Government Arts College(Autonomous)
Coimbatore — 641018

Re-Accredited with ‘A’ grade by NAAC

Dr. S. Chitra
Assoclate Professor
Post Graduate & Research Department of Computer Science
Government Arts College(Autonomous)
Coimbatore — 641 018.

Year Subject Title Sem. | Sub Code

2018 -19
Onwards

OBJECT ORIENTED PROGRAMMING WITH C++ 11 18BCS33C

Objective:

Learn the fundamentals of input and output using the C++ library

*Design a class that serves as a program module or package.

*Understand and demonstrate the concepts of Functions, Constructor and inheritance.

UNIT — |

Principles of Object Oriented Programming: Software Crisis - Software Evolution - Procedure
Oriented Programming - Object Oriented Programming Paradigm - Basic concepts and benefits of
OOP - Object Oriented Languages - Structure of C++ Program - Tokens, Keywords, Identifiers,
Constants, Basic data type, User-defined Data type, Derived Data type — Symbolic Constants —
Declaration of Variables — Dynamic Initialization - Reference Variable — Operators in C++ - Scope
resolution operator — Memory management Operators — Manipulators — Type Cast operators —
Expressions and their types — Conversions — Operator Precedence - Control Structures

UNIT — 11

Functions in C++: Function Prototyping - Call by reference - Return by reference - Inline functions -
Default, const arguments - Function Overloading — Classes and Objects - Member functions - Nesting
of member functions - Private member functions - Memory Allocation for Objects - Static Data
Members - Static Member functions - Array of Objects - Objects as function arguments - Returning
objects - friend functions — Const Member functions .

UNIT — 1

Constructors: Parameterized Constructors - Multiple Constructors in a class - Constructors with
default arguments - Dynamic initialization of objects - Copy and Dynamic Constructors - Destructors
- Operator Overloading - Overloading unary and binary operators — Overloading Using Friend
functions — manipulation of Strings using Operators.

UNIT -1V

Inheritance: Defining derived classes - Single Inheritance - Making a private member inheritable — Multilevel,
Multiple inheritance - Hierarchical inheritance - Hybrid inheritance - Virtual base classes - Abstract classes -
Constructors in derived classes - Member classes - Nesting of classes.

UNIT -V
Pointers, Virtual Functions and Polymorphism: Pointer to objects — this pointer- Pointer to derived Class -
Virtual functions — Pure Virtual Functions — C++ Streams —Unformatted I/O- Formated Console I/0O — Opening

and Closing File — File modes - File pointers and their manipulations — Sequential 1/0 — updating a file :Random
access —Error Handling during File operations — Command line Arguments.

TEXT BOOKS

1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH, 2008.

Unit V : Pointers, Virtual Functions & Polymorphism

Polymorphism

Polymorphism

Operator
overioading

The concept of polymorphism 1S
implemented using the overloaded
functions and operators. The overloaded
member functions are ‘selected’ for invoking
by matching arguments, both type and
number. This information is known to the
compiler at the compile time and, therefore,

compiler is able to select the appropriate

function for a particular call at the compile

time itself. This is called early binding or

static binding or static linking. Also known
as compile time polymorphism, early binding simply means that an object 18 bound to its
function call at compile time,

Now let us consider a situation where the function name and prototype is the same in
both the base and derived classes. For example, consider the following class definitions:

class A

int x;:
pub}"::

How do we use the member function show() to print the values of objects of both the
classes A and B?. Since the prototype of show() is the same in both the places, the function
is not overloaded and therefore static binding does not apply.

It would be nice if the appropriate member function could be selected while the program
1s running. This is known as run time polymorphism. How could it happen? C++ supports a
mechanism known as virtual function to achieve run time polymorphism,

At run time, when 1t 15 known what ¢lass objects are under consideration, the appropriate
version of the function is invoked. Since the function is linked with a particular class much
|ater after the compilation, this process is termed as late binding. It is also known as dynamic
binding because the selection of the approprate function 15 done dynamically at run time,

Dynamic binding 18 ane of the powerful features of C++, This requires the use of pointers
10 objects.

Pointers

A pointer is an address variable. i.e., a variable that stores the address of another variable

Declaring a Pointer Variable:

| data-type * pomter-\rs"mbie;

Here, pointer-variable is the name of the pointer, and the data-type refers to one of the
valid C++ data types, such as int, char, float, and so on. The data-type is followed by an
asterisk (*) symbol, which distinguishes a pointer variable from other variables to the
compiler

int *ptr;
Here, ptr is a pointer variable and points to an integer data type. The pointer variable,
ptr, should contain the memory location of any integer variable.

int *ptr, a; / declaration

ptr=8a: // initialization

The pointer variable, ptr, contains the address of the variable a. Like C, we use the
‘address of operator or reference operator i.e. ‘& to retnmeve the address of a variable. The
second statement assigns the address of the variable a to the pointer ptr.

ntroduction

When an object 1s created from its class, the member variables and member functions are allocated
memory spaces. The memory spaces have unique addresses. Pomter 1s a mechanism to access these
memory locations using thewr address rather than the name assigned to them. You will study the
implications and applications of this mechanism in detail in this chapter.

