Java Programming — 18BCS43C

By Dr. S. Chitra,

Associate Professor,

Post Graduate & Research Department of Computer Science,
Government Arts College(Autonomous), Coimbatore - 641018

Subject Title - Sub Code
ectl

2018 -19 JAVA PROGRAMMING 18BCS43C

Onwards

e To introduce the basics of Java Programming and JVM
e To impart Fundamental knowledge in Object Oriented Programming
e Ability to generate simple packages and to design Threads.

UNIT-I
Introduction: Benefits of OOPS- Java History-Java Features- Java Virtual Machine - Java
Environment- Java Tokens- Constants- Variables- Data Types — Operators and

Expressions-Decision Making and Branching- Decision Making and Looping.

UNIT-II

Classes, Objects and Methods: Classes and Objects - Constructors- Method Overloading-
Static Members-Inheritance- Overriding Methods- Final Variables, Final Methods and
Final Classes - Finalize Method- Abstract Methods and Abstract Classes —Visibility
Control - Arrays - Strings.

UNIT-III

Interfaces, Packages and Thread: Defining Interface- Extending Interfaces Implementing
Interfaces — Packages-Multithreaded Programming: Thread Life Cycle - Thread
Exceptions — Thread Priority- Synchronization.

UNIT-1V

Fie Handling: Types of Errors — Exceptions- Syntax of Exception Handling Code-
Multiple Catch Statements- Using Finally Statements- Managing Input / Output Files in
Java: Concept of Streams- Stream Classes- Character Stream - Classes-Reading / Writing

Characters- Reading / Writing Bytes- Handling Primitive Data Types- Random Access
files.

UNIT-V

AWT and Applet: Event Handling Methods- Labels- Button Control- Check Box Control-
Radio Button Control- Choice Control- List Control-Flow Layout- Border Layout-Grid
Layout — Menus- Mouse Events-Applets: Life cycle of an Applet-Development and
Execution of a Simple Applet.

TEXT BOOKS

E. Balagurusamy, ‘“Programming with JAVA”, Tata McGraw Hill, New Delhi, 4th edition.
Units-1, II, I and IV

C. Muthu, “Programming with JAVA”, Vijay Nicole Imprints Private Limited, Chennai,
Second Edition, 2011. - Unit-V

REFERENCE BOOKS

PatricNaughton, and Herbert Schildt “Java - The Complete Reference” Tata McGraw Hill
Publishers, 2011

JAVA INTRODUCTION:

e Javais a high-level, third generation programming language.

e Java can be used to write computer applications that play games, store data or do
any of the thousands of other things computer software can do.

e Special programs called applets can be downloaded from the Internet and played
safely within a web browser. Java language is called as a true (100%) Object-
Oriented Programming language.

BASIC CONCEPT OF OOPS (OBJECT-ORIENTED PROGRAMMING):
There are some basic concepts of object oriented programming as follows:

. Object

. Class

. Data abstraction

. Data encapsulation

. Inheritance

. Polymorphism

. Dynamic binding

~N O\ R W

1. Object

Objects are important runtime entities in object oriented method. They may characterize a
location, a bank account, and a table of data or any entry that the program must handle.

For example:

Object: STUDENT
DATA

Name
Address
Marks

METHODS

Total ()
Average ()

Representation of an object “STUDENT”

Each object holds data and code to operate the data. Object can interact without having to
identify the details of each other’s data or code. It is sufficient to identify the type of
message received and the type of reply returned by the objects.

Another example of object is CAR

Object: CAR
DATA

Colour
Cost
METHODS

Locklt ()
Drivelt ()

Representation of object “CAR”

2. Classes

A class is a set of objects with similar properties (attributes), common behaviour
(operations), and common link to other objects. The complete set of data and code of an
object can be made a user defined data type with the help of class.

The objects are variable of type class. A class is a collection of objects of similar type.
Classes are user defined data types and work like the buid in type of the programming
language. Once the class has been defmed, we can make any number of objects belonging
to that class. Each object is related with the data of type class with which they are
formed.As we learned that, the classification of objects into various classes is based on its
properties (States) and behaviour (methods). Classes are used to distinguish one type of
object from another. The important thing about the class is to identify the properties and
procedures and applicability to its instances.

For example: Vehicle

Vehicle

Car

MH-01 1234

2N\

COST=4,00,000 COLOUR=Red

Representation of class

In above example, we will create an objects MH-01 1234 belonging to the class car. The
objects develop their distinctiveness from the difference in their attribute value and
relationships to other objects.

