
Java Programming – 18BCS43C
By Dr. S. Chitra,

Associate Professor,
Post Graduate & Research Department of Computer Science,
Government Arts College(Autonomous), Coimbatore - 641018

Obj
ecti
ve:

 To introduce the basics of Java Programming and JVM

 To impart Fundamental knowledge in Object Oriented Programming
 Ability to generate simple packages and to design Threads.

UNIT-I
Introduction: Benefits of OOPS- Java History-Java Features- Java Virtual Machine - Java
Environment- Java Tokens- Constants- Variables- Data Types – Operators and
Expressions-Decision Making and Branching- Decision Making and Looping.

UNIT-II
Classes, Objects and Methods: Classes and Objects - Constructors- Method Overloading-
Static Members-Inheritance- Overriding Methods- Final Variables, Final Methods and
Final Classes - Finalize Method- Abstract Methods and Abstract Classes –Visibility
Control - Arrays - Strings.

UNIT-III
Interfaces, Packages and Thread: Defining Interface- Extending Interfaces Implementing
Interfaces – Packages-Multithreaded Programming: Thread Life Cycle - Thread
Exceptions – Thread Priority-Synchronization.

UNIT-IV
File Handling: Types of Errors – Exceptions- Syntax of Exception Handling Code-
Multiple Catch Statements- Using Finally Statements- Managing Input / Output Files in
Java: Concept of Streams- Stream Classes- Character Stream - Classes-Reading / Writing
Characters- Reading / Writing Bytes- Handling Primitive Data Types- Random Access
files.

UNIT-V
AWT and Applet: Event Handling Methods- Labels- Button Control- Check Box Control-
Radio Button Control- Choice Control- List Control-Flow Layout- Border Layout-Grid
Layout – Menus- Mouse Events-Applets: Life cycle of an Applet-Development and
Execution of a Simple Applet.

TEXT BOOKS
E. Balagurusamy, “Programming with JAVA”, Tata McGraw Hill, New Delhi, 4th edition.
Units-I, II, III and IV
C. Muthu, “Programming with JAVA”, Vijay Nicole Imprints Private Limited, Chennai,
Second Edition, 2011. - Unit-V
REFERENCE BOOKS
PatricNaughton, and Herbert Schildt “Java - The Complete Reference” Tata McGraw Hill
Publishers, 2011

Year Subject Title Sem. Sub Code

2018 -19

Onwards
JAVA PROGRAMMING IV 18BCS43C

JAVA INTRODUCTION:

 Java is a high-level, third generation programming language.

 Java can be used to write computer applications that play games, store data or do
any of the thousands of other things computer software can do.

 Special programs called applets can be downloaded from the Internet and played
safely within a web browser. Java language is called as a true (100%) Object-
Oriented Programming language.

BASIC CONCEPT OF OOPS (OBJECT-ORIENTED PROGRAMMING):

There are some basic concepts of object oriented programming as follows:
1. Object
2. Class
3. Data abstraction
4. Data encapsulation
5. Inheritance
6. Polymorphism
7. Dynamic binding

1. Object

Objects are important runtime entities in object oriented method. They may characterize a
location, a bank account, and a table of data or any entry that the program must handle.
For example:

 Representation of an object “STUDENT”

Each object holds data and code to operate the data. Object can interact without having to
identify the details of each other’s data or code. It is sufficient to identify the type of
message received and the type of reply returned by the objects.
Another example of object is CAR

 Representation of object “CAR”

2. Classes

A class is a set of objects with similar properties (attributes), common behaviour
(operations), and common link to other objects. The complete set of data and code of an
object can be made a user defined data type with the help of class.

The objects are variable of type class. A class is a collection of objects of similar type.
Classes are user defined data types and work like the build in type of the programming
language. Once the class has been defined, we can make any number of objects belonging
to that class. Each object is related with the data of type class with which they are
formed.As we learned that, the classification of objects into various classes is based on its
properties (States) and behaviour (methods). Classes are used to distinguish one type of
object from another. The important thing about the class is to identify the properties and
procedures and applicability to its instances.
For example: Vehicle

 Representation of class

In above example, we will create an objects MH-01 1234 belonging to the class car. The
objects develop their distinctiveness from the difference in their attribute value and
relationships to other objects.

3. Data Abstraction
Data abstraction refers to the act of representing important description without including
the background details or explanations.
Classes use the concept of abstraction and are defined as a list of abstract attributes such as
size, cost and functions operate on these attributes. They summarize all the important
properties of the objects that are to be created.

Classes use the concepts of data abstraction and it is called as Abstract Data Type (ADT).

4. Data Encapsulation
Data Encapsulation means wrapping of data and functions into a single unit (i.e. class). It
is most useful feature of class. The data is not easy to get to the outside world and only
those functions which are enclosed in the class can access it.
These functions provide the boundary between Object’s data and program. This insulation
of data from direct access by the program is called as Data hiding.