Pomter 1s a variable which can hold the address of a memory location rather than the value at the
location. Consider the following statement

int num =84;
This statement mstructs the compiler to reserve a 2-byte of memory location and puts the value 84 1n

that location. Assume that the compiler allocates memory location 1001 to num. Diagramumatically.,
the allocation can be shown as:

num 4—— Vanable name

84 44— Value

1001 4— Address of memory location

As the memory addresses are themselves numbers. they can be assigned to some other variable For
example, ptr be the variable to hold the address of variable num.

Thus. we can access the value of num by the variable ptr. We can say “ptr pomts to num™ as shown
in the figure below.

num ptr
84 1001
1001 2057

Pointer Expressions and Pointer Arithmetic

® A pointer can be incremented (++) (or) decremented |
® Any integer can be added to or subtracted from a pointer
® One pointer can be subtracted from another

Example

re
1T ajoj.;

-

nt aptr,;

aptr=8al0];

Obviously, the pointer variable, aptr, refers to the base address of the varnable a. We can

increment the pointer variable, shown as follows:

aptr++ (or) ++apty

Thxs statement nm\'(-.-.‘ﬂ;r ;mxnt.-:‘ 01 :'u' next memonr .’t(l(h‘l’i»\ Snmlnrlf.', wecan dw'wnwm

the pointer variable, as follows
iptr—— (or) ——aptr

This statement moves the pointer to the previous memory address. Also, if two pointer
variables point to the same array can be subtracted from each other.

value
value

value
value

value

Pointers to Objects

An object of a class behaves identically as any other variable. Just as pointers can be
defined in case of base C++ variables so also pointers can be defined for an object
type. To create a pointer variable for the following class

class employee

{

Int code;

char name [20] ;

public:

Inline void getdata ()= 0 ;
Inline void display ()=0;
b

The following codes is written
employee *abc;

This declaration creates a pointer variable abc that can point to any object of
employee type.

this Pointer

C++ usesa unique keyword called "this" to represent an object that invokes a member function. 'this'is a
pointer that points to the object for which this function was called. This unique pointer is called and it passes
to the member function automatically. The pointer this acts as an implicit argument to all the member
function,

fore.g.

class ABC

The private variable ‘a’ can be used directly inside a member function, like a=123;
We can also use the following statement to do the same job.

this — a =123

e.g.
class stud

{

int a;

public:

void set (intal)

{

this->a = ail; //here this point is used to assign a class level ‘a’ with the argument ‘a’

}

void show ()

{
cout << a<<“\n”’;
}
I3

main ()

{

stud S1, S2;

S1.set (5) ; S2.set(100);
S1.show();S2.show ();
¥

o/p

5

100

Pointers to Derived Classes

Polymorphism s also accomplished using pointers in C++. It allows a pointer in a base class to pointto
either a base class object or to any derived class object. We can have the following Program segment
show how we can assign a pointer to pointto the object of the derived class.

class base

{

//Data Members

//Member Functions

¢

class derived : public base

{

//Data Members

//Member functions

b

void main () {

base *ptr; //pointer to class base

derived obj ;

ptr = &obj ; //indirect reference obj to the pointer

//Other Program statements

¥

The pointer ptr points to an object of the derived class obj. But, a pointer to a derived class object may
notpointto a base class object without explicit casting.

For example, the following assignment statements are not valid

void main ()

{

base obja;

derived *ptr;

ptr = &obja; //invalid.... .explicit casting required

//Other Program statements

}

A derived class pointer cannot point to base class objects. But, it is possible by using explicit casting.
void main ()

{

base obj ;

derived *ptr;// pointer of the derived class ptr = (derived *) & obj; //correct reference //Other Program
statements

}

Pointers to objects of a base class are type-compatible with pointers to objects of a derived
clags. Therefore. a single pninter variahle can be made to point o ohjects belanging tn different
classes. For example, if B is a base class and D is a derived class from B, then a pointer
declared as a pointer to B can also be a pointer to D). Consider the following declarations:

B *cptr; /[pointer to class B type variable
B b; [/ base object

D d; [/ derived object

cptr = &b: /[cptr points to object b

We can make ¢pir to point to the object d as follows:

cptr = &d: {7 cptr points to object d

This is perfectly valid with C++ because d iz an object derived from the class B.

However, there 18 a problem in using eptr to access the public members of the derived
class D). Using eptr, we can access only those members which are inherited from B and not
the members that originally belong to D. In case a member of D has the same name as one
of the members of B, then any reference to that member by eptr will always access the base
class member.,

Although C++ permits a base pointer to point to any object derived from that base, the
pointer cannot be directly used to access all the members of the derived class. We may have

to use another pointer declared as pointer to the derived type.

class BC : public BC

{
public:
int d;
void show()
{ cout =< "b = * << b =< "\n"
< "d = " << d << "\no; bptr points base object

b= 100

bptr now points to derived object

int main()

{
BLC *bptr; [/ base pointer , 9
BC base: dptr is derived type pointer

bptr = Kbase; bose oddress
» 100; [access 8C vig base pointer
"bptr points to base object \m";
show();

derived class

/f oddress of derived object
b = Z00; S occess DC via bose pointer

S/ won't work
cout == "bptr now points to derived object \n";
bptr -> show(); J// bptr now points to derived obj

i e

accessing d using a pointer of type derived class DC */

DC *dptr; // derived type pointer
dptr = Bderived;
dptr-=d = 300;

cout == “dptr is derived type pointerin®;
dptr == show();

<< "using ((DC *)bptr)in®;
“\bptr) -> d = 400;
*)Ybptr) -> show();

return 03

When we use the same function name in both the base and derived classes, the function
in base class is declared as virfual using the keyword virtual preceding its normal
declaration. When a function is made virtual, C++ determines which function to use at run
time based on the type of object pointed to by the base pointer, rather than the type of the
Thus, by making the base pointer to point to different object=s, we can execute

|:l|'|-Ir'|I'r_"|'
different versinms of Lhe vartoaal forncetion

bptr points to Derived

Display base
Show derived

Rules for Virtual Functions

The wirtual functions must be members of some cl

They cannot be static members.

