
Government Arts College(Autonomous)

Coimbatore – 641018
Re-Accredited with ‘A’ grade by NAAC

Object Oriented Programmimg with C++

Dr. S. Chitra

Associate Professor

Post Graduate & Research Department of Computer Science

Government Arts College(Autonomous)

Coimbatore – 641 018.

Year Subject Title Sem. Sub Code

2018 -19

Onwards
OBJECT ORIENTED PROGRAMMING WITH C++ III 18BCS33C

Objective:

•Learn the fundamentals of input and output using the C++ library

•Design a class that serves as a program module or package.

•Understand and demonstrate the concepts of Functions, Constructor and inheritance.

UNIT – I

Principles of Object Oriented Programming: Software Crisis - Software Evolution - Procedure

Oriented Programming - Object Oriented Programming Paradigm - Basic concepts and benefits of

OOP - Object Oriented Languages - Structure of C++ Program - Tokens, Keywords, Identifiers,

Constants, Basic data type, User-defined Data type, Derived Data type – Symbolic Constants –

Declaration of Variables – Dynamic Initialization - Reference Variable – Operators in C++ - Scope

resolution operator – Memory management Operators – Manipulators – Type Cast operators –

Expressions and their types – Conversions – Operator Precedence - Control Structures

UNIT – II

Functions in C++: Function Prototyping - Call by reference - Return by reference - Inline functions -

Default, const arguments - Function Overloading – Classes and Objects - Member functions - Nesting

of member functions - Private member functions - Memory Allocation for Objects - Static Data

Members - Static Member functions - Array of Objects - Objects as function arguments - Returning

objects - friend functions – Const Member functions .

UNIT – III

Constructors: Parameterized Constructors - Multiple Constructors in a class - Constructors with

default arguments - Dynamic initialization of objects - Copy and Dynamic Constructors - Destructors

- Operator Overloading - Overloading unary and binary operators – Overloading Using Friend

functions – manipulation of Strings using Operators.

UNIT – IV

Inheritance: Defining derived classes - Single Inheritance - Making a private member inheritable – Multilevel,

Multiple inheritance - Hierarchical inheritance - Hybrid inheritance - Virtual base classes - Abstract classes -

Constructors in derived classes - Member classes - Nesting of classes.

UNIT – V

Pointers, Virtual Functions and Polymorphism: Pointer to objects – this pointer- Pointer to derived Class -

Virtual functions – Pure Virtual Functions – C++ Streams –Unformatted I/O- Formated Console I/O – Opening

and Closing File – File modes - File pointers and their manipulations – Sequential I/O – updating a file :Random

access –Error Handling during File operations – Command line Arguments.

TEXT BOOKS

1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH, 2008.

Unit II – Functions

Modular Programming

“The process of splitting of a large program into small manageable tasks and designing

them independently is known as Modular Programming or Divide-&-Conquer

Technique.”

C++ Functions

• Self-contained program that performs a specific task.

• “Set of program statements that can be processed independently.”

• Like in other languages, called subroutines or procedures.

Advantages

• Elimination of redundant code

• Easier debugging

• Reduction in the Size of the code

• Leads to reusability of the code

• Achievement of Procedure Abstraction

Functions are broadly classified as

1. Built-in functions (C++ Library functions)

2. User-defined functions

1. Built-in functions or C++ Library functions

Some of the built-in library functions are

strlen(), strncpy(), strcmp()  available in string.h

pow(),sqrt(),sin(),tan()  available in math.h

getch(),clrscr()  available in conio.h

2. User-definied Functions:

Function Components

• 1. Function Prototypes (or) Function Declaration

• 2. Function Definition(declarator & body)

• 3. Function call(actual parameters)

• 4. Function Parameters(formal parameters)

• 5. return statement

In C++, the main () returns a value of type int to the operating system.

The functions that have a return value should use the return statement

for terminating.

The main () function in C++ is therefore defined as follows.

int main()

{

return(0)

}

Since the return type of functions is int by default, the keyword int in

the main() header is optional.

1. Function Declaration Syntax

return-type function-name(list of parameters with their type separated by comma);

eg. 1. int add-function(int a,int b);

eg. 2. int largest(int a,int b,int c);

eg. 3. double power-function(float a, int b);

2. Function Definition(declarator & body) Syntax

return-type function-name(list of parameters with their type separated by comma)

{….

statement block;

……

return

}

eg. 1.

int add-function(int a,int b)

{

int c;

c=a+b;

return c;

}

3. Function call(actual parameters) Syntax

function-name(actual parameters);

eg.

void main()

{

int k;

int add-function(int a,int b);  function declaration

…..

…..

k=add-function(int a,int b);  function call ; a & b are actual parameters

…..

