Government Arts College(Autonomous)
Coimbatore — 641018

Re-Accredited with ‘A’ grade by NAAC

Dr. S. Chitra
Assoclate Professor
Post Graduate & Research Department of Computer Science
Government Arts College(Autonomous)
Coimbatore — 641 018.

Year Subject Title Sem. | Sub Code

2018 -19
Onwards

OBJECT ORIENTED PROGRAMMING WITH C++ 11 18BCS33C

Learn the fundamentals of input and output using the C++ library
Design a class that serves as a program module or package.
*Understand and demonstrate the concepts of Functions, Constructor and inheritance.

UNIT -1

Principles of Object Oriented Programming: Software Crisis - Software Evolution - Procedure
Oriented Programming - Object Oriented Programming Paradigm - Basic concepts and benefits of
OOP - Object Oriented Languages - Structure of C++ Program - Tokens, Keywords, Identifiers,
Constants, Basic data type, User-defined Data type, Derived Data type — Symbolic Constants —
Declaration of Variables — Dynamic Initialization - Reference Variable — Operators in C++ - Scope
resolution operator — Memory management Operators — Manipulators — Type Cast operators —
Expressions and their types — Conversions — Operator Precedence - Control Structures

UNIT — 11

Functions in C++: Function Prototyping - Call by reference - Return by reference - Inline functions -
Default, const arguments - Function Overloading — Classes and Objects - Member functions - Nesting
of member functions - Private member functions - Memory Allocation for Objects - Static Data
Members - Static Member functions - Array of Objects - Objects as function arguments - Returning
objects - friend functions — Const Member functions .

UNIT — 1

Constructors: Parameterized Constructors - Multiple Constructors in a class - Constructors with
default arguments - Dynamic initialization of objects - Copy and Dynamic Constructors - Destructors
- Operator Overloading - Overloading unary and binary operators — Overloading Using Friend
functions — manipulation of Strings using Operators.

UNIT - IV

Inheritance: Defining derived classes - Single Inheritance - Making a private member inheritable — Multilevel,
Multiple inheritance - Hierarchical inheritance - Hybrid inheritance - Virtual base classes - Abstract classes -
Constructors in derived classes - Member classes - Nesting of classes.

UNIT -V

Pointers, Virtual Functions and Polymorphism: Pointer to objects — this pointer- Pointer to derived Class -
Virtual functions — Pure Virtual Functions — C++ Streams —Unformatted 1/O- Formated Console I/O — Opening
and Closing File — File modes - File pointers and their manipulations — Sequential 1/0 — updating a file :Random
access —Error Handling during File operations — Command line Arguments.

TEXT BOOKS

1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH, 2008.

Unit Il — Functions

Modular Programming

“The process of splitting of a large program Into small manageable tasks and designing
them independently is known as Modular Programming or Divide-&-Conquer
Technique.”

C++ Functions

» Self-contained program that performs a specific task.

 “Set of program statements that can be processed independently.”
* Like in other languages, called subroutines or procedures.

Advantages

 Elimination of redundant code
 Easier debugging

* Reduction in the Size of the code
* [eads to reusability of the code

Functions are broadly classified as

1. Built-in functions (C++ Library functions)
2. User-defined functions

1. Built-in functions or C++ Library functions

Library functions are shipped along with the compilers. They are predefined and pre-compiled into
library files, and their prototypes can be found in the files with . h (called header files) as their extension

in the include directory.

Some of the built-in library functions are

strlen(), strncpy(), strcmp() -2 available in string.h
pow(),sart(),sin(),tan() —> avalilable in math.h
getch(),clrscr() —> avallable in conio.h

// namelen.cpp: use of string library functions
#include <iostream.h>
tinclude <string.h> // string function header file
void main()
{
char name[20];
cout << "Enter your name: *;

cin »> name;

int len = strlen(name); // strlen returns the length of name
cout << *Length of your name = " << len;

)

Run
Enter your name: Rajkumar

Length of your name = 8

2. User-definied Functions:

Function Components

» 1. Function Prototypes (or) Function Declaration
» 2. Function Definition(declarator & body)

» 3. Function call(actual parameters)

* 4. Function Parameters(formal parameters)

e 5. return Statement

In C++, the main () returns a value of type int to the operating system.
The functions that have a return value should use the return statement

for terminating.
The main () function in C++ is therefore defined as follows.

Int main()

return(0)
¥

Since the return type of functions Is int by default, the keyword int in
the main() header Is optional.

1. Function Declaration Syntax

return-type function-name(list of parameters with their type separated by comma);
eg. 1. int add-function(int a,int b);

eg. 2. int largest(int a,int b,int c);

eg. 3. double power-function(float a, int b);

2. Function Definition(declarator & body) Syntax

return-type function-name(list of parameters with their type separated by comma)
{....
statement block;

o), 1L

Int add-function(int a,int b)
1

Int c;

c=atb;

return c;

¥

Function prototype is a declaration statement in the calling program and is of the following form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that must be passed to the
function.

Example:
float volume(int x, float y, float 2);

Note that each argument variable must be declared independently inside the parentheses,
That is, a combined declaration like

float volume(int x, float y, 2);

15 illegal,

In a function declaration, the names of the arguments are dummy variables and therefore,
they are optional, That is, the form

float volume(int, float, float);

In the function definition, names are required because the arguments must be referenced
inside the function, Example:

float volume(int a,float b,float c)

The function volume() can be invoked in a program as follows:

float cubel = volume(bl,wl,hl); // Function call

The variable bl, wl, and h1l are known as the actual parameters which specify the
dimensions of eubel, Their types (which have been declared earlier) should match with the
types declared in the prototype, Remember, the calling statement should not include type

names in the argument list.

Sample function

name Formal parameters

Return type Fun;;{u:i‘ / \

int add int(int a,

{

return (a+b); \

H

3. Function call(actual parameters) Syntax

function-name(actual parameters);

eg.
void main()

{
It K;
Int add-function(int a,int b); —> function declaration

k=add-function(int a,int b); —> function call ; a & b are actual parameters

Int add-function(int x,int y) —> function definition ; X & y are formal parameters

{

void show(); * Function declaration */

/* Function call */

/* Function definition */

/* Function body */

void func(int a, int b); == prototype

7 formal parameters

void func(int a, int b) . declarator

actual paramecters

The program max 1 . cpp illustrales the various components of a function. It computes the maxi-
mum of two integer numbers.

// maxl.cpp: maximum of two integer numbers
#¢include <iostream, h>
int max{ int x, int v): f/ prototype
void main() ff function caller
{
int a, b, ¢;
cout << "Enter two integers <a, b>: ";
cin »>> a »» b;
¢ = max{ a, b); f¢ function call
cout <<« "max(a, b): ® «< ¢ << endl;

}

int max({ int x, int vy) // function definition

{

/¢ all the statements enclosed in braces forms body of the function

i x> v)
return x; !/ function return

else
return y; [/ function return

}
Run

Enter two integers <a, b>: 20 10
max(a, b): 20

int max(int x, inty); /{ prototype

Function name
defines function ¥ no semicolon

int max{int x, int y) == function declarator
{ .
- if (x> y)
return x;
else

return y;

- = function body

¢ =max(a, b); /| function call

return x; // function return
and
return y; // function return

void main() int max({x, y)

else
return y;

The value of y is,
returned to main ()
and assigned to c.