They are accessed by using object pointers.

A virtual function can be a friend of another class.

A virtual function in a base class must be defined, even though it may not be
used.

The prototypes of the base class version of a virtual function and all the derived
class versions must be identical. If two functions with the same name have differ-
ent prototypes, C++ considers them as overloaded functions, and the virtual fune-
tion mechanism is ignored.

We cannot have virtual constructors, but we can have virtual destructors.

While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of
the base type.

When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It is incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next obhject.

If a virtual function is defined in the base ¢lass, it need not be necessarily redefined
in the derived class., In such cases, calls will invoke the base function.

Pure Virtual Functions

A “do-nothing” function may be defined as follows:

virtual void display() = 0;

Such functions are called pure virfual functions, A pure virtual function 1s a function
declared in a base class that has no definition relative to the base class. In such cases, the
compiler requires each derived class to either define the furction or redeclare it as a pure
virtual function. Remember that a class containing pure virtual functions cannot be used to
declare any objects of its own. As stated earlier, such classes are called abstract base classes,
The main objective of an abstract base class is to provide some traits to the derived classes
and to create a base pointer required for achieving run time polymorphism,

Streams & Console 1I/0

) The input and output operations were performed using cin and cout with the stream
operators >> and << respectively.

C++ uses the concept of streams and stream classes to perform YO operations with console and disk
files. C++ swreams deal with a sequence of characters

Streams are classified into input streams and output streams. Streams resemble the producer and
consuwmer model. The producer produces items 1o be consumed by the consumer. The producers and
consumers are connected by the C++ operators >> or <<. In C++, the /O system is designed to operate
on a wide variety of devices including console, disks, printer etc. It is designed to provide a consistent
and device independent interface. It allows uniform use of any IO device—be it a disk, a terminal, or a
printer as shown in Figure . The computer resources involved in the stream computation include
display, keyboard, files, printer, etc. The suream is an object flowing from one place to another. For
nstance, in nature, a stream normally refers to the flow of water from the hills to the oceans. Similarly, in
C++, a stream is used 1o refer to the flow of data from a particular device to the program's variables. The
device here refers to files, memory arravs, kevboard, console, and so on. In C++, these streams are

ireated as objects o support consistent access interface.

Monitor @

Printer 5) -

o
1]

(a) Consistent stream interface with dewvices

Input stream

InEut extraction
device from input
slream

insertion
into output
_stream

Output stream

(b) Data streams

Some of the above devices exhibit the characteristics of either a producer or a consumer and others
exhibit the characteristics of both the producer and consumer depending on the operations performed
an them. For instance, the keyboard exhibits the nature of only a producer; printer or monitor screen

exhibit the nature of only a consumer. Whereas, a file stored on the disk, can behave as a producer or
consumer depending on the operation initiated on it.

A stream is a series of bytes,. which act either as a source from which input data can be exwracied or
as a desunation to which the output can be sent. The source stream provides data 1o the program called
the input stream and the destination stream that receives data from the program is called the output
stream.

C++ accomplishes input/output operations using concept of stream.

A stream is a series of bytes whose value depends on the variable in which it is stored.

This way, C++ is able to treat all the inputand output operations in a uniform manner.

Thus, whether itis reading from a file or from the keyboard, for a C++ program it is simply a stream.

Objects cin and cout (pre-defined in the iostream.h file) are used for the input and output of data of various types.
This has been made possible by overloading the operators >> and << to recognize all the basic C++ types.

The >> operator is overloaded in the istream class and « Is overloaded in the ostream class.

The following is the general format for reading data from the keyboard:

cin >> variablel >> variable2 >>... ... >>variableN:;
Where variablel, variable2,.... are valid C++ variable names that have been declared already.

This statement will cause the computer to halt the execution and look for input data from the
keyboard.
The input data for this statement would be:

datal data2......dataN

The input data are separated by white spaces and should match the type of variable in the cin list.
Spaces, newlines and tabs will be skipped.
The operator >>reads the data character by character and assigns it to the indicated location.

The reading for a variable will be terminated at the encounter of a white space or a character that does not
match the destination type.

For example, consider the following code:
int code;
cin >> code;

Suppose the following data is given as input:
1267E

The operator will read the characters up to 7 and the value 1267 is assigned to code. The
character E remains in the input stream and will be input to the next cin statement.
The general format of outputting data:

cout << iteml <<item2 <<<<itemN;
The items, item1 through itemN may be variables or constants of any basic types.