For example:

Encapsulation

5. Inheritance

Inheritance is the process by which objects of one class can get the properties of objects of
another class. Inheritance means one class of objects inherits the data and behaviours from
another class. Inheritance maintains the hierarchical classification in which a class inherits
from its parents.
Inheritance provides the important feature of OOP that is reusability. That means we can
include additional characteristics to an existing class without modification. This is possible
deriving a new class from existing one. In other words, it is property of object-oriented
systems that allow objects to be built from other objects. Inheritance allows openly taking
help of the commonality of objects when constructing new classes. Inheritance is a
relationship between classes where one class is the parent class of another (derived) class.
The derived class holds the properties and behaviour of base class in addition to the
properties and behaviour of derived class.Data, process/Functions

For Example:

 Inheritance
In the above Figure, the Santro is a part of the class Hyundai which is again part of the
class car and car is the part of the class vehicle. That means vehicle class is the parent
class.

6. Polymorphism

(Poly means “many” and morph means “form”).Polymorphism means the ability to take
more than one form.Polymorphism plays a main role in allocate objects having different
internal structures to share the same external interface. This means that a general class of
operations may be accessed in the same manner even though specific activities associated
with each operation may differ. Polymorphism is broadly used in implementing
inheritance.It means objects that can take on or assume many different forms.
Polymorphism means that the same operations may behave ifferently on different classes.
Booch defines polymorphism as the relationship of objects many different classes by some
common super class. Polymorphism allows us to write generic, reusable code more easily,
because we can specify general instructions and delegate the implementation detail to the
objects involved.

For Example:
In a pay roll system, manager, office staff and production worker objects all will respond
to the compute payroll message, but the real operations performed are object particular.

 Polymorphism
7. Dynamic Binding
Binding refers to the linking of a procedure call to the code to be executed in response to
the call. Dynamic binding means that the code related with a given procedure call is not
known until the time of the call at run time.
Dynamic binding is associated polymorphism and inheritance.

JAVA HISTORY :

Java is a general-purpose, object-oriented programming language developed by Sun
Microsystems of USA in 1991.Originally called Oak by James Gosling (one of the
inventor of the language). Java was invented for the development of software for consumer
electronic devices like TVs, tosters, etc. The main aim was to make java simple, portable
and reliable. Java Authors: James Gosling, Arthur Van, and others

Following table shows the year and beginning of Java.

JAVA FEATURES:
As we know that the Java is an object oriented programming language developed by Sun
Microsystems of USA in 1991. Java is first programming language which is not attached
with any particular hardware or operating system. Program developed in Java can be
executed anywhere and on any system.

Features of Java are as follows:

1. Compiled and Interpreted
2. Platform Independent and portable
3. Object- oriented
4. Robust and secure

5. Distributed
6. Familiar, simple and small
7. Multithreaded and Interactive
8. High performance
9. Dynamic and Extensible

1. Compiled and Interpreted

Basically a computer language is either compiled or interpreted. Java comes together both
these approach thus making Java a two-stage system.

Java compiler translates Java code to Bytecode instructions and Java Interpreter generate
machine code that can be directly executed by machine that is running the Java program.

2. Platform Independent and portable
Java supports the feature portability. Java programs can be easily moved from one
computer system to another and anywhere. Changes and upgrades in operating systems,
processors and system resources will not force any alteration in Java programs. This is
reason why Java has become a trendy language for programming on Internet which
interconnects different kind of systems worldwide. Java certifies portability in two ways.
First way is, Java compiler generates the bytecode and that can be executed on any
machine. Second way is, size of primitive data types are machine independent.

3. Object- oriented
Java is truly object-oriented language. In Java, almost everything is an Object. All program
code and data exist in objects and classes. Java comes with an extensive set of classes;
organize in packages that can be used in program by Inheritance. The object model in Java
is trouble-free and easy to enlarge.

4. Robust and secure
Java is a most strong language which provides many securities to make certain reliable
code. It is design as garbage – collected language, which helps the programmers virtually
from all memory management problems. Java also includes the concept of exception
handling, which detain serious errors and reduces all kind of threat of crashing the system.
Security is an important feature of Java and this is the strong reason that programmer use
this language for programming on Internet. The absence of pointers in Java ensures that
programs cannot get right of entry to memory location without proper
approval.

5. Distributed
Java is called as Distributed language for construct applications on networks which can
contribute both data and programs. Java applications can open and access remote objects
on Internet easily. That means multiple programmers at multiple remote locations to work
together on single task.

6. Simple and small

Java is very small and simple language. Java does not use pointer and header files, goto
statements, etc. It eliminates operator overloading and multiple inheritance.

7. Multithreaded and Interactive
Multithreaded means managing multiple tasks simultaneously. Java maintains
multithreaded programs. That means we need not wait for the application to complete one
task before starting next task. This feature is helpful for graphic applications.
8. High performance

Java performance is very extraordinary for an interpreted language, majorly due to the use
of intermediate bytecode. Java architecture is also designed to reduce overheads during
runtime.The incorporation of multithreading improves the execution speed of program.