Types of functions based on their

1. function that takes no parameters & doesn’t return any value
2. function that takes parameters & doesn’t return any value
3. function that takes parameters & returns a value

4. function that takes no parameters & returns a value — (rare type)

1. function that takes

void main()
{

void add();
add();

t
void add(void)

{

Int a,b,C;
cin>>a>>h:
c=a+b;
cout<<c;

1

2. function that
void main()

{

void add(int,int);
Int a,b;
cin>>a>>b;
add(a,b);

¥
void add(int x,int y)

1

int c;
C=X+Y;
COUt<<C;

}

3. function that
void main()

{

Int add(int,int);
Int a,b,c;
cin>>a>>p:
c=add(a,b);
cout<<c;

}

Int add(int x,int y)
{

INt C;

c=X+Y;
return(c);

b

4. function that
void main()

{

Int add();

Int C;

c=add();
cout<<c;

s
int add()

L

Int X,V,Z;
CIN>>X>>Y,
Z=X+Y;
return(z);

}

Parameter Passing in Functions

* actual parameters — used In the function call
* formal parameters — used in function declarator &
definition

Parameter passing is a mechanism for communication of data and information between the calling
function (caller) and the called function (callee). It can be achieved either by passing the value ol
address of the variable. C++ supports the following three types of parameter passing schemes:

+ Pass by Value
+ Pass by Address
+ Pass by Reference (only in C++)

Passing Constant Values to Functions

The program chartl.cpp illustrates the passing of a numeric constant as an argument to a function.
This constant argument is assigned to the formal parameter which is processed in the function body.

// chartl.cpp: Percentage chart by passing numeric value
#¢include <icstream.h>
void PercentageChart(int percentage);
void main()
{
cout << "Sridevi
PercentageChart{ 50
cout << "Rajkumar:
PercentageChart(B4
cout << "Savithri:
PercentageChart({ 72
cout << *"Anand
PercentageChart(74);
)
void PercentageChart(int percentage)
{
for{ int 1 = 0; i < percentage/2; i++)
cout << '\xCD'; // double line character (see ASCII table)
cout << endl;

Savithri:

In main (), the statement

PercentageChart(84 !} ;

void main (void) int PercentageChart(int percentage)

Passing Variable Values to Functions

// chart2.cpp: Percentage chart by passing variables
ginclude <iostream.h>
void PercentageChart(int percentage };
void main()
{
int ml, m2, m3, md;
cout << "Enter percentage score of Sri, Raj, Savi, An: *;
cin »> ml >> m2 >> m3 >> md;
cout << "Sridevi : ;
PercentageChart(ml);
cout << "Rajkumar: ";
PercentageChart(m2);
cout << "Savithri: ";
PercentageChart(m3);
cout << "Anand t "3
PercentageChart(md);
}
void PercentageChart(int percentage)
{
for({ int 1 = 0; i < percentage/2; i++)
cout << '\xCD'; // double line character (see ASCII table)
cout << endl;

Run

Enter percentage score of Sri, Raj, Savi,
Sridevi :
Rajkumar:
Savithrai:

In main(), the statement
PercentageChart(mZ };

void main (veid)

{

Ny,
N i,

int PercentageChart{int percentage)

m2=92;
PercentageChart(m2);
B i i i
Pt T
}
Caller

Functions with Multiple Arguments

// chart3.cpp: Percentage chart by passing multiple variables
#include <iostream.h>
void PercentageChart(int percentage, char style };
void main()
{
int ml, m2, m3, m4;
cout << "Enter percentage score of Sri, Raj, Savi, An
cin =>> ml >> m2 >> m3 >> m4;
cout << "Sridevi : ";
PercentageChart(ml, '*');
cout << "Rajkumar: ";

PercentageCharc{ m2,
cout <= "Sawithri:
PercentageChart(m3, *~'};
cout =< "Anand : "
PercentageChart{ md, °"'!'" };
}
wvold PercentageChart(int percentage, char style |}

for{ int 1 = 0; i = percentage,/2; i++)}
cour == style;
cout << andl;

Run
Enter percentage score of Sri, Raj, Savi, An: 55 92 B3 &7

Sridevi . LA A R B S R A B S AEEEEEEEEEEEEEESES.

Rajkumar:
Savithri:
Anand . |IIIIII4[II4IIIIIIlIIllIIrIiIIIII

void main (void)

Caller

/1 ilacl.cpp: factorial computation Returns a long integer value
#include <iostream. h>

long fact(int n)

{

long result;
if(n==20)

result = 1; // factorial of zerc is cne
else
{

result = 1;

for(int 1 = 2; 1 <= n; i++)

result = result * i;

}
return result;

}
void main(void)

{

int n;
cout << “Enter the number whose factorial is to be found: *;

cin >> n:
cout << "The factorial of " << n << " is " << fact(n) << endl;

}

Bun

Enter the number whose factorial is to be found: §
The factorial of 5 is 120

// swapl.cpp: swap integer values by value
#include <iostream.h>
void swap(int x, int y)

{

int t; // temporary used in swapping
cout<<"Value of x and y in swap before exchange: "<< x <<" "<< ¥y << endl;

xi
Vi
= ©;
cout<<"Value of x and y in swap after exchange: "<< x <<" " << y << endl;

}
void main()

{
int a, b;
cout << "Enter two integers <a, b>: *;

cin »>> a >> b;

swapl(a, b);
cout << "Value of a and b on swap(a, b) in main(): " << a << " " << b;

}
Run

Enter two integers <a, b>: 10 20

Value of x and y in swap before exchange: 10 20
Value of x and v in swap after exchange: 20 10
Value of a and b on swap(a, b) in main(): 10 20

Memory Allocation for Functions

void main

int a,

Cai i]

e e]
swap (a,

Pass by Address

C++ provides another means of passing values to a function known as pass-by-address. Instead of
passing the value, the address of the variable is passed. In the function, the address of the argument is
copied into a memory location instead of the value. Thé de-referencing operator is used to access the
variable in the called function.

S/ swap2.cpp: swap integer values by pointers
#ginclude <iostr=am.h>
vold swap({ int * x, int * v)

{

// temporary usiad in swapping

)
volid main()
{
int a, b:
coukt =< "Enter two integers <a, b>»: *;
cin »> a >> b;
swapl(&a, &b);
cout << "Value of a and b on swap(a, b)J: " <<« a << " " << b;

)
BRun

Enter two integers <a, b>: 10 20
Value of a and b on swap(a, b }: 20 10

In main(), the statement
swap(&x, &y)

invokes the function swap and assigns the address of the actual parameters a and b to the formal
parameters x and y respectively.

void main (void) void swap(int *x, int *y)
{ {
' int a, b; int t;

P, l:‘—‘-*x;

swap (ka, &b); --*X=*y;
EP’ ..#'*Y:t,'

Parameter passing by Pointer

Pass by Reference

Passing parameters by reference has the functionality of pass-by-pointer and the syntax of call-by-
value. Any modifications made through the formal pointer parameter is also reflected in the actual
parameter. Therefore, the function body and the call to it is identical to that of call-by-value, but has the
effect of call-by-pointer.