Hierarchy of Console Stream Classes

The C++ input-output system supports a hierarchy of classes that are used to manipulate both the
console and disk files, called stream classes. The stream classes are implemented in a rather elaborate
hierarchy. The knowledge of C++'s input and output stream class hierarchy will result in the potential

utilization of stream classes. Figure depicts hierarchy of classes, which are used with the console

device.

streambuf *bp =

& strstreambase::buf

pointer

streambuf

ostream

F 3
T output

iostream

istream_withassign

iostream withassign

ostream _withassign

Hierarchy of console stream classes

The iostream facility of C++ provides an easy means to perform I/O. The class istream uses
the predefined stream cin that can be used to read data from the standard input device, The extraction
operator >>, 1§ used to get data from a stream. The 1nsertion operator <<, is used to output data into a
stream. A stream object must appear on the left side of the << or >> operator; however, multiple stream
operators can be concatenated on a single line, even when they refer to objects of different types. For
instance, consider the following statements:

cout << iteml << "*** << ¢l << my_object << 12;

cin »» int_var »» float_var >» my_object;
The first statement outputs objects of different types (both the standard and user defined) and the
second statement reads data of different types.

The classes istream, ostream, and iostream, which are designed exclusively to manage the
console device, are declared in the header file iostream. h. The actions performed by these classz:
related 1o console device management are described below:

ioa class: It provides operations common to both input and output. It contains a pointer to a buffor
object (streambuf). It has constants and member functions that are essential for handling formatted
input and output operations.

The classes derived from the ios class {(istream, ostream, iostream) perform specialized
imput-output operations with high-level formatung:
+ istream (input stream) does formatted input.
+ ostream (output stream) does formatted output.
s iostream (inputfoutput stream) does formatted input and cutput.

The pointer st reambuf In the 1os class provides an abstraction for communicating to a physical
device and classes derived from it deal with files, memory, etc. The class, 10s communicates to a
streambuf, which maintains information on the state of the streambuf (good, bad, eof, etc.), and main-
tains flags used by the iscream and oscream.

istream class: It is a derived class of ios and hence inherits the properties of ios. It defines input
functuions such as getc (), getline (), and read (). In addiuon, 11 has an overloaded member
function, stream extraction operator >>, to read data from a standard input device to the memory items.

ostream class: It is a derived class of ios. and hence, inherits the properties of ios. It defines
output functions such as put () and write (). In addition, it has an overloaded member function.
stream insertion operator <<, to write data from memory items (o a standard output device.

iostream class: It is derived from multiple base classes, istream and ostream, which are in turn
inherited from the class 10s. It provides facility for handling both input and output streams. and sup-
ports all the operations provided by istream and costream classes.

The classes istream withassign, ostream withassign, and iostream_withassign
add the assignment operators to their parent classes.

Formatted Console I/O Operations

C++ supports anumber of features that could be used for formatting the output. These
features include:

e i0s class functions and flags.

e Manipulators.

e User-defined output functions.

The ios class contains a large number of member functions that could be used to format the
outputin a number of ways. The most important ones among them are listed below.

width() To specify the required field size for displaying an output value

Precision() | To specify the mumber of digits to be displaved afier the decimal pont
of a float value

riion of a field.
To specify format flags that can control the form of output display
(such as Left-justification and nght-justification).

For instance, the statements

cout .widcth(4);
cout << 20 << 123;

produce the following output:

The first value is printed in right-justified form in four columns. The next item is printed immediately after
first item without any separation; width (4) is then reverted to the default value, which prints in left-

justified form with default size. It can be overcome by explicitly setting width of every item with each
cout statement as follows:

cout.width(4);

cout << 20;

cout.width(4);
cout << 123;

These statements produce the following output.

210

cout.
cout
cout
cout
cout

precision(2);

L
<<
<
<<

2.23 << endl;

5.169 << endl;
31.5085 << endl;
4.003 << endl;

will produce the following output:

2.23
5.17
3.51
4

(perfect fit)
(rounded)
(rounded)

(no trailing zeros,

truncatcted)

Flags value Bit field Effect produced

ios::lefc iog::adjustfield Left-justified output

ios: :right ios: radjustfield Right-adjust output

Padding occurs between the sign
or base indicator and the number,
when the number output fails to fill
the full width of the field.

ios::internal ios::adjustfield

ios: :dec ios: -basefield Decimal conversion

ios: :oct ios: :basefield Octal conversion
ios: :hex ios: :basefield Hexadecimal conversion

ios::scientific ios::floatfield Use exponential floating notation
ios::fixed ios::floatfield Use ordinary floating notation

Flags and bit fields for setf function

Consider the following statements:
cout.s=2tf{ ios::left, ios::adjustfield };
cout . £i11{ *** }:
cout .precision(2);
cout .width{ & };
cout << 12 _.53;
cout .widthi{ &)} ;
cout << 20.5;
cout .widthi{ &)
cout << 2;

The output produced by the above statements is:

1 2 . 5 3 2 o

Manipulators are special functions that are specifically designed to modify the working of a stream,
They can be embedded in the 1O statements to modify the form parameters of a strea, All the pre-
defined manipulators are defined in the header file omanip, h, Manipulators are more convenient to
use than their counterparts, defined by the 1os class. There can be more than one manipulator in a
statement and they can be chained as shown in the following statements:

cout << manipl << manip2 << manip? << item;
cout << manipl << iteml << item? << manipl << item3;

This kind of chaining of manipulators is useful in displaying several columns of output. Manipula-
lors are categorized into the following two types:

+ Non-Parameterized Manipulators
+ Parameterized Manipulators

Manipulator Action Performed

Sets the conversion base o 10

Sets the conversion base to 16
Sets the conversion base to 8

Extracts white-space characters from an
input stream. Characters i1n the stream will
be extracted until a non-white-space

character 1s found, or an error (such as EOF)
occurs. As expected. it affects only input streams.