9. Dynamic and Extensible
Java is also dynamic language. Java is capable of dynamically linking in new class,
libraries, methods and objects. Java can also establish the type of class through the query
building it possible to either dynamically link or abort the program, depending on the
reply.Java program is support functions written in other language such as C and C++,
known as native methods.

COMPARISON IN JAVA AND C++

JAVA VIRTUAL MACHINE:
As we know that all programming language compilers convert the source code to machine
code.Same job done by Java Compiler to run a Java program, but the difference is that
Java compiler convert the source code into Intermediate code is called
as bytecode. This machine is called the Java Virtual machine and it exits only inside the
computer memory.

Following figure shows the process of compilation.

The Virtual machine code is not machine specific. The machine specific code is generated.
By Java interpreter by acting as an intermediary between the virtual machine and real
machines shown below

Java Object Framework act as the intermediary between the user programs and the virtual
machine which in turn act as the intermediary between the operating system and the Java
Object Framework

. Layers of Interaction for Java programs

JAVA ENVIRONMENT:

Java environment includes a number of development tools,classes and methods. The
development tools are part of the system known as Java Development Kit (JDK) and the
classes and methods are part of the Java Standard Library (JSL), also known as the
Application Programming Interface (API).

Java Development kit (JDK) – The JDK comes with a set of tools that are used for
developing and running Java program. It includes:

1. Appletviewer - (It is used for viewing the applet)
2. Javac - (It is a Java Compiler)
3. Java - (It is a java interpreter)
4. Javap - (Java diassembler,which convert byte code into program description)
5. Javah - (It is for java C header files)
6. Javadoc - (It is for creating HTML document)
7. Jdb - (It is Java debugger)

For compiling and running the program we have to use following commands:

a) javac (Java compiler)

In java, we can use any text editor for writing program and then save that program with
“.java” extension. Java compiler convert the source code or program in bytecode and
interpreter convert “.java” file in “.class” file.

Syntax:
C:\javac filename.java

If my filename is “abc.java” then the syntax will be
C:\javac abc.java

b) java(Java Interpreter)
As we learn that, we can use any text editor for writing program and then save that
program with “.java” extension. Java compiler convert the source code or program in
bytecode and interpreter convert “.java” file in “.class” file.

Syntax:
C:\java filename

If my filename is abc.java then the syntax will be
C:\java abc

SIMPLE JAVA PROGRAM:

class FirstProgram
{
public static void main(String args[])
{
System.out.println (“This is my first program”);
}
}

 The file must be named “FirstProgram.java” to equivalent the class name containing the
main method.

1. Java is case sensitive. This program defines a class called “FirstProgram”.
2. A class is an object oriented term. It is designed to perform a specific task. A Java

class is defined by its class name, an open curly brace, a list of methods and fields,
and a close curly brace.

3. The name of the class is made of alphabetical characters and digits without spaces,
the first character must be alphabetical.

4. The line “public static void main (String [] args)” shows where the program will
start running. The word main means that this is the main method –

The JVM starts running any program by executing this method first.

1. The main method in “FirstProgram.java” consists of a single statement
System.out. println ("This is my first program");

2. The statement outputs the character between quotes to the console.

For writing, compliing and executing a java program, the following steps should be
followed:.

1. Edit the program by the use of Notepad.
2. Save the program to the hard disk.
3. Compile the program with the javac command.(Java compiler)
4. If there are syntax errors, go back to Notepad and edit the program.
5. Run the program with the java command.(Java Interpreter)
6. If it does not run correctly, go back to Notepad and edit the program.
7. When it shows result then stop.

DATA TYPES, VARIABLES AND
CONSTANTS

DATA TYPES:
* A data type is a scheme for representing values.
* Values are not just numbers, but any manner of data that a computer can process.
* The data type defines the kind of data that is represented by a variable.
* As with the keyword class, Java data types are case sensitive.

There are two types of data types

1. primitive data type

2. non-pimitive data type

In primitive data types, there are two categories

1. numeric means Integer, Floating points

2. Non-numeric means Character and Boolean

In non-pimitive types, there are three categories

1. classes

2. arrays

3. interface

Following table shows the datatypes with their size and ranges.

 Datatypes with size and range
Integer data type:
Integer datatype can hold the numbers (the number can be positive number or negative
number). In Java, there are four types of integer as follows:
1. byte
2. short
3. int
4. long
We can make integer long by adding ‘l’ or ‘L’ at the end of the number.

Floating point data type:
It is also called as Real number and when we require accuracy then we can use it.
There are two types of floating point data type.
1. float
2. double

Character data type:
It is used to store single character in memory. It uses 2 bytes storage space.

Boolean data type:
It is used when we want to test a particular condition during the execution of the program.
There are only two values that a boolean type can hold: true and false. Boolean type is
denoted by the keyword boolean and uses only one bit of storage.
Following program shows the use of datatypes.