To pass an argument by reference, the function call is similar to that of call by value. In the function
declarator, those parameters, which are to be received by reference must be preceded by the & operator,
The reference type formal parameters are accessed in the same way as normal value parameters, How-

ever, any modification to them will also be reflected in the actual parameters, The program swap3 . cpp
illustrates the mechanism of passing parameters by reference,

// swap3.cpp: swap integer values by reference
#include <iostream.h>

void swap(int & x, int & y)

(.

£ // temporary used in swapping

void main()
{
int a, b;
cout << "Enter two integers <a, b>: *;
cin >> a >> b;
swap(a, b };
cout << *Value of a and b on swap(a, b }: "

)
Run

Enter two integers <a, b>: 10 20
value of a and b on swap(a, b }): 20 10

Parameter passing by reference

void main (veoid) void swap(int &x, int &y)

{

int a, b;

The following points can be noted about reference parameters:

« A reference can never be null, it must always refer to a legitimate object (vanable).
+ Once established, a reference can never be changed so as to make it point to a different object.

+ A reference does not require any explicit mechanism to dereference the memory address and access
the actual data value.

Return by Reference

// ref.epp: return variable by reference

#include <iostream.h>

int & max(int & x, int & vy); // prototype
void main()

{
int a, b, c;
cout =< "Enter two integers <a, b>:
cin == a > b;

max(a, b) = 425;
cout<<"The value of a and b on execution of max(a,b) = 425; ..." << endl:

cout =< "a = " << a == " b = " << b;

}
int & max(int & x, int & vy) /4 function definition

{
// all the statements enclosed in braces form body of the function

if(x > y)
return x; S/ function return

else
return v; S function return

}
BRuni

Enter two integers <a, b>: 1 2

The value of a and b on execution of maxia,
a = 1 b = 425

Run2

Enter two integers <a, b=: 2 1
The value of a and b on execution of maxxi(a.

a = 425 b = 1

In maini{), the statement
maxi{ a, b }y = 425;

Functions with default arguments
* Usually functions should be passed values during function call.

* C++ allows function calls with fewer argument values if the
remaining arguments are assigned default values

A default argument is checked for type at the time of declaration and evaluated at the
time of call. One important point to note is that only the trailing arguments can have default
values and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of function
declaration with default values are:

int mul(int 1, int j=5, int k=10);
int mul(int i=5, int j)i

int mul(int i=0, int j, int k=10):
cint mul (int i=2, int j=5, int k=10):

Example:

#include<iostream.h>
#include<stdio.h>

main()

{

float amount;

float value(float p,int n,float r=15);
void printline(char ch="*’,int len=40);
printline();

amount=value(5000.00,5);

cout<<n final value="<<amount<<endl;
printline(‘=");

/[function definitions

float value (float p,int n, float r)

{

float si;

si=p+(p*n*r)/100;

return(si);

}

void printline (char ch,int len)
{

for(inti=l;i<=len;i++)
cout<<ch<<endl;

¥

output:-

ER i e e S S i e e b e i i 3

final value = 8750.00

arguments

[nC#+, an argument fo a function can be declared as const a8 shown below.

it stelen{canst char *);
it Tength(const string ks);

The qualfie eomst tlls th corpilertht the unction should ot modiy the angument,
The compiler will generate an error u;hEn this condifion 1 violated, This fype of declaration

5 sgnifieant only when we pass arguments by reference or pointers.

INLINE FUNCTION:

An inline function is a function that is expanded inline when it is invoked. That is the
compiler replaces the function call with the corresponding function code.

The inline functions are defined as follows:-

inline function-header

{

function body;

¥

Example:

Inline Int sqr(int num)

{

return(num*num);

¥

C++ provides an alternative to normal function calls in the form of inline functions. Inline functions
are those whose function body is inserted in place of the function call statement during the compilation
process. With the inline code, the program will not incur any context switching overhead. The concepi
of inline functions 1s similar to macre funcrions of C. Hence, inline functions enjoy both the flexibility
and power offered by normal functions and macro functions respectively.

An inline function definition is similar to an ordinary function except that the keyword inline
precedes the function definition. The syntax for defining an inline function is shown in Figure 7.12.,

inline int sgr{ int num)}
{

return num*num;

}

void main () void main{)

P e ey
R,

a=sgr(d); - -
b=sgr(n); - -

PR e,
B e T Y

}

inline double cube(double a) {return{a*a*a):}

Some of the situations where inline expansion may not work are:

. For functions returning values, if a loop, a switch, or a goto exists.
. For functions not returning values, if a return statement exists.
3. If functions contain static variables,
4, If inline functions are recursive.

Function Overloading

Function polymorphism, or function overloading is a concept that allows multiple functions to share
the same name with different argument types. Function polymorphism implies that the function defini-
tion can have multiple forms. Assigning one or more function body to the same name is known as
Juncrion overloading or function name overloading.

// Declarations

int add(int a, int b); /] prototype 1

int add(int a, int b, int c); // prototype 2

double add(double x, double y).: // prototype 3
4
5

double add(int p, double q); // prototype
double add(double p, int q); J// prototype

/] Function calls

cout add(5, 10); // uses prototype
cout << add(15, 10.0); // uses prototype
cout << add(12.5, 7.5); // uses prototype
cout add(5, 10, 15); // uses prototype
cout add(0.75, 5); // uses prototype

Jf swapS.cpp: multiple swap functions, function overlocading
#include <iostream.h>
void swap{ char & x, char & y)
{
char t; /Y temporarily used in swapping

= ¥:

= W

= k£

swap{ int & =, int & ¥)

t; S/ cemporarily used in swapping
X
¥
E:
¥
wvold swap({ float & x, float & v)
{

float ©; // temperarily used in swapping

= X
= Y
= £
)
vold main ()
{
char chl, ch2;
cout =< "Enter two Characters <chl, ch2>=: ";
cin > chl >> chi;
swap{ chl, ch2 }; /f/ compiler calls swapl(char &a, char &b) ;
cout =< "0On swapping =<chl, ch2>: " << chl << " " << ch2Z << endl;
int a., b;
cout =< "Enter two integers <a, b»: “;
cin »>> a »> b;
swap{ a, b); /f compiler calls swap(int &a, int &b) ;
cout << "0On swapping <a, b>: " << a << " " << b << endl;

float o, d:

cout <<« "Enter two floats <o, d=:

cin =>> ¢ =>> d;

swapi({ o, 4) A4 o compiler calls swap({ float &ka, float &b) ;
Ccout <<= "0On swapping <c, d=: " <=2 £ << " " <= d;

Run

Enter two Characters <chl, chi>: B K
o swapping <=chl, ch2>: H R

Encer two integers <a, b>: 5 10

On swapping <=a, b=: 10 5

Enter two floats <c, d=: 20.5 99 .5
On swapping <c, do: 99.5 20.5

In the above program, three functions named swap () are defined, which only differ in their argu-
ment data types: char, int, or float. In main (), when the statement

swap({ chl, ch2)};

is encountered, the compiler invokes the swap ()} function which takes character type arguments. This
decision is based on the data type of the arguments. (see Figure 7.13).

void swap{(float &x, flocat &v):; -=-- _

void swap(int &x, int &y}, = - _

void swap (char &%, char &vy); = - - _

void main ()

{
char chl, ch2;
int a, by
float =, vi
swapichl, ch2); ==~
swap(a, b); a=e==-"7
swap (X, ¥)/ =ccaa-=--

Scope & Extent of Variables

*The region of source code in which the identifier is visible is called the scope of the
Identifier.