Outputs a newline and flushes stream
Affects only output streams *“\n’”

Outputs a NULL character (*M)")
Affects only output streams

Flushes the stream. Affects only output streams

C++'s predefined non-parameterized manipulators

setw(int width) Sets the field width width
setprecision (int prec) Sets the floating-point precision precision
setfill (int fchar) Sets the fill character fill

setbase(int base) Sets the conversion base
0: Base 10 is used for output
8: Use octal for input and output
10: Use decimal for input and output
16: Use hexadecimal for input and output

setiosflags(long flags) | Sets the format flag
resetiosflags(long flags) | Resels the format flag

C++'s predefined parameterized manipulators

¢/ payroll.cpp: payrell like output example
#include <iocstream. h>
#¢include <icmanip.h>
volid main()
{
float £1=123.45, £2=34.65, £3=56;
cout << setiosflags{ios::showpbint|ics::fixed)
<< getiosflags(i1os::right};
cout << setw(é) << fl << endl;
cout << setwi(t) << f2 << endl;
cout << setw(g) << £3 << endl;

Restosfags

[n addttion to these functions supported by the C++ Library, we can create our own
manspulator fnctions to provide any spectal output formats

Working with Files

Many real-life problems handle large
volumes of data and, in such situations, we
need to use some devices such as floppy dask
or hard disk to store the data. The data is
stored 1n these devices using the concept
of files. A file is a collection of related data
stored in a particular area on the disk.
Programs can be designed to perforrm the
read and write operations on these files.

A program tvpically involves either or
hoth of the following kKinds of data
Communi:calion

Data transfer between the console
unit and the program

Data transfer between the program
and a disk file

FTRETT

Data fibes

B -

W'ribe: L | I
daia)
(ko filas)

(get data
from
kerybosnd)

The I/0 system of C++ handles file operations which are very much similar to the console
input and output operations, It uses file streams as an interface between the programs and
the files. The stream that supplies data to the program is known as input stream and the
one that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream insertz (or
writes) data to the file. '

|"'|III[SIrEAMm

read
data

inpul

Disk files | Program
l . e —d
| dala
I

Qutput stream
R output

wile dala

Classes for File Stream QOperations

The /O system of C++ contains a set of classes that define the file handling methods. These
include ifstream, ofstream and fstream. These classes are derived from fstreambase
and from the corresponding iostream class az shown in Fig. These classes, designed to

manage the disk files, are declared in fetream and therefore we must include this file in any
program that uses files.

|sEreaim | straarmbud | Gaiream

Istraam |
fbi

flebuf |

fElrgsm bBasn
i

fstreambase

ifstream

Ofstream

fstream

Suitable name for the file.
Drata type and structure,

Purpose.
Opening method.

Details

Confernds

& purpose 15 to set the file buffers to read and wrnite. Contains Openprot con-

des operations common to the file streams. Serves as a base for [stream,
ifstream and ofstream class. Contains openi() and close() functions,
Provides input operations. Contains opent() with default input mode. Inherits the
functions get(), getline(), read(), seekg() and tellg() functions from istream.
Provides output operations. Contains epen() with default output mode. Inherits
pukil, el), ‘tu"l}l_l. and writel), functions from ostream.
Provides support for simultaneous input and output operations, Contains openi()
with default input mode. Inherits all the functions from istream and ostream

classes

—

As stated earlier, for opening a file, we must first create a file stream and then link it to
the filename. A file stream can be defined using the classes ifstream, ofstream, and fstream
that are contained in the header file fstream. The class to be used depends upon the purpose,
that 15, whether we want to read data from the file or write data to it. A file can be opened
In two ways:

1. Using the constructor function of the class,
2, Using the member function open() of the class.

The first method 18 useful when we use only one file in the stream. The second method is
used when we want to manage multiple files using one stream

Opening Files Using Constructor

Create a file stream object to manage the stream using the appropriate class. That
is to say, the class ofstream is used to create the output stream and the class
ifstream to create the input stream,

2. Initialize the file object with the desired filename.

For example, the following statement opens a file named “results” for output:

ofstream outfile("results®); // output only

This creates outfile as an ofstream object that manages the output stream. This obhject
can be any valid Cs+ name such as o_file, myfile or fout. Thiz statement also opens the

file results and attaches it to the cutput stream outfile.