Program:

import java.io.DataInputStream;
class cc2
{
public static void main(String args[]) throws Exception
{
DataInputStream s1=new DataInputStream(System.in);
byte rollno;
int marks1,marks2,marks3;
float avg;
System.out.println("Enter roll number:");
rollno=Byte.parseByte(s1.readLine());
System.out.println("Enter marks m1, m2,m3:");
marks1=Integer.parseInt(s1.readLine());
marks2=Integer.parseInt(s1.readLine());
marks3=Integer.parseInt(s1.readLine());
avg = (marks1+marks2+marks3)/3;
System.out.println("Roll number is="+rollno);
System.out.println("Average is="+avg);
}
}
Output:
C:\cc>java cc2
Enter roll number:
07
Enter marks m1, m2,m3:
66
21

77
88
Roll number is=7
Average is=77.0

MIXING DATA TYPES:

Java allows mixing of constants and variables of different types in an expression, but
during assessment it hold to very strict rules of type conversion.
When computer consider operand and operator and if operands are different types then
type is automatically convert in higher type.
Following table shows the automatic type conversion.

2.3 VARIABLES:
Variables are labels that express a particular position in memory and connect it with a data
type.

The first way to declare a variable: This specifies its data type, and reserves memory for it.
It assigns zero to primitive types and null to objects.

dataType variableName;

The second way to declare a variable: This specifies its data type, reserves memory for it,
and puts an initial value into that memory. The initial value must be of the correct data
type.

dataType variableName = initialValue;

The first way to declare two variables: all of the same data type, reserves memory for each.

dataType variableNameOne, variableNameTwo;
The second way to declare two variables: both of the same data type, reserves memory,
and puts an initial value in each variable.

dataType variableNameI = initialValueI,

variableNameII=initialValueII;

Variable name:

** Use only the characters ‘a’ through ‘z’, ‘A’ through ‘Z’, ‘0’ through ‘9’, character ‘_’,
and character ‘$’.
** A name cannot include the space character.
** Do not begin with a digit.
** A name can be of any realistic length.
** Upper and lower case count as different characters.
** A name cannot be a reserved word (keyword).
** A name must not previously be in utilized in this block of the program.

CONSTANT :

Constant means fixed value which is not change at the time of execution of program. In
Java, there are two types of constant as follows:

 Numeric Constants
 Integer constant

 Real constant
 Character Constants

 Character constant

 String constant

Integer Constant:

An Integer constant refers to a series of digits. There are three types of integer as follows:

a) Decimal integer Embedded spaces, commas and characters are not allowed in
between digits.
For example:
23 411
7,00,000
17.33

b) Octal integer
It allows us any sequence of numbers or digits from 0 to 7 with leading 0 and it is called as
Octal integer.

For example:
011
00
0425

c) Hexadecimal integer
It allows the sequence which is preceded by 0X or 0x and it also allows alphabets from ‘A’
to ‘F’ or ‘a’ to ‘f’ (‘A’ to ‘F’ stands for the numbers ‘10’ to ‘15’) it is called as
Hexadecimal integer.
For example:
0x7
00X
0A2B

Real Constant
It allows us fractional data and it is also called as folating point constant. It is used for
percentage, height and so on.
For example:
0.0234
0.777
-1.23

Character Constant
It allows us single character within pair of single coute.
For example:
‘A’
‘7’
‘\’

String Constant
It allows us the series of characters within pair of double coute.
For example:
“WELCOME”
“END OF PROGRAM”
“BYE …BYE”
“A”

Symbolic constant:

In Java program, there are many things which is requires repeatedly and if we want to
make changes then we have to make these changes in whole program where this variable is
used. For this purpose, Java provides ‘final’ keyword to declare the value of variable as
follows:

Syntax:
final type Symbolic_name=value;

For example:
If I want to declare the value of ‘PI’ then:
final float PI=3.1459
the condition is, Symbolic_name will be in capital letter(it shows the difference between
normal variable and symblic name) and do not declare in method.

Backslash character constant:
Java support some special character constant which are given in following table.

Comments:
A comment is a note written to a human reader of a program. The program compiles and
runs exactly the same with or without comments. Comments start with the two characters
“//” (slash slash). Those characters and everything that follows them on the same line are
ignored by the java compiler. everything between the two characters “/*”and the two
characters “*/” are unobserved by the compiler. There can be many lines of comments
between the “/*” and the “*/”.

COMMAND LINE ARGUMENTS:
Command line arguments are parameters that are supplied to the application program at
the time of invoking its execution.They must be supplied at the time of its execution
following the file name.

In the main () method, the args is confirmed as an array of string known as string objects.
Any argument provided in the command line at the time of program execution, are
accepted to the array args as its elements. Using index or subscripted entry can access the
individual elements of an array. The number of element in the array args can be getting
with the length parameter.

For example:

class Add
{
public static void main(String args[])
{

int a=Integer.parseInt(args[0]);
int b=Integer.parseInt(args[1]);
int c=a+b;
System.out.println(“Addition is=”+c);
}
}
output:

c:\javac Add.java
c:\java Add 5 2

.
TOKENS IN JAVA:

Smallest individual unit in a program are known as tokens. The compiler recognizes them
for building up expression and statements.