* The period of time during which the memory is associated with a variable is called the
extent of the variable.

Storage Classes

The period of time during which memory is associated with a variable is called the extent of the vanable.
It is characterized by storage classes. The storage class of a variable indicates the allocation of storage

space to the variable by the compiler. Storage classes define the extent of a variable. C++ supports the
following four types of storage classes:

« auto

» register
+ eXxtern

+ Static

Syntax of declaring variables with storage class

auto, register,
static, or extern

StorageClass DataType Variablel,....;

Declaration Versus Definition
A declaration informs the compiler about the existence of the data or a function some where in the

program. A definition allocates the storage location. In C++, a piece of data or function can be declared
in several different places, but there must only be one definition.

Auto Variables

Byv default, all the variables are defined as auto variables. They are created when the function/block is
entered and destroyed when the function/block is terminated. The memory space for local auto vari-
ables is allocated on the stack. The global auto variables are visible to all the modules of a program, and
hence, they cannot be defined many times unlike the declarations.

Register Variables

The allocation of CPU (processor) registers to variables, speeds up the execution of a program: memory
is not referred when such variables are accessed. The number of variables, which can be declared as
registcer are limited (typically two or three), within any function or as global variables (else they are

treated as auto variables).

Static Variables

The static storage class allows to define a variable whose scope is restricted to either a block, a
function, or a file (but not all files in multimodule program) and extent is the life-span of a program. The
memory space for local static and global variables is allocated from the global heap. Static variables
that are defined within a function remember their values from the previous call (i.e., the values to which
they are initialized or changed before returning from the function). The static variables defined outside
all functions in a file are called file sratic variables. They are accessible only in the file in which they are
defined. The program count . cpp illustrates the use of function static local variables.

S count.cpp: use of static variables defined inside functions

#include <<iostream.h>
wold PrintCount{ woid)

{

static inmnt Count = 1; /) Count is imitialized only on the first call
cout == "Count = * << Count == endl;
Count = Count + 1; S The incremented wvalue of Count is retained

¥

woaid main{ wvoid)

{
PrintCount [}
PrintCount ()}
PrintCounit {}

Extern Variables

When a program spans across different files, they can share information using global variables. Global
variables must be defined only once in any of the program module and they can be accessed by all
others. It is achieved by declaring such wvariables as extern variables. It informs the compiler that
such variables are defined in some other file. Consider a program having the following files:

+ 7 filel.cpp: module one defining global variable
int done; A global wvariable definition

wvwoid funcl ()

{

1
wold disp ()

s s file2.cpp: module two of the project
extern int done; A global variable declaration

wvold func3

In filel . cpp, the statement

int done;
defines the variable done as a global variable. In £file2 . cpp, the statement

extern int done;
declares the variable done and indicates that it is defined in some other file. Note that the definition of
the variable done must appear in any one of the modules, whereas extern declaration can appear in any
or all modules of a program. When the linker encounters such variables, it binds all references to the
same memory location. Thus, any modification to the wvariable done is wvisible to all the modules
accessing it.

Recursive Functions

*A function calling itself repeatedly until a condition Is satisfied Is
called a recursive function

Two important conditions which must be satisfied by any recursive function are:
1. Each time a function calls itself it must be nearer, in some sense, to a solution.
2. There must be a decision criterion for stopping the process or computation.

A4 rfact.cpp: factorial of a number using recursion
ginclude <iostream.h>
vold main{ woid)
{
int
long int facc{ int) ; fd O prototype
cout == *Enter the number whose factorial is to be found: »;
Cin > 11
cout << "The factorial cf " =« n << " iz " <=« facti{in) << endl;
1
long fact(int num)
{
if{ mmum == 0)
return 1 ;
else

return num * fact{ nnum - 1) ;
1

Run

Enter the number whose factorial is to be found: 5
The factorial of 5 is 120

Classes & Objects

Data

datal
dataz
data3l

Functions

funcl ()
func2 ()

funec3 ()

Class grouping data and functions

Object-oriented programming constructs modeled out of data types called classes. Defining vari-
ables of a class data type is known as a class instantiation and such variables are called objects. (Object
1s an instance of a class.) A class encloses both the data and functions that operate on the data, into a
single unit The variables and functions enclosed in a class are called dara
members and member functions respectively. Member functions define the permissible operations on
the data members of a class.

Using Class in C++ needs 3 steps to be followed
1. Specify the class

1. Declaration of class

1. Defintion of member functions

2. Create objects for the class

3. Access the public members of the class using objects

Specifying a class

A class is a way to bind the data and its associated functions topgether. It allows the data
{and functions) to be hidden, if necessary, from external use,. When defining a class, we are
creating a new abstraoct data fvpe that can be treated like any other built-in data type.

CGenerally, a class specification has two parts:

Class declaration
Class function definitions
The class declaration describes the type and scope of its members. The class function

definitions describe how the class functions are implemented.

The general form of a class declaration i1s:

MName of the user

class class name Keyword defined class
[;)

class ClassName

private:
{

wariable declaratioms:
fumction declaratioms: };
Public: I—p./ Semicolon required here
variable declarations:
Ffunction declarationmg

/7 body of a class

Syntax of class specification

The class declaration is similar to a struet declaration. The keyword elass specifies,
that what follows is an abstract data of type class_name. The body of a class is enclosed
within braces and terminated by a semicolon. The class body contains the declaration of
variables and functions. These functions and variables are collectively called cflass members,
They are usually grouped under two sections, namely, private and public to denote which of
the members are private and which of them are public. The keywords private and public
are known as visibility labels, Note that these keyvwords are followed by a colon.

CLASS

Mo entry 1o Privale area

privale angsa

= X

Eniry allowed to r——-={ Dala -1

public area i

[E—

- [Funclions |

A Simple Class Example

A typieal class declaration would look like:

class item
i

int number; /[variobles declorotion

float cost; /[private by defoult
public:
void getdata(int a, float b); // functions declaration
void putdata(void); {] using prototype
}1// ends with semicolon

Class : ITEM

DaTA
nurmibeEr
ot

FUKCTIOMNS
gatdatal)
putdatal)

getdatal) |

putdata()

ITEM

{a)

Creating Objects

Name of the user Mame of the user-defined

defined class object

classe ClassName ObjectMame,

1tem X, y

The declaration of an object is similar to that of a variable of any basic type. The necessary
memory space 15 allocated to an object at this stage, Note that class specification, like a
structure, provides only a templafe and does not create any memory space for the objects.

