in a negative 

difference which is recognized by E being 0. When this occurs, the quotient digit is not incremented but the 

divisor is added to restore the positive remainder. In this way, the quotient digit is made equal to the number 

of times that the partial remainder "goes" into the divisor. The partial remainder and the quotient bits are 

shifted once to the left and the process is repeated k times to form k quotient digits. The remainder is  then 

found in register A and the quotient is in register Q. The value of E is neglected



  

  

 

 

 