Dutput strearm

oot

Enpul SEtrearm
data |

| | | f— me |

irnfila

. A= -3 . . | o - =P
Pohd FIIE SEFESTHS TWOTFKTHE OF SEpharale flles

Similarly, the following statement declares infile as an ifstream object and attaches it
to the file data for reading (input).

ifstream dinfile("data"); // input only
The program may contain statements like:

putfile “TOTAL™;

outfile Sum;
infile number;

infile string;

ofstream outfile("salary™); ff creates outfile and connects

"salary" to

Frograms

ifstream infile("salary®); Jf creates infile and connects
S "zalary" to 1t

Program 1

= @ @ @ ® &

1t

salary
fila

The connection with a file is closed automatically when the stream object expires (when
the program terminates). In the above statement, when the program! is terminated, the
galary file iz disconnected from the outfile stream. Similar action takes place when the
program 2 terminates

[nstead of using two programs, one for writing data (output) and another for reading
data (input), we can use a single program to do both the operations on a file. Example.

outfile.close(); !/ Disconnect salory f
ifstream infile("salary"}); [and connect to infi

rom putfile
Le

infile.closel):; // Disconnect salary from infile

The output of Program

Enter item name:CD-ROM
tnter 1tem cost:Z50

[tem name:CD-ROM
[tem cost:250

Opening Files Using openy()

As stated earlier, the function open() can be used to open multiple files that use the same
stream object. For example, we may want to process a set of files sequentially. In such cases,
we may create a single stream object and use it to open each file in turn. This is done as
follows:

file-stream-class stream-object;
stream-object.open ("filename");

Example:

ofstream outfile; [/ Create stream (for output)
outfile,open("DATAL"); /! Connect stream to DATAI

putfile.close(); {1 Disconnect stream from DATAI
putfile.open("DATAZ): /[Connect streom to DATAZ

{f Disconnect stream from DATAZ

__ HWORKING WITH MULTIPLE FILES

JY Creating files with open() fTunction

Finclude =<iostream.h=
Finclude =fstream.h>

int main()

i
aofstream fTout;
fout.open{™country"™) ;

"United States of America‘\n™;:

Ffout ==

Ffout == "“"United Kingdomyn™;
fout == "South Korea'n":
fout.close():

fout ..opend{ *capital™):

fout == "“"Hashington'in";
Ffout == "London%n™;
fout == "Saoulnm™;

fout.clase ()

S4 Reading the files
const int N ad;
char Tine{N]:

ifstream Fimng
fFin.open{"country™) ;

cout =="contemts of country Tilein™;

while [Fin)

1
fin.getline(line, HN): F
cout == Tine ; L
Fin.close();
fin.open("capital™]);
At Conmtents of capital File
=wh |IL"':"- 1
fin.getlina{line, MNJ:
cout == Tine ;

El

s

cCreate Qutput straam
"country™ to

L=

CoonmECTt

disconnect "country™ and
connect “"capital™
disconnect "capital®™
size of Tine

create €input stream
conmect "country™ to it
check ond-of-File

read a 1ine

display 4§t

disconnect "coumtry"™ and

connect Tcaptta

The output of Program

country file
of America

Contents of capital file
Hashington

London

Seoul

connect one
file to fout
&

e

—_d . . .

———— | =——{ Program

fin

=

- N— I — Program |

a
connact ona
file 1o fin

St

S 'S ' S —

READING FROM TWO FILES STMULTANEOUSLY

S Reads the fFfiles creaoted

Finclude <=jostream.h>
#Finclude =Ffstream.bh>
#Finclude =stdlib.h> A Ffor exit() fFunction

inmt maim)

{
const int SITE = BO;
char 1ine[SIZFE]:

ifstream finl, finZ; SO create two input streams
finl.openi{ “"country™);
finZ.open{"capital®)});

for{int i=1l; fi==10; f4+=)
{
if{finl.eof() 1= 0)
{
cout == “"Exit from coumtry “wn*g;
exiti{l);:
1
finl.getline{l1ine, SIFTE):
cout == "Capital of “"== Tine 3

if{fin2.eaf() 1= 0)

{
cout == "Exit from capitalwn®:
exit{1);

1

finZ.getline{line,SIZE);
cout == Tine == "Yn";
]

returm O;

The output of Program wowuld be:

Capital of Umited States of America
HWashington

Capital of United EKimnmgdom

Lonmndon

Capital of Sowuth EKareaea

Seowul

Detecting end-of-file

Detection of the end-of-file condition iz necessary for preventing any further attempt to
read data from the file.

while(fin)

An ifstream object, such as fin, returns a value of 0 if any error occurs in the hle
operation including the end-of-file condition. Thus, the while loop terminates when fin
returns a value of zero on reaching the end-of-file condition. Remember, this loop may
terminate due to other failures as well. (We will disc other error conditions later.)

There is another approach to detect the end-of-file condition.

i J'I:1 nl.eof I: :I] =
eoff() i2 a member function of 108 class. It returns a non-zero value if the end-of-flelEOF)
condition is encountered, and a zero, otherwize, Therefore, the above statement terminates
the program on reaching the end of the

More about Open(): File Modes

We have used ifstream and ofstream constructors and the function open() to create new
files as well as to open the existing files. Remember, in both these methods, we used only
one argument that was the filename. However, these functions can take two arguments,
the second one for specifving the file mode. The general form of the function open() with
two arguments is;

[stream- object.open("filename", mode);: .

The second argument mode (called file mode parameter) specifies the purpose for which
the file is opened.

The prototype of these class member functions contain default values for the second
argument and therefore they use the default values in the absenece of the actual values, The

default values are as follows:

for ifstream functions meaning open for reading only.
out for ofstream functions meaning open for writing only.