Accessing the Members of the Class

— Name ol the user defined object

— member access specifier

—— data member of a class

ObjectName . DataMember

(a) Syntax for accessing data member of a class

——Name of the user defined object

— member access specifier

— name of the member function
|—> argumenis to the function

ObijectName FunctionName (Actual Arguments)

(b) Swyntax for accessing member function of a class

Accessing the Members

object-name.function-name (actual-arguments);

For example, the function call statement
x.getdata(100,75.5);

18 valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing
the “t'-t.d“t.u{l function. The assignments occur in the actual function

Similarly, the statement
i.putdatal):

would display the values of data members. Remember, a member function can be invoked
only by using an object (of the same class). The statement like

getdata(l100,75.5);
has no meaning., Similarly, the statement
X . number 100

18 also illegal. Although x 152 an olyect of the type item to whaich number belongs, the number
{declared private) can be accessed only through a member function and not by the object directly

It may be recalled that objects communicate by sending and receiving messages. This 1s
achieved through the member functions. For example

X.putdata():

sends a message to the object x requesting it to display its contents

Defining Member Functions

Member functions can be defined in two places:

#® Outside the class definition.
® Inside the class definition.

ember function definition outside a class declaration

class ClassName
{

ReturnType MemberFunction({arguments); == function prototype

cees user defined class name
}i /‘E .|._" Scope resolution operator

ReturnType ClassName :: MemberFunction (arguments)
{

// body of the function
}

Member function definition Outside the class specification

return-type class-name :: function-name (argument declaration)

Function body

void 1tem :: getdata{int a, float b)

nuwmber = a;
cost = bg

++ putdata(void)

<< "Number :" << number << “\p"
“Cost + W ww post

Inside the Class Definition

Another method of defining a member function is to replace the function declaration by the
actual funetion definition inside the class, For example, we could define the item class as

follows:
class 1tem

int number;
float cost:
public:
void getdata(int a, float b);

{¢ inline function
void putdata({void)

{

cout << number << "\n";
cout << cost << "\n";

{{ declaration

/f definition inside the closs

When a function 15 defined inside a class, it 15 treated as an inhne funchion, Therefore, all
the restrictions and limitations that apply to an inline function are also applicable here.
Normally, only small functions are defined inside the class definition,

Access Specifiers/Visibility Modes:

C++ provides 3 types of Visibility Modes
1. private

2. public

3. protected

Private Members
The private members of a class have strict access control. Only the member functions of the same class

can access these members. The private members of a class are inaccessible outside the class. thus.
providing a mechanism for preventing accidental modifications of the data members.

class Person

{ Note: colon here

// private members

int age; e private data

int getage(); === privale function
}i
Person pl; .
a=pl.age; X cannol access private data
pl.getage{); X cannot access private function

Private members accessibility

class Inaccessible
{
int x;
void Display()
{
cout << *\nData = " << x;
}
bi
void main()

{
Inaccessible objl; // Creating an object.

objl.x = 5; // Error: Invalid access.
objl.Display!(); // Error: Invalid access.

The class having all the members with private access control is of no use; there is no means
available to communicate with the external world. Therefore, classes of the above type will not contrib-

ute anything to the program.

Protected Members
The access control of the protected members is similar to that of private members and has more signifi-

cance 1 inheritance,
Access control of protected members is

class Person Note: colon here

{
protected: - access specifier

// protected members

int age; === protected data
int getage(}; === protected function

}i
Person pl;

a=pl.age;
pl.getage(); {— ¥ cannot access protected member
(same as private)

Protected members accessibility

Public Members

The members of a class, which are to be visible (accessible) outside the class, should be declared in
public section. All data members and functions declared in the public section of the class can be
accessed without any restriction from anywhere in the program, either by functions that belong to the
class or by those external to the class. Accessibility control of public members is

class Person
{ Note: colon here

public === access specifier
f/ public members

oW & oW

int E.!.gE; wmmeess public data
int getage(); === public function

}i
Person pl; _
a=pl.age; ¢ Can access public data

pl.getage(); ¢/ can access public function

Public members accessibility

Acce<sible to

Own class Members | Objects of a Class

Access Specifier

private:
protected:

public:

Table 10.1: Visibility of class members

class C;

I
Member functions of | publ 1|.': :
class C can access V

both private and Object of class C
public members can access only

public members of C

Class member accessibility

#finclude =<fostream=

using namespace std;

class item

{ ®
int number; // private by default

float cost; J// priyvate by default
public:
void getdata(int a, float b); // prototype declaration,
// to be defined
// Function defined inside class
void putdata(void)
{

cout << "number :" << number << "\n";
cout << "cost :" << cost - R

Member Function Definition

void item :: getdata(int a, float b) // use membership label
{

number = a; J// private variables
cost = b; // directly used

Main Program
int main()
{

item x;// create object x

cout << "\nobject x * <<

x.getdata(100, 299.95); // call member function
x.putdata(); // call member function

item y; // creote another object
cout << "\nobject y* << "\n";

y.getdata(200, 175.50);
y.putdata();

return 0;

¢/ / student.cpp: member functions defined inside the body of the student class
#include <iocstream.h>

#include «string.h>

class student

{

private:
int roll_no;
char name|[20];
public:
// initializing data members
wvold setdata{ int roll_neo_in,
{

S/ roll number
4 name of a student

char *name_1in)

roll no_in;
name_in

roll _no =
strepy { name, 1

}

4 display data members on the conscle screen
wvoid outdatal)

{

"Roll No = " == roll_no == endl;
"MName = " << name << endl;

cout <<
cCout =<
}
¥
wvold main()
{

student =s1l;
student s2;

sl.setcdata{ 1,
s2 .setdata(10, "Rajkumar"
"student details. . ."

cout <<
sl1.outdatal) ;
s2 .outdata);

}
Run

Si first object/variable of class student

AV second obijects/variable of class
"Tejaswi® }); // ocbject sl calls member
}yi S/object 22 calls member
<< endl;

S object =21 calls member function
S/ object 22 calls member function

Student details. ..

Roll No = 1
NMame = Tejaswi
Roll Mo = 10
Name = Rajkumar

student
setdata)
setdatal)

outdatal)
outdata ()

In main(}, the statements
// first object/variable of class student

student sl:
student s2; {/ second cbject/variable of class student
create two objects called s1 and s2 of the student class. The statements
/fobject sl calls member function setdata

f/fobject 82 calls member function setdata

-

sl.setdatal(1, "Tejaswi");
) :

s2.setdata(10, "Rajkumar"

initialize the data members of the objects s1 and s2. The object s1’s data member roll_no is
assigned 1 and name is assigned Tejaswi. Similarly, the object s2 s data member roll_no is

assigned 10 and name is assigned Rajkumar.

Instance of the class student
Client program

——-——'-__‘“__‘_.____‘

student s2;

setdatalrecll_no, name) 4

s & =

g2 .setdata(l0, "Rajkumarc”};

private member
variables

int roll_no
char name[20]
sZ.outdata() ;

—

outdata ()

Two objects of the class student

objects of class student

—/

student s1; student s52;

name

Client-Server model for message communication

student =2;

| 10 I
- = class student

Server Services

setdata ()

Client's Data Server
getdata ()

Client

Information

Characteristics of Member Functions:

A program can have several classes and they can have member functions with the same name. The
ambiguity of the compiler in deciding which function belongs to which class can be resolved by the
use of membership label (ClassName: :), the scope resolution operator.

Private members of a'class, can be accessed by all the members of the class, whereas non-member
functions are not allowed to access. However, friend functions can access them.
Member functions of the same class can access all other members of their own class without the use
of dot operator.

Member functions defined as public act as an interface between the service provider (server) and
the service secker (client).

A class can have multiple member functions with the same name as long as they differ in terms of
argument specification (data type or number of arguments).