3. Data Abstraction

Data abstraction refers to the act of representing important description without including
the background details or explanations.

Classes use the concept of abstraction and are defined as a list of abstract attributes such as
size, cost and functions operate on these attributes. They summarize all the important
properties of the objects that are to be created.

Classes use the concepts of data abstraction and it is called as Abstract Data Type (ADT).

4. Data Encapsulation

Data Encapsulation means wrapping of data and functions into a single unit (ie. class). It
is most useful feature of class. The data is not easy to get to the outside world and only
those functions which are enclosed in the class can access it.

These functions provide the boundary between Object’s data and program. This insulation
of data from direct access by the program is called as Data hiding.

For example:

Information in

b A

Data, process/Functions —p
Information out

Encapsulation

5. Inheritance

Inheritance is the process by which objects of one class can get the properties of objects of
another class. Inheritance means one class of objects inherits the data and behaviours from
another class. Inheritance maintains the hierarchical classification in which a class inherits
from its parents.

Inheritance provides the important feature of OOP that is reusability. That means we can
include additional characteristics to an existing class without modification. This is possible
deriving a new class from existing one. In other words, it is property of object-oriented
systems that allow objects to be built from other objects. Inheritance allows openly taking
help of the commonality of objects when constructing new classes. Inheritance is a
relationship between classes where one class is the parent class of another (derived) class.
The derived class holds the properties and behaviour of base class in addition to the
properties and behaviour of derived class.Data, process/Functions

For Example:

Vehicle

Car

I Iyundat

Santro Accent

Inheritance
In the above Figure, the Santro is a part of the class Hyundai which is again part of the
class car and car is the part of the class vehicle. That means vehicle class is the parent
class.

6. Polymorphism

(Poly means “many” and morph means ‘“form”).Polymorphism means the ability to take
more than one form.Polymorphism plays a main role in allocate objects having different
mternal structures to share the same external interface. This means that a general class of
operations may be accessed in the same manner even though specific activities associated
with each operation may differ. Polymorphism is broadly used in implementing
mheritance.It means objects that can take on or assume many different forms.
Polymorphism means that the same operations may behave ifferently on different classes.
Booch defines polymorphism as the relationship of objects many different classes by some
common super class. Polymorphism allows us to write generic, reusable code more easily,
because we can specify general instructions and delegate the implementation detail to the
objects involved.

For Example:
In a pay roll system, manager, office staff and production worker objects all will respond
to the compute payroll message, but the real operations performed are object particular.

Shape
Draw()
Rectangle Object Square Object Circle Object
Draw (Rectangle) Draw (Square) Draw (Circle)
Polymorphism

7. Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to
the call. Dynamic binding means that the code related with a given procedure call is not
known until the time of the call at run time.

Dynamic binding is associated polymorphism and inheritance.

Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-orientation contributes
to the solution of many problems associated with the development and quality of software products.
The new technology promises greater programmer productivity, better quality of software and lesser
maintenance cost, The principal advantages are:
e Through inheritance, we can eliminate redundant code and extend the use of existing classes.
e We can build programs from the standard working modules that communicate with one another,
rather than having to start writing the code from scratch. This leads to saving of development
time and higher productivity.
* The principle of data hiding helps the programmer to build secure programs that cannot be
invaded by code in other parts of the program.
It is possible to have multiple objects to coexist without any interference.
It is possible to map objects in the problem domain to those objects in the program.
It is easy to partition the work in a project based on objects.
The data-centered design approach enables us to capture more details of a model in an
implementable form.
Object-oriented systems can be casily upgraded from small to large systems.
* Message passing techniques for communication between objects make the interface descriptions
with external systems much simpler.
e Software complexity can be easily managed.

L L

JAVA HISTORY :

Java is a general-purpose, object-oriented programming language developed by Sun
Microsystems of USA in 1991.Originally called Oak by James Gosling (one of the
inventor of the language). Java was invented for the development of software for consumer
electronic devices like TVs, tosters, etc. The main aim was to make java simple, portable
and reliable. Java Authors: James Gosling, Arthur Van, and others

Following table shows the year and beginning of Java.

Year Progress

1990 Sun decided to developed software that could be used
for electronic devices. And the project called as Green
Project head by James Gosling.

1991 Announcement of a new language named “Oak’

1992 The team verified the application of their new language
to manage a list of home appliances using a hand held
device.

1993 The World Wide Web appeared on the Internet and
transformed the text-based interface to a graphical rich
environment.