There are five types of token as follows:
1. Literals
2. Identifiers
3. Operators
4. Separators

Literals:

Literals in Java are a sequence of characters (digits, letters
and other characters) that characterize constant values to be stored
in variables. Java language specifies five major types of literals are
as follows:
1. Integer literals
2. Floating point literals
3. Character literals
4. String literals
5. Boolean literals

Identifiers:
Identifiers are programmer-created tokens. They are used
for naming classes, methods, variables, objects, labels, packages
and interfaces in a program. Java identifiers follow the following
rules:
1. They can have alphabets, digits, and the underscore and
dollar sign characters.
2. They must not start with a digit.
3. Uppercase and lowercase letters are individual.
4. They can be of any length.
Identifier must be meaningful, easily understandable and
descriptive.
For example:

Private and local variables like “length”.
Name of public methods and instance variables begin with
lowercase letter like “addition”

Keywords:

Keywords are important part of Java. Java language has
reserved 50 words as keywords. Keywords have specific meaning
in Java. We cannot use them as variable, classes and method.
Following table shows keywords.

Operator:

Java carries a broad range of operators. An operator is symbols that specify operation to be
performed may be certain mathematical and logical operation. Operators are used in
programs to operate data and variables. They frequently form a part of mathematical or
logical expressions.
Categories of operators are as follows:
1. Arithmetic operators
2. Logical operators
3. Relational operators
4. Assignment operators
5. Conditional operators
6. Increment and decrement operators
7. Bit wise operators

Arithmetic operators:
Arithmetic operators are used to make mathematical expressions and the working out as
same in algebra. Java provides the fundamental arithmetic operators. These can operate on
built in data type of Java.
Following table shows the details of operators.

Now the following programs show the use of arithmetic operators.
“+” operator in Java: program to add two integer numbers and display the result.

class AdditionInt
{
public static void main (String args[])
{
int a = 6;
int b = 3;
System.out.println("a = " + a);
System.out.println("b =" + b);
int c = a + b;
System.out.println("Addition = " + c);
}
}
Output:
a= 6
b= 3
Addition=9

“-” operator in Java:

class SubstractionInt
{
public static void main (String args[])
{
int a = 6;
int b = 3;
System.out.println("a = " + a);
System.out.println("b =" + b);
int c = a - b;
System.out.println("Subtraction= " + c);
}}
Output:
a=6
b=3
Subtraction=3

“*” operator in Java:
Class MultiplicationInt
{
public static void main (String args[])
{
int a = 6;
int b = 3;
System.out.println("a = " + a);
System.out.println("b =" + b);
int c = a * b;
System.out.println("Multiplication= " + c);
}}
Output:
a=6
b=3
Multiplication=18

“/” operator in Java:
Class DivisionInt
{

public static void main (String args[])
{
int a = 6;
int b = 3;
System.out.println("a = " + a);
System.out.println("b =" + b);
c = a / b;
System.out.println("division=" + c);
}}
Output:
a=6
b=3
Division=3

Remainder or modulus operator (%) in Java:

Class Remainderoptr
{
public static void main (String args[])
{
int a = 6;
int b = 3;
System.out.println("a = " + a);
System.out.println("b =" + b);
c = a % b;
System.out.println("remainder=" + c);
}}

Output:
a=6
b=3
Remainder= 0
** When both operands in the expression are integers then the expression is called Integer
expression and the opration is called Integer arithmetic.
** When both operands in the expression are real then the expression is called Real
expression and the opration is called Real arithmetic.
** When one operand in the expression is integer and other is float then the expression is
called Mixed Mode Arithmetic expression and the opration is called Mixed Mode
Arithmetic operation.
The following program shows the use of operators with integer data and store data in float
variable.
Program: a program to calculate average of three numbers.
class Avg1
{
public static void main(String args[])
{
int a=3;
int b=3;
int c=4;
int avg;
avg=a+b+c;
avg=avg/3;
System.out.println(“Avg of three numbers=”+avg);
}}

Output:

Avg of three numbers=3

Logical operators:
When we want to form compound conditions by combining two or more relations, then we
can use logical operators.
Following table shows the details of operators.

The logical expression defer a value of true or false.
Following table shows the truth table of Logical – OR and Logical –AND.

Now the following program shows the use of Logical operators.
class LogicalOptr
{
public static void main (String args[])
{
boolean a = true;
boolean b = false;
System.out.println("a||b = " +(a||b));
System.out.println("a&&b = "+(a&&b));
System.out.println("a! = "+(!a));
}

}
Output:
a||b = true
a&&b = false
a! = false

Relational Operators:

When evaluation of two numbers is performed depending upon their relation, assured
decisions are made.
The value of relational expression is either true or false.
If A=7 and A < 10 is true while 10 < A is false.
Following table shows the details of operators.