In OOPs, the process of programming involves the following steps:

« Creation of classes for defining objects and their behaviors.

« Creation of class objects; class declaration acts like a blueprint for which physical resources are not
allocated.

+ Establishment of communication among objects through mcssage passing

Write a simple program using class in C++ to input subject mark and prints it.
class marks

L

private :

int roll;

int ml,m2;

public:

void getdata();

void displaydata();

3

void marks: :getdata()

{ cout<<“enter the roll-no:’;cin>>roll;
cout<<”enter 1st subject mark:”;
cin>>ml;

cout<<”enter 2nd subject mark:”;
cin>>m2;

by

void marks: :displaydata()

{ cout<<*“Roll No.”<<roll;

cout<<”Ist subject mark:’<<ml<<endl;
cout<<’2nd subject mark:’<<m?2;

}

void main()

{

clrscr();

marks X;
x.getdata();
x.displaydata();

}

Nesting of Member Functions

/ 7/ nesting.cpp: A member fur~tion accessing another member function
#finclude <=iostream.h>
class NumberPairs
{
int numl, $oum2; S private by default
public:
wvoid read/()
{
cout =< "Enter First Number: =;
cin >> numl ;
cout <= "Enter Second Number: *;
cin >> num2;
}
int max({) /¥ member function
{ .
if{ nmnuml > num2)
return numl ;
else
return num2;
}
S/ Nesting of member function
volid ShowMaxx ()

{

S calls member function max({)
cout << "Maximum = " << max();

}
¥}
void main()

{
NumberPairs nl;
nl.read() ;
nl.ShowMax() ;

}
Run

Enter First Number: S
Enter Second Number: 10
Maximam = 10

Private Member Functions

A private member function can only be called by another function that i a member of its
class, Even an ohject cannot invoke a private function using the dot operator. Consider a

class as defined below:

class sample
{
int m;
void read{wvoid) : S/ privaote member function
public:
void update(vaoid);
void write(void);

ks
If 81 is an object of sample, then
sl.read(); S/ won't work; objects comnot

S private members

18 illegal. However, the function read() can be called by the function update() to update
the value of m.

void sample :: update(void)

simple coll; no object used

Arrays within a Class

The arrays can be used as member variables in a class. The following class definition is
valid.

[/ provides volue for array size

const int size=10;
class array

int alsize];
public:
void setval(void)

void display({void

The array variable al] declared as a private member of the class array can be used in
the member functions, like any other array variable. We can perform any operations on it.
For instance, in the above class definition, the member function setval() sets the values of
elements of the array al], and display() function displays the values. Similarly, we may
use other member functions to perform any other operations on the array values.

Memory Allocation for Objects

Commaon for all objects Object 1 Object 2

member lunchan 1

data 1 data 1

data 2 data 2

rrembser funclion 2

Fmcy Crivitid Wit
functions defined

Dibject 1 Ohject 2 Object 3

memier vanabla 1 maembaer variable 1 mamibar varable 1 function 1()

function 2()

__ Mmembar variable 2 . miembes vanable 2 migmber variable 2 | function 3()

mimary craabid function K()

when objects defined

Separate memory for object’s data members
Shared memory for class functions

Static Data Members

A data member of a class can be qualified as static. The properties of a static member
variable are similar to that of a C static vanable, A static member variable has certain

special characteristics, These are ;

[t 18 initialized to zero when the first object of it class is created. No other initial-
ization is permitted.
Only one copy of that member is created for the entire class and is shared by all the

objects of that class, no matter how many objects are created.
It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class, For
example, a static data member can be used as a counter that records the occurrences of all
the objects. Program 5.4 illustrates the use of a static data member,

STATIC CLASS MEMBER

#Finclude =jostream=—

using namespace stdz

f]utpuLleFrngranJ

class item

{ .
static int count;
it mumber;

public:
vaid getdata(int a) count: 0

i -
number = az Eﬂl.ll'l:t . ':I

h count -ty count: 0O

void getcount(woid) After reading data

i
cout << "count: "; count: 3

cout == count == "YWn"; count: 3

count: 3

int main()
i

item a., b. 1 count is initicolized to rero

a.getcount{(): disploy cowunt

B.getcount():

c.getcount(});

e e int ftem o count; /) definition of static dato member
a.getdatal L) ;

B.getdatal(200) 3

=

c.getdata(3I00) ;

« "After

()

T oorunt |)

Wl HI &

Memory allocation for static member

Object 1 Object 2

data 1 data 1

data 2 data 2

static data 1

static data 2

static data 3

count static data K
(common to all iee obects)

Separate memory for class's automatic data members
Shared memory for class's static data members

Static Member Functions

Like static member variable, we can also have static member functions. A member function
that i declared static has the following properties;

A static function can have access to only other static members (functions or

variables) declared in the same class.
A static member function can be called using the<lass name (instead of its objects)
s lollows:

function-nome;

{jutpuLlﬂfPrugrﬂu1

count: 2
count: 3
gbject number: 1
object number: 2
gbject number: 3

Remember, the following function definition will not work:

static void showcount()

cout << code; /[code {5 mot static

Array of objects

yde. =fostream=

=

using namespace std;

Output of Program

Interactive ifnput
Details of managerl
Enter name: xxx
tnter age: &5

char name[30]: ff string os closs member
float age;
public:
void getdata(void);
void putdata(void);
H
void employee :: getdata(void)

details of managerd
Enter name:]
Enter age:

cout =< "Enter name: “;
cin name ;

cout "Enter age: *;
cin >> age;

Details of manager3
Enter name: zzz
Enter age: 50

b
void employee :: putdata(void)

cout << "Name: " << name <<
cout << "fAge: " << age =<

Frogram owlput
Managerl
Name: =xxx
Age: 45

}
const int size=3;
int main()
{
employee manager[size];
for{int 1=0; i=
I
i

Mamager?
Name :

cout <= "\nDetails of manager™ =< i+l << *\n";
manager[i] .getdata();

]

cout =< "\a";

far(i=0; 1=size; i++)

Manager3
Name: zzz
Aige s S0

cout << "‘\nManager® =< {41 << "\p";
manager[i].putdatal();

§

¥

return 0;

Objects as Function Arguments

It is possible to have functions which accept objects of a class as arguments, just as there are functions
which accept other variables as arguments. Like any other data type, an object can be passed as an
argument (o a function by the following ways;

+ pass-by-value, a copy of the entire object 1s passed to the function
o pass-by-reference, only the address of the object is passed implicitly to the function

+ pass-by-pointer, the address of the object 1s passed explicttly to the function

In the case of pass-by-value, a copy of the object is passed to the function and any modifications made
to the object inside the function is not reflected in the object used to call the function. Whereas, inpass-

by-reference or pointer, an address of the object is passed to the function and any changes made to the
object inside the function is reflected in the actual object. The parameter passing by reference or pointer

is more efficient since, only the address of the object is passed and not a copy of the entire object.