}

int add-function(int x,int y)  function definition ; x & y are formal parameters

{

………….

Types of functions based on their return type & parameters

1. function that takes no parameters & doesn’t return any value

2. function that takes parameters & doesn’t return any value

3. function that takes parameters & returns a value

4. function that takes no parameters & returns a value – (rare type)

1. function that takes no parameters & doesn’t return any value

void main()

{

void add();

add();

}

void add(void)

{

int a,b,c;

cin>>a>>b;

c=a+b;

cout<<c;

}

2. function that takes parameters & doesn’t return any value

void main()

{

void add(int,int);

int a,b;

cin>>a>>b;

add(a,b);

}

void add(int x,int y)

{

int c;

c=x+y;

cout<<c;

}

3. function that takes parameters & returns a value

void main()

{

int add(int,int);

int a,b,c;

cin>>a>>b;

c=add(a,b);

cout<<c;

}

int add(int x,int y)

{

int c;

c=x+y;

return(c);

}

4. function that takes no parameters & returns a value

void main()

{

int add();

int c;

c=add();

cout<<c;

}

int add()

{

int x,y,z;

cin>>x>>y;

z=x+y;

return(z);

}

Parameter Passing in Functions

* actual parameters – used in the function call

* formal parameters – used in function declarator &

definition

Passing Constant Values to Functions

Passing Variable Values to Functions

Functions with Multiple Arguments

Memory Allocation for Functions

Parameter passing by Pointer

Parameter passing by reference

Return by Reference

Functions with default arguments
* Usually functions should be passed values during function call.

* C++ allows function calls with fewer argument values if the

remaining arguments are assigned default values

Example:

#include<iostream.h>

#include<stdio.h>

main()

{

float amount;

float value(float p,int n,float r=15);

void printline(char ch=’*’,int len=40);

printline();

amount=value(5000.00,5);

cout<<”\n final value=”<<amount<<endl;

printline(‘=’);

//function definitions

float value (float p,int n, float r)

{

float si;

si=p+(p*n*r)/100;

return(si);

}

void printline (char ch,int len)

{

for(inti=l;i<=len;i++)

cout<<ch<<endl;

}

output:-

* * * * * * * * * * * * * * * *

final value = 8750.00

= = = = = = = = = = = = = = =

const arguments

INLINE FUNCTION:

An inline function is a function that is expanded inline when it is invoked. That is the

compiler replaces the function call with the corresponding function code.

The inline functions are defined as follows:-

inline function-header

{

function body;

}

Example:

inline int sqr(int num)

{

return(num*num);

}

Function Overloading

Scope & Extent of Variables

*The region of source code in which the identifier is visible is called the scope of the

identifier.

* The period of time during which the memory is associated with a variable is called the

extent of the variable.

Storage Classes

Syntax of declaring variables with storage class

Recursive Functions

*A function calling itself repeatedly until a condition is satisfied is

called a recursive function

Classes & Objects

Using Class in C++ needs 3 steps to be followed

1. Specify the class

i. Declaration of class

ii. Defintion of member functions

2. Create objects for the class

3. Access the public members of the class using objects

Specifying a class

Creating Objects

Accessing the Members of the Class

Accessing the Members

Defining Member Functions

Member function definition Outside the class specification

Access Specifiers/Visibility Modes:

C++ provides 3 types of Visibility Modes

1. private

2. public

3. protected

Two objects of the class student

Client-Server model for message communication

Characteristics of Member Functions:

Write a simple program using class in C++ to input subject mark and prints it.

class marks

{

private :

int roll;

int ml,m2;

public:

void getdata();

void displaydata();

};

void marks: :getdata()

{ cout<<“enter the roll-no:”;cin>>roll;

cout<<”enter 1st subject mark:”;

cin>>ml;

cout<<”enter 2nd subject mark:”;

cin>>m2;

}

void marks: :displaydata()

{ cout<<“Roll No.”<<roll;

cout<<”Ist subject mark:”<<ml<<endl ;

cout<<”2nd subject mark:”<<m2;

}

void main()

{

clrscr();

marks x;

x.getdata();

x.displaydata();

}

Nesting of Member Functions

Memory allocation for static member

Array of objects

REFERENCES:

1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH,

2008.

2. LECTURE NOTES ON Object Oriented Programming Using C++ by Dr. Subasish Mohapatra,

Department of Computer Science and Application College of Engineering and Technology, Bhubaneswar

Biju Patnaik University of Technology, Odisha

3. K.R. Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”, Tata McGraw-Hill

Publishing Company Limited

4. Object Oriented Programming With C++ - PowerPoint Presentation by Alok Kumar

5. OOPs Programming Paradigm – PowerPoint Presentation by an Anonymous Author