Now, following examples show the actual use of operators.
1) If 10 > 30 then result is false
2) If 40 > 17 then result is true
3) If 10 >= 300 then result is false
4) If 10 <= 10 then result is true
Now the following program shows the use of operators.
(1) Program 1:
class Reloptr1
{
public static void main (String args[])
{
int a = 10;
int b = 30;
System.out.println("a>b = " +(a>b));
System.out.println("a<b = "+(a<b));
System.out.println("a<=b = "+(a<=b));
}
}
Output:

a>b = false
a<b = true
a<=b = true
(2) Program 3
class Reloptr3
{
public static void main (String args[])
{
int a = 10;
int b = 30;
int c = 30;
System.out.println("a>b = " +(a>b));
System.out.println("a<b = "+(a<b));

System.out.println("a<=c = "+(a<=c));
System.out.println("c>b = " +(c>b));
System.out.println("a<c = "+(a<c));
System.out.println("b<=c = "+(b<=c));
}
}
Output:
a>b = false
a<b = true
a<=c = true
c>b = true
a<c = true
b<=c = true

Assignment Operators:

Assignment Operators is used to assign the value of an expression to a variable and is also
called as Shorthand operators.
Variable_name binary_operator = expression
Following table show the use of assignment operators.

These operators avoid repetition, easier to read and write.
Now the following program shows the use of operators.
class Assoptr
{
public static void main (String args[])
{
int a = 10;
int b = 30;
int c = 30;
a+=1;
b-=3;
c*=7;
System.out.println("a = " +a);
System.out.println("b = "+b);
System.out.println("c = "+c);
}
}
Output:
a = 11
b = 18
c = 310

Conditional Operators:

The character pair ?: is a ternary operator of Java, which is used to construct conditional
expressions of the following form:

Expression1 ? Expression3 : Expression3

The operator ? : works as follows:

Expression1 is evaluated if it is true then Expression3 is evaluated and becomes the value
of the conditional expression. If Expression1 is false then Expression3 is
evaluated and its value becomes the conditional expression.

For example:

A=3;
B=4;
C=(A<B)?A:B;
C=(3<4)?3:4;
C=4

Now the following program shows the use of operators.

class Coptr
{
public static void main (String args[])
{
int a = 10;
int b = 30;
int c;
c=(a>b)?a:b;
System.out.println("c = " +c);
c=(a<b)?a:b;
System.out.println("c = " +c);
}
}

Output:
c = 30
c = 10
program3: Write a program to check whether number is positive or
negative.
class PosNeg
{
public static void main(String args[])
{i
nt a=10;
int flag=(a<0)?0:1;
if(flag==1)
System.out.println(“Number is positive”);
else
System.out.println(“Number is negative”);
}
}

Output:

Number is positive

Increment and Decrement Operators:
The increment operator ++ adds 1 to a variable. Usually the variable is an integer type, but
it can be a floating point type. The two plus signs must not be split by any character.
Usually they are written immediately next to the variable.

Following table shows the use of operators.

Now the following program shows the use of operators.
class IncDecOp
{
public static void main(String args[])
{i
nt x=1;
int y=3;
int u;
int z;
u=++y;
z=x++;
System.out.println(x);
System.out.println(y);
System.out.println(u);
System.out.println(z);
}}
Output:

3441
3.2.4.7 Bit Wise Operators:
Bit wise operator execute single bit of their operands.
Following table shows bit wise operator:

Now the following program shows the use of operators.
(1) Program 1
class Boptr1
{
public static void main (String args[])
{
int a = 4;
int b = a<<3;
38

System.out.println("a = " +a);
System.out.println("b = " +b);
}
}
Output:

a =4
b =16
(2) Program 3
Class Boptr3
{
public static void main (String args[])
{
int a = 16;
int b = a>>3;
System.out.println("a = " +a);
System.out.println("b = " +b);
}
}
Output:
a = 16
b = 3
(Please refer following table)

Separator:
Separators are symbols. It shows the separated code.they describe function of our code.

OPERATOR PRECEDENCE IN JAVA:
An arithmetic expression without any parentheses will be calculated from left to right
using the rules of precedence of operators.
There are two priority levels of arithmetic operators are as follows:
(a) High priority (* / %)
(b) Low priority (+ -)
The evaluation process includes two left to right passes through the expression. During the
first pass, the high priority operators are applied as they are encountered.
During the second pass, the low priority operators are applied as they are encountered.
For example:

Z=A-B/3+C*3-1
When A=10, B=13, C=3

First pass:
Z=10-(13/3) + (3*3)-1
Z=10-4+3-1

Second pass:
Z=6+3-1
Z=7
Answer is=7

Following table shows associativity of operators.

CONTROL STRUCTURE:
In Java, program is a set of statements and which are executed sequentially in order in
which they appear. In that statements, some calculation have need of executing with some
conditions and for that we have to provide control to that statements. In other words,
Control statements are used to provide the flow of execution with condition.

In java program, control structure is divide in three parts:
** Selection statement
** Iteration statement

** Jumps in statement

Selection Statement:
Selection statement is also called as Decision making statements because it provides the
decision making capabilities to the statements.

In selection statement, there are two types:
** if statement
** switch statement
These two statements allows you to control the flow of a program with their conditions.

if Statement:

The “if statement” is also called as conditional branch statement. It is used to program
execution through two paths.