#include <iostream>
Objects as Function Arguments using namespace stds

class time

{

int hours;
int . minutes;
publics
void gettime(int h, int m)
{ hours = h; minutes = m; }
void puttime({void)

Output of Program {

cout =< hours =< " hours and ";
cout =< minutes << " minutes " =< "\n";

I
void sum(time, time); [/ decloretion with objects as arguments
H
i void time :: sum(time tl, time tZ) S tl, tZ2 ore objects
Z2 hours and 45 minutes [
minutes = tl.minutes + t2.minutes;

3 hours and 30 minutes hours = minutes/60;

minutes = minutes%60;

6 hours and 15 minutes hours = hours + t1.hours + t2.hours;
}

int main()

{
time T1, T2, T3;

Ti.gettime(2,45); /f get TI
T2.gettime{3,30); // get T2

T3.sum(T1,T2); // T3=TI1+72

cout << "T1l = "; Tl.puttime(); Nl I;-'“!FIEH" il
cout =< "T2 = "; TZ.puttime(); i display. T2
cout << "T3 = "; T3.puttime(); [/ display T3

réturn 03

-~ rrode ~

Since the member function sumf() is invoked by the object T3, with the objects T1 and T2
as arguments, it can directly access the hours and minutes variables of T3. But, the
members of T1 and T2 can be accessed only by using the dot operator (like T1.hours and
Tl.minutes). Therefore, inside the function sumf(), the variables hours and minutes refer

to T3, Tl.hours and Tl.minutes refer to T1, and T2 hours and T2.minutes refer to T2,
M A

Figure 5.6 illustrates how the members are accessed inside the function sumi).

T2, hiours

[S 1 T E——

| minutes] T1.minutes

i T2 minules

S

l

|
:
T3 sumi{Ti. TZ)

Fig. 5.6 &= Accessing members of objects within a called function

_LARE o]

An object can also be passed as an argument to a non-member function. However, such
functions can have access to the public member functions only through the objects passed
as arguments to it. These functions cannot have access to the private data members.

Passing

The program distance.cpp illustrates the use of objects as function arguments in pass-by-value
mechanism. It performs the addition of distance in feet and inches format.

// distance.cpp: distance manipulation in feet and inches

#include <iostream.h>
class distance
{
private:
float feet;
float inches;
public:
void init(float ft, float in)
{
feet = ft;
inches = in;
}
void read()

{
cout << "Enter feet: *; cin »> feet:

cout << "Enter inches: "; cin >> inches;

vold show()
i
cout == feet <= "-" == inches <<
¥
wvoid add(distance dl, distance 42
{
feet = 4Al.feet + 42 . feeft;
inches = 4dl.inches + d2.inches;
if{ inches == 12.0 1}
i
fd 1l foore = 12.0 inches
fear = fest + 1L .0;
inches = inches - 12.0;

¥
¥
wold main ()
L
distance 4dl1l, 42, 43 :
d2 . dimnidce{ L1.0, &€.25)
dl.readil) ;
cout <<= *dl = *; dl .show () ;
cout << "Ynd2 = " A2 .showi) ;
d3l.add{ A1, 42 »; S/ dI = 4l -+ d2
cout == "ZWnd3 = 4dl+42 = =; d3 .showi) ;

Rurn

Enter feet: 12 .0
Enter inches: 7.25

dl = 12'-T7.25"*

d2 = 11"-6.25"

d3 = 41+ 42 = 24'-1.5"

Member functions of
d3 can refer to its
data directly

di.add (di, dz); Data in objects passed as
arguments is referred
with the dot operator

d2

feet
dl. feet d2. feet 11.0

dl. incheas d2. inches
6.25

Objects of the distance class as parameters

Passing Objects by Reference

Accessibility of the objects passed by reference is similar to those passed by value. Modifications
carried out on such objects in the called function will also be reflected in the calling function. The
method of passing objects as reference parameters to a function is illustrated in the program
account . cpp. Given the account numbers and the balance of two accounts, this program transfers
2 specified sum from one of these accounts to the other and then, updates the balance in both the
gccounts.,

// account.cpp: passing objects as parameters to functions
finclude<iostream.h>
class AccClass
{
private: // class data members
int accno;
float balance;
public: // class function members
void getdata!)
{
cout << "Enter the account number for accl object: *;
cin »> accno;
cout << "Enter the balance: ";
cin >> balance;

void setdata(int accln |
(
accno = accln;
balance = 0;
)
void setdata(int accIn, float balanceln)
{
accno = accln;
balance = balanceln;
}
void display()
{
cout << "Account number is: * << accno << endl;
cout << "Balance is: " << balance << endl;
}
vold MoneyTransfer(AccClass & acc, float amount);
}i
/| accl.MoneyTransfer(acc2, 100), transfers 100 rupees from accl to acc
void AccClass: :MoneyTransfer(AccClass & ace, float amount)
{
balance = balance - amount; // deduct money from source
acc.balance = acc.balance + amount; // add money to destination

volid main().
{
int trans_money;
hAceClass ar:c'l, accid, accld;
accl.getdata(};
accd.setdata(10);
accl.setdata(20, 750.5);
cout << "Account Information..." << endl;
accl.display();
acc2.display();
accl.display();
cout << "How much money is to be transferred from acc3 to accl: *;
cin >»> trans_money;
accl .MoneyTransfer (accl, trans_money); //transfers money from acc3 to accl

cout << "Updated Information about accounts..." << endl;
accl.display(); '
acc2.display();

accl.display();

}
Run

Enter the account number for accl object: 1
Enter the balance: 100

Account Information...

Account number is: 1

Balance is: 100

Account number is: 10

Balance is: 0

Account number is: 20

Balance igs: 750.5

How much money 1is to be transferred from accld to accl: 200
Updated Information about accounts...

Account number is: 1

Balance is: 300

Account number is: 10

Balance 1s: 0

Account number is: 20

Balance 1is: 550.5

In main (), the statement

accl.MoneyTransfer(accl, trans_money);

transfers the object accl by reference to the member function MoneyTransfer (). It is to be noted
that when the MoneyTransfer () is invoked with accl as the object parameter, the data members
of ace3 are accessed without the use of the class member access operator, while the data members of
accl are accessed by using their names in association with the name of the object to which they
belong. An object can also be passed to a non-member function of the class and that can have access
to the public members only through the objects passed as arguments to it.

Passing Objects by Pointer

The members of objects passed by pointer are accessed by using the - > operator, and they have similar
effect as those passed by value. The above program requires the following changes if parameters are to
be passed by pointer:

1. The prototype of the member function MoneyTransfer () has to be changed to:

void MoneyTransfer(AccClass * acc, float amount);
2. The definition of the member function MoneyTransfer () has to be changed to:

vold AccClass: :MoneyTransfer(AccClass & acc, float amount)

{
balance = balance - amount; // deduct money from source

acc->balance = acc->balance + amount; // add money to destination
}

3. The statement invoking the member function MoneyTransfer () has to be changed to:
accl.MoneyTransfer(&accl, trans_money);

10.13 Returning Objects from Functions

Similar to sending objects as parameters to fuactions, it is also possible to return objects from func-
tions. The syntax used is similar to that of returning variables from functions. The return type of the
function is declared as the return object type. It 1s illustrated in the program complex. cpp.