File mode parameters

Parameter Meaning
08 5 app Append to end-of-file

108 ;; ate o to end-of-file on opening
ioa 1 binary Binary file
ina :: in Open file for reading only

ioa 1 nocreate Orpen fails if the file does not exist

i0s ;; noreplace Crpen fails if the file already exists

ios 31 out Open file for writing only
iog o trune Delete the contents of the file if it exista

Sequential Input and Output Operations

The file stream classes support a number of member functions for performing the input and
output operations on files. One pair of functions, put() and get(), are designed for handling
a single character at a time, Another pair of functions, write() and read(), are designed to
write and read blocks of hinary data.

put() and get() Functions

The function put() writes a single character to the associated stream. Similarly, the funetion
get() reads a single character from the associated stream.

The put() and get() Functions

The classes istream and ostream define two member functions get() and put() respectively to handle thesingle character
input/output operations.

There are two types of get() functions.

Both get(char*) and get(void) prototypes can be used to fetch a character including the blank space, tab and

the newline character.

The get(char*) version assigns the input character to its argument and the get(void) version returns the input character.
Since these functions are members of the input/output stream classes, these must invoked by using an appropriate
object.

For instance, look at the code snippet given below:

charc;

cin.get (c); //get a character from keyboard and assign it to ¢
while (c!="\n")

{

cout<<c; //display the character on screen cin.get (c);

} //get another character

This code reads and displays a line of text (terminated by a newline character).

Remember, the operator> >can also be used to read a character but it will skip the white spaces and newline character.
The above while loop will not work properly if the statement

cin >>c;

Is used in place of

cin.get (c);

The get(void) version is used as follows:

charc;

c =cin.get(); /lcin.get (c) replaced

The value returned by the function get() is assigned to the variable c.

The function put(), amember of ostream class, can be used to output a line of text, character by character. For
example,

cout <<put (‘x’);

displays the character xand

cout << put(ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an argument to the function put (). For
example,

cout << put (68) ;
displays the character D. This statement will convertthe int value 68 to a char value and display the character whose
ASCIlI value is 68,

The following segment of a program reads a line of text from the keyboard and displays it on the screen.
charc;.

cin.get (c) /llread a character

while (c¢!=“\n’)

{

cout<< put(c); //display the character on screen cin.get(c);

1

The getline () and write () Functions

We can read and display a line of text more efficiently using the line-oriented input/output functions getline() and write().
The getline() function reads a whole line of text that ends with a newline character. This function can be invoked by using
the object cin as follows:

cin.getline(line, size);

This function call invokes the function which reads character input into the variable line. The reading is terminated as soon
as either the newline character '\n' is encountered or size number of characters are read (whichever occurs first). The
newline. character is read but not saved. Instead, it is replaced by the null character.

For example; consider the following code:

char name [20] ;

cin.getline(name, 20);

Assume that we have given the following input through the keyboard:

Neerajgood

This input will be read correctly and assigned to the character array name. Let us suppose the input s as follows:

Object Oriented Programming

In this case, the input will be terminated after reading the following 19 characters:

Object Oriented Pro

After reading the string/ cin automatically adds the terminating null character to the character array.

Remember, the two blank spaces contained in the string are also taken into account, i.e.

between Objects and Oriented and Pro.

We can also read strings using the operator >> as follows:

cin.>> name;

But remember cin can read strings that do not contain white space. This means that cin can read just one word and nota
series of words such as “Neeraj good”

Random Access Files

File Pointers and Their Manipulations

Each file has two associated pointers known as the file poinfers. One of them is called the
input pointer (or get pointer) and the other is called the output pointer (or put pointer).
The input pointer
15 used for reading the contents of a given file location and the output pointer is used for
writing to a given file location. Each time an input or output operation takes place, the

appropriate pointer is automatically advanced.

“helio”

Cipen for reading only | | | | L ' O | - W - o . R -
1 - 8 1l

] input pointer

Dhpin in append mode
{For writing more data)

Dhpan Tor wirltinsg only

poinber

Functions for Manipulation of File Pointers

How do we then move a file pointer to any other desired position inside the file? This is
possible only if we can take control of the movement of the file pointers ourselves. The file
stream classes support the following functions to manage such situations:

seekg() Moves get pointer (input) to a specified location.
seckp() Moves put pointer{output) to a specified location.
tellg() Gives the current position of the get pointer.
tellp() Gives the current position of the put pointer.

For example, the statement
infile.seekg(10);
moves the file pointer to the bvte number 10. Remember, the bytes in a file are numbered
beginning from zero. Therefore, the pointer will be pointing to the 11th byvte in the file.

Consider the following statements:

ofstream fileout;

fileout.open{"hella", ios::app):

int p = fileout.tellp();
On execution of these statements, the output pointer is moved to the end of the file "hello”
and the value of p will represent the number of bytes in the file.

Specifying the offset

oultfile.seakp{m); |

‘Seek’ functions seekg() and seekp() can also be used with two arguments as follows:

seekg (offset, refposition);
seekp (offset, refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from
the location specified by the parameter refposition. The refposition takes one of the following
three constants defined in the ios class:

® ios:beg gtart of the file
® josieur current position of the pointer
L ios:end End of the file

The seekg() function moves the associated file's ‘get’ pointer while the seekp() function
moves the associated file's ‘put’ pointer, Table " lists some sample pointer offset calls and
their actions. fout is an ofstream ohject.