The syntax of “if statement” is as follows:
Syntax:
if (condition)
{
Statement 1;
Statement 2;
...
}
else
{
Statement 3;
Statement 4;
...
}

The “if statement” is a commanding decision making statement and is used to manage the
flow of execution of statements. The “if statement” is the simplest one in decision
statements. Above syntax is shows two ways decision statement and is used in
combination with statements.

Following figure shows the “if statement”
true
False

Simple if statement:

Syntax:
If (condition)
{
Statement block;
}
Statement-a;

In statement block, there may be single statement or multiple statements. If the condition is
true then statement block will be executed. If the condition is false then statement block
will omit and statement-a will be executed.

Following figure shows the flow of statement.

false

True

The if…else statement:

Syntax:
If (condition)
{
True - Statement block;
}
else
{
False - Statement block;
}
Statement Block
Statement-a;

If the condition is true then True - statement block will be executed. If the condition is
false then False - statement block will be executed. In both cases the statement-a will
always executed.
.
Following program shows the use of if statement.
Program: write a program to check whether the number is positive or negative.

import java.io.*;
class NumTest
{
public static void main (String[] args) throws IOException
{
int Result=11;
System.out.println("Number is"+Result);
if (Result < 0)
{
System.out.println("The number "+ Result +" is negative");
}
else
{
System.out.println("The number "+ Result +" is positive");
}
System.out.println("------- * ---------");
}
}

Output:
C:\MCA>java NumTest
Number is 11
The number 11 is positive
------- * ---------
(All conditional statements in Java require boolean values, and that's what the ==, <, >, <=,
and >= operators all return. A Boolean is a value that is either true or false. If you need to
set a Boolean variable in a Java program, you have to use the constants true and false.
Boolean values are no more integers than are strings).

For example: write a program to check whether the number is
divisible by 2 or not.
import java.io.*;

class divisorDemo
{
public static void main(String[] args)
{
int a =11;
if(a%2==0)
{
System.out.println(a +" is divisible by 2");
}
else
{
System.out.println(a+" is not divisible by 2");
}
}
}

Output:

C:\MCA>java divisorDemo
11 is not divisible by 2

Nesting of if-else statement:

Syntax:
if (condition1)
{
If(condition2)
{
Statement block1;
}
else
{
Statement block2;
}
}
else
{
Statement block3;
}
Statement 4:
If the condition1 is true then it will be goes for condition2. If the condition2 is true then
statement block1 will be executed otherwise statement2 will be executed. If the condition1
is false then statement block3 will be executed. In both cases the statement4 will always
executed.

For example: Write a program to find out greatest number from three numbers.

class greatest
{
public static void main (String args[])
{
int a=10;
int b=20;
int c=3;
if(a>b)
{

if(a>c)
{
System.out.println("a is greater number");
}
else
{
System.out.println("c is greater number");
}
}
else
{
if(c>b)
{
System.out.println("c is greater number");
}
else
{
System.out.println("b is greater number");
}
}
}
}

Output:
C:\MCA>java greatest
b is greater number

switch statement:
In Java, switch statement check the value of given variable or statement against a list of
case values and when the match is found a statement-block of that case is executed. Switch
statement is also called as multiway decision statement.

Syntax:
switch(condition)// condition means case value
{
case value-1:statement block1;break;
case value-2:statement block2;break;
case value-3:statement block3;break;
…
default:statement block-default;break;
}
statement a;
The condition is byte, short, character or an integer. value-1,value-2,value-3,…are constant
and is called as labels. Each of these values be matchless or unique with the statement.
Statement block1, Statement block2, Statement block3,..are list of statements which
contain one statement or more than one statements. Case
label is always end with “:” (colon).
Program: write a program for bank account to perform following
operations.
-Check balance
-withdraw amount
-deposit amount

For example:
import java.io.*;

class bankac
{
public static void main(String args[]) throws Exception
{
int bal=20000;
int ch=Integer.parseInt(args[0]);
System.out.println("Menu");
System.out.println("1:check balance");
System.out.println("2:withdraw amount... plz enter choice and amount");
System.out.println("3:deposit amount... plz enter choice and amount");
System.out.println("4:exit");
switch(ch)
{
case 1:System.out.println("Balance is:"+bal);
break;
case 2:int w=Integer.parseInt(args[1]);
if(w>bal)
{
System.out.println("Not sufficient balance");
}
bal=bal-w;
System.out.println("Balance is"+bal);
break;
case 3:int d=Integer.parseInt(args[1]);
bal=bal+d;
System.out.println("Balance is"+bal);
break;
default:break;
}
}
}

Output:
C:\MCA>javac bankac.java
C:\MCA>java bankac 1

Menu
1:check balance
2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit
Balance is:20000
C:\MCA>java bankac 2 2000

Menu
1:check balance
2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit
Balance is18000
C:\MCA>java bankac 3 2000

Menu
1:check balance
2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount
4:exit
Balance is22000
C:\MCA>java bankac 4