// complex.cpp: Addition of Complex Numbers, class complex as data type
#include <iostream.h>

$¢include <math.h>

class complex

{
private:

float real; // real part of complex number
float imag; // imaginary part of complex number

public:
void getdataf!
{
cout << *Real Partc ? ";
cin »>> real:
cout << "Imag Part ? "
cin >> imag;
}
void outdata(char *msg)
{
cout << msg << real;
vif(imag < 0)
cout << *=1";
aelse
cout << "+#1i%;
cout << fabs({imag) << endl;
}
complex add(complex c2);
}i
cnﬁpxgx complex: :add({ complex c2)
{
complex temp;
temp.real = real + c2Z.real;
temp.imag = imag + c2.imag;
return(temp };

// display number in x+iy form

// addition of complex numbers

// add defaldlt and c2 objects

// object temp of complex class
// add real parts

// add imaginary parts

// return complex cbhject

void main()
{
complex cl, ¢2, 23; // el, c2, and c2 are ckjects of complex
cout << "Enter Complex Number cl .." << endl;
cl.getdata();
cout << "Enter Complex Number c2 .." << endl;
c2.getdatal();
c3 = cl.add(c2); // add cl and c2 assign to c3
c3.outdata("c3 = cl.add(c2 }): *);
}

Run

Enter Complex Number cl ..

Real Part ? 1.5
Imag Part ? 2
Enter Complex Number c2 ..
Real Part ? 3
Imag Part ? -4.J
¢l =cl.add(c2): 4.5-12.3
In main(), the statement
cl = cl.add(c2); // add cl and c2 assign to ¢3
invokes the function add() of the class complex by passing the object c2 as a parameter. The
statement in this function,
return{ temp); /{ return complex cbject
returns the object temp as a return object.

Friendly Functions

The concept of encapsulation and data hiding dictate that non-member functions should not be al-
lowed 10 access an object’s private and protected members, The policy 1s, if you are not a member you
cannot get it. Sometimes this feature leads Lo considerable inconvenience in programming. Imagine that
the user wants a function to operate on objects of two different classes. At such times, it is required to
allow functions outside a class to access and manipulate the private members of the class, In C++, this
15 achieved by using the concept of friends.

One of the convenient and a controversial feature of C++ is allowing non-member functions to
access even the private members of a class using friend functions or friend classes. It permits a function
or all the functions of another class to access a different class's private members.

friend class Y:
friend functionl(};
friend Z:£fz11();

|IIIEHHHHHHHHIII

friend of X

Class members accessibility in various forms

To make an outside function “friendly” to a class, we have to simply declare this function
as a friend of the class as shown below:

class ABC

friend void xyz{void)s: [/ decloration

The function declaration should be preceded by the kevword friend. The function is
defined elsewhere in the program like a normal C++ function. The function definition does
not use either the keyword friend or the scope operator ::. The functions that are declared
with the keyword friend are known as friend functions. A function can be declared as a
friend in any number of clazses. A friend function, although not a member function, has

full access rights to the private members of the class. E

A friend function possesses certain special characteristics:

L]
L]

L
L]

It is not in the scope of the class to which it has been declared as friend.

Since it is not in the scope of the class, it cannot be called using the object of that
class.

It can be invoked like a normal function without the help of any object.

Unlike member functions, it cannot access the member names directly and has to
use an object name and dot membership operator with each member name.(e.g.
AX)

It can be declared either in the public or the private part of a class without affect-
ing its meaning.

Usually, it has the ohjects as arguments.

#include <iostream>

FITNg nmameEspdi

class sample

LT E - —

The friend function acceszes the class variables a and b by using the dot operator and the
object passed to it. The function call mean(X) passes the object X by value to the friend
function. a

Member functions of one class can be friend functions of another class. In such cases,
they are defined using the scope resolution operator as shown belosw:

fS member function af X

friend inmt X :: S funl()} of X
Jf is friend of ¥

The function funli) is a member of class X and a friend of class Y.

We can also declare all the member functions of one class as the fmend functions of
another class. In such cases, the class is called a firiend class. This can be specified as follows:

class £

{

S oall member functions of X are
SO friends ta F

—_— \

The function max() has arguments from both XYZ and ABC, When the function max() is
declared 4 a friend in XYZ for the first time, the compller will not acknowledge the
presence of ABC unless 1ts name 1s declared in the beginning as

class AAC:

ths 12 known a8 forward declaration.

Returning Objects

0 utput of FProgram

const Member Functions

Certain member functions of a class, access the class data members without modifying them. It is
advisable to declare such functions as const (constant) functions. The syntax for declaring con=st

member functions is shown . A const member function i1s used to indicate that it does
r:ot alter the data fields of the object, but only inspects them.

Keyword

/

ReturnType FunctionName (arguments) const

Syntax of declaring a constant member function

If a member function does not alter any data in the class, then we may declare it as a const
member function as follows:

void mul (int, int) const:
double get balamce() const;

The gualifier const is appended to the function prototypes (in both declaration and definitiomn).
The compiler will generate an error message if such functions trv to alter the data values.

Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The
address of a member can be obtained by applying the operator & to a *fully qualified™ class
member name. A class member pointer can be declared using the operator ::* with the class
name. For example, given the class

class A
{
private:
int mg
public:
void show():

We can define a pointer to the member o as followsa:
int Azz* ip =

The ip pointer created thus acts like a class member in that it must be invoked with a
class object. Inm the statement above, the phrass Azz* means “pointer-to-member of A class™.
The phrase & Az means the “address of the m member of A class™,

Remember, the following statement is not valid:

int *ip = &m; JiP won't work
This is because m is not simply an int type data. It has meaning only when it is associated
with the class to which it belongs. The scope operator must be applied to both the pointer
and the member.

The pointer ip can now be used to access the member m inside member functions (or
friend function=s). Let us assume that a is an object of A declared in a member function. We

can access m using the pointer ip as follows:

cout == a.%ip:
CoUut == a.m;

MNow, look at the following code:

ff ap is pointer to object a

-= *ip; /S display m

dap
ap -> m; f/ s as above

The dereferencing operafor ->¥ is used to access a member when we use pointers to both
the object and the member. The dereferencing operator.® is used when the object itself is
used with the member pointer. Note that ®*ip is used like a member name.

We can also design pointers to member functions which, then, can be invoked using the
dereferencing operators in the main as shown below :

s . * pointer-to-member function) (10);

(10)

The precedence of () i hagher than that of .* and -=%, so0 the parentheses are necessary.

l:'.:'u1_|.H_1L of Frogram

Classes can be defined and used inside a function or a bloek, Such classes are called local
classes, Examples:

void test(int a) ff function

J I locel closs

i

J/ cregte student object

i

Jf use student object

Local classes can use global variables (declared above the function) and static variables
declared inside the function but cannot use automatic local variables. The global variables
should be used with the scope operator ().

There are =ome restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing function
cannot access the private members of a local class. However, we can achieve this by declaring
the enclosing function as a frmend.

REFERENCES:
1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH,
2008.

2. LECTURE NOTES ON Object Oriented Programming Using C++ by Dr. Subasish Mohapatra,
Department of Computer Science and Application College of Engineering and Technology, Bhubaneswar
Biju Patnaik University of Technology, Odisha

3. K.R. Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”, Tata McGraw-Hlill
Publishing Company Limited

4. Object Oriented Programming With C++ - PowerPoint Presentation by Alok Kumar

5. OOPs Programming Paradigm — PowerPoint Presentation by an Anonymous Author