Pointer offset calls

Seek call Action

fout.seekgio, ios::begl; (o to start

fout.seekglo, 108::curl; Stay at the current position

fout.seekgio, ws:end); o to the end of file

Fout seekgim,ios:: beg), Move to (m + 1ith byte in the file

fout aeekgim ios cur); Go forward by m byte form the current position
fout.seekg(-m, ios:curl; Go backward by m bytes from the current position
fout, seekg-m,ios:endl; o backward by m byies form the end

Reading and Writing a Class Object

Since the class ohjects are the central
elements of C++ programming, it is guite natural that the language supports features for
writing to and reading from the disk files ohjects directly. The hinary input and output
functions read () and write() are designed to do exactly this job. These functions handle the
entire structure of an ohject as a single unit, using the computer’s internal representation
of data. For instance, the function write() copies a class object from memory byte by bhyte
with no conversion. One important point to remember is that only data members are written
to the disk file and the member functions are not.

Program illustrates how class ohjects can be written to and read from the disk files.
The length of the object is obtained using the sizeof operator. This length represents the
sum total of lengths of all data members of the object.

Reading and Writing a Class Obj

#include <iostream.h=>
#include <fstream.h=>
#ginclude =iomanip.h=

class INVENTORY
{

char name[10];
code ;
oat cost;

void readdata(woid);
woid writedata(void);

ENTORY :: readdata(void) i F keyboard

cout Enter name
cout Enter

cout - Enter The output of Program !

void INVENTORY d display on ENTER DETAILS FOR THREE ITEMS
{) . . ! : Enter name: C++
' Enter
Ente
Enter
Enter
Enter
Enter
Enter co

oy =
main() Enter C

INVENTORY 1tem[// Declare array of 3 o

OUTPUT

fstream file; JS Input and output file

o

file.open("STOCK.DAT", ios: i out); .

[
o=

[T
[T

"ENTER DETAILS FOR

++)
item[1] . readdatal);

file.write((char *} &

The C++ file stream inherits a 'stream-state’ member from the class ios. This member
records information on the status of a file that is being currently used. The stream state
member uses bhit fields to store the status of the error conditions

The class ios supports several member functions that can be used to read the status
recorded in a file stream. These functions along with their meanings are listed in
Table

Table Error handling functions

Return value and meaning

Returns frwe (non-2ere value) if end-of-file iz encountered while reading;
Otherwise returns false{zero)

Returng frue when an ;ir|p|.l1 or oubput 1:l|_:||_:r|:1..i|_1l'| has failed

Returns frwe if an invalid operation 15 attempted or any unrecoverable
error has occurred. However, if it is folse, it may be possible to recover
from any other error reported, and continuwe operation.

Returns true if no error has occurred. This means, all the above functions
are false. For instance, if file.good(} is frue, all is well with the stream
file and we can proceed to perform L0 operations. When it returns fafse,
no further operations can be carried out.

Thesze functions may be used in the appropriate places in a program to locate the status
of a file stream and thereby to take the necessary corrective measures. .

Command Line Arguments

The command-line arguments are typed by the user and are delimited by a space. The
first argument iz alwavs the filename (command name) and contains the program to be
executed. How do these arguments get into the program?

The main(} functions which we have been using up to now without any arguments can
take two arpuments as shown below:

main{int argc, char * argv[])

The first argument arge (known as argument counfer) represents the number of
arguments in the command line. The second argument argv (known as argument vector) is
an array of char type pointers that points to the command line arguments, The size of this
array will be egual to the value of arge. For instanoce, for the command line

C = exam data results

the value of arge would be 3 and the argv would be an array of three pointers to strings as
shown below:

argv[0] =---> exam
argv[l] ---= data
argw[2] =-=-> results

Mote that argwv[] always represents the command name that invokes the program. The

character pointers argv[l] and argv[(2] can be used as file names in the file opening
statements as shown below:

ile for reading

results file for writing

Program illustrates the use of the command-line arguments for supplyving the file
names. The command hne is

test ODD EVEN

The program creates two files called ODI and EVEN using the command-line arpuments,
and a set of numbers stored in an array are written to these files. Note that the odd
numberz are written to the file ODD and the even numbers are written to the file EVIEMN.
The program then displays the contents of the files.

The output of Program ~ would be;

Contants of OO0

4

Contents of EVEN
22 44 ph AR

foutl.close(
se(

foutZ.c

r
0

ifstream fin;
char chs
1; i<argc; i++)

for(i=1

fin.open(argv[il]):
cout << “Contents of " << argv[i] << "\n":
do
{
fin.get{ch): read a value
cout << chg; display it
}

while(fin):
cout =< *“\n\n*;
fin.clese():

returm Cl;

REFERENCES:

1.E. Balagurusamy, “Object Oriented Programming with C++”, Fourth edition, TMH,
2008.

2. LECTURE NOTES ON Object Oriented Programming Using C++ by Dr. Subasish Mohapatra,
Department of Computer Science and Application College of Engineering and Technology, Bhubaneswar
Biju Patnaik University of Technology, Odisha

3. K.R. Venugopal, Rajkumar, T. Ravishankar, “Mastering C++”, Tata McGraw-Hill
Publishing Company Limited

4. Object Oriented Programming With C++ - PowerPoint Presentation by Alok Kumar

5. OOPs Programming Paradigm — PowerPoint Presentation by an Anonymous Author