Menu
1:check balance
2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit
C:\MCA>java bankac

Iteration Statement:
The process of repeatedly executing a statements and is called as looping. The statements
may be executed multiple times (from zero to infinite number). If a loop executing
continuous then it is called as Infinite loop. Looping is also called as iterations.
In Iteration statement, there are three types of operation:

for loop
while loop
do-while loop

for loop:

The for loop is entry controlled loop. It means that it provide a more conscious loop
control structure.
Syntax:
for(initialization;condition;iteration) //iteration means increment/decrement
{
Statement block;
}
When the loop is starts, first part(i.e. initialization) is execute. It is just like a counter and
provides the initial value of loop. But the thing is, I nitialization is executed only once. The
next part(i.e. condition) is executed after the initialization. The important thing is,
this part provide the condition for looping. If the condition will satisfying then loop will
execute otherwise it will terminate.

Third part(i.e. iteration) is executed after the condition. The statements that incremented or
decremented the loop control variables.

For example:

import java.io.*;
class number
{
public static void main(String args[]) throws Exception
{
int i;
System.out.println("list of 1 to 10 numbers");
for(i=1;i<=10;i++)
{
System.out.println(i);
}
}
}

Output:

C:\MCA>javac number.java
C:\MCA>java number
list of 1 to 10 numbers
1
2
3
4
5
6
7
8
9
10
Here we declare i=1 and then it check the condition that if i<10 then only loop will be
executed. After first iteration the value of i will print and it will incremented by 1. Now the
value of i=2 and again we have to check the condition and value of i will print and
then increment I by 1 and so on.

while loop:
The while loop is entry controlled loop statement. The condition is evaluated, if the
condition is true then the block of statements or statement block is executed otherwise the
block of statement is not executed.

Syntax:
While(condition)
{
Statement block;
}

For example: Write a program to display 1 to 10 numbers using while loop.

import java.io.*;
class number
{
public static void main(String args[]) throws Exception
{
int i=1;
System.out.println("list of 1 to 10 numbers");
while(i<=10)
{
System.out.println(i);
i++;
}
}
}

Output:

C:\MCA>javac number.java
C:\MCA>java number
list of 1 to 10 numbers
1
2
3
4
5

6
7
8
9
10

do-while loop:

In do-while loop, first attempt of loop is to execute then it check the condition. The benefit
of do-while loop/statement is that we get entry in loop and then condition will check for
very first time. In while loop, condition will check first and if condition will not satisfied
then the loop will not execute.

Syntax:
do
{
Statement block;
}While(condition);

In program,when we use the do-while loop, then in very first attempt, it allows us to get
enter in loop and execute that loop and then check the condition.

Following program show the use of do-while loop.
For example: Write a program to display 1 to 10 numbers using do while loop.

import java.io.*;
class number
{
public static void main(String args[]) throws Exception
{
int i=1;
System.out.println("list of 1 to 10 numbers");
do
{
System.out.println(i);
i++;
}while(i<=10);
}
}

Output:
list of 1 to 10 numbers
1
2
3
4
5
6
7
8
9
10

Jumps in statement:

Statements or loops perform a set of operartions continually until the control variable will
not satisfy the condition. but if we want to break the loop when condition will satisy then
Java give a permission to jump from one statement to end of loop or beginning
of loop as well as jump out of a loop.

“break” keyword use for exiting from loop and “continue” keyword use for continuing the
loop.

Following statements shows the exiting from loop by using “break” statement.

do-while loop:
do
{
………………
………………
if(condition)
{
break;//exit from if loop and do-while loop
}
……………..
……………..
}
While(condition);
………..
………..
For loop:
for(…………)
{
……………
…………..
if(…………..)
break; ;//exit from if loop and for loop
……………
……………
}
……………
…………..
While loop:
while(…………)
{
……………
…………..
if(…………..)
break; ;//exit from if loop and while loop
……………
……………
}

Following statements shows the continuing the loop by using “continue” statement.

do-while loop:
do
{
………………
………………

if(condition)
{
continue;//continue the do-while loop
}
……………..
……………..
}
While(condition);
………..
………..
For loop:
for(…………)
{
……………
…………..
if(…………..)
continue ;// continue the for loop
……………
……………
}
……………
…………..
While loop:
while(…………)
{
……………
…………..
if(…………..)
continue ;// continue the while loop
……………
……………
}
…………….
…………….
Labelled loop:

We can give label to a block of statements with any valid name.following example shows
the use of label, break and continue.

For example:

Import java.io.*;
class Demo
{
public static void main(String args[]) throws Exception
{
int j,i;
LOOP1: for(i=1;i<100;i++)
{
System.out.println(““);
if(i>=10)
{
break;
}
for(j=1;j<100;j++)

{
System.out.println(“$ ”);
if(i==j)
{
continue LOOP1;
}
}
}
System.out.println(“ End of program “);
}
}

Output:
$
$ $
$ $ $
$ $ $ $
$ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $ $
$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $
End of program