1994 The team developed a new Web browsed called “Hot
Java’ to locate and run Applets.

1995 Oak was renamed to Java, as it did not survive “legal”
registration. Many companies such as Netscape and
Microsoft announced their support for Java.

1996 Java language is now famous for Internet
programming as well as a general purpose OO
language.

1997 Sun releases Java Development Kit(JDK 1.1)

1998 Sun releases Software Development Kit (SDK 1.2)

1999 Sun releases Java 2 platform Standard Edition (J2SE)
and Enterprise Edition(J2EE).

2000 J25E with SDK 1.3 was released.

2002 J2SE with SDK 1.4 was released.

2004 J2SE with JDK 5.0 was released.

JAVA FEATURES:

As we know that the Java is an object oriented programming language developed by Sun
Microsystems of USA i 1991. Java is first programming language which is not attached
with any particular hardware or operating system. Program developed in Java can be
executed anywhere and on any system.

Features of Java are as follows:

1. Compiled and Interpreted

2. Platform Independent and portable
3. Object- oriented

4. Robust and secure

5. Distributed

6. Familiar, simple and small
7. Multithreaded and Interactive
8. High performance

9. Dynamic and Extensible

1. Compiled and Interpreted
Basically a computer language is either compiled or interpreted. Java comes together both
these approach thus making Java a two-stage system.

Java compiler translates Java code to Bytecode instructions and Java Interpreter generate
machine code that can be directly executed by machine that is running the Java program.

2. Platform Independent and portable

Java supports the feature portability. Java programs can be easilly moved from one
computer system to another and anywhere. Changes and upgrades in operating systems,
processors and system resources will not force any alteration in Java programs. This is
reason why Java has become a trendy language for programming on Internet which
interconnects different kind of systems worldwide. Java certifies portability in two ways.
First way is, Java compiler generates the bytecode and that can be executed on any
machine. Second way is, size of primitive data types are machine independent.

3. Object- oriented

Java is truly object-oriented language. In Java, almost everything is an Object. All program
code and data exist in objects and classes. Java comes with an extensive set of classes;
organize in packages that can be used in program by Inheritance. The object model in Java
is trouble-free and easy to enlarge.

4. Robust and secure

Java is a most strong language which provides many securities to make certain reliable
code. It is design as garbage — collected language, which helps the programmers virtually
from all memory management problems. Java also includes the concept of exception
handling, which detain serious errors and reduces all kind of threat of crashing the system.
Security is an important feature of Java and this is the strong reason that programmer use
this language for programming on Internet. The absence of pointers in Java ensures that
programs cannot get right of entry to memory location without proper

approval.

S. Distributed

Java is called as Distributed language for construct applications on networks which can
contribute both data and programs. Java applications can open and access remote objects
on Internet easily. That means multiple programmers at multiple remote locations to work
together on single task.

6. Simple and small
Java is very small and simple language. Java does not use pointer and header files, goto
statements, etc. It eliminates operator overloading and multiple inheritance.

7. Multithreaded and Interactive

Multithreaded means managing multiple tasks simultaneously. Java maintains
multithreaded programs. That means we need not wait for the application to complete one
task before starting next task. This feature is helpful for graphic applications.

8. High performance

Java performance is very extraordinary for an interpreted language, majorly due to the use
of intermediate bytecode. Java architecture is also designed to reduce overheads during
runtime. The incorporation of multithreading improves the execution speed of program.

9. Dynamic and Extensible

Java is also dynamic language. Java is capable of dynamically linking in new class,
libraries, methods and objects. Java can also establish the type of class through the query
building it possible to either dynamically link or abort the program, depending on the
reply.Java program is support functions written in other language such as C and C++,
known as native methods.

COMPARISON IN JAVA AND C++

Java

C++

Java is true Object-
oriented language.

C++ is basically C with
Object-oriented extension.

Java does not support
operator overloading.

C++ supports
overloading.

operator

It supports labels with
loops and statement
blocks

It supports goto statement.

Java does not have
template classes as in
C++.

C++ has template classes.

Java compiled into
byte code for the Java

Virtual Machine. The
source code is
independent on

oEerating sgstem.

Source code can be written
to be platform independent
and written to take
advantage of platform.C++
typically compiled into
machine code.

6 Java does not support | C++ supports multiple
multiple inheritance of | inheritance of classes.
classes but it supports
interface.

7 Runs in a protected | Exposes low-level system
virtual machine. facilities.

8 Java does not support | C++ support global
global variable. Every | variable.
variable should
declare in class.

9 Java does not use | C++ uses pointer.
pointer.

10 |t Strictly enforces an]It Allows both procedural
object _ oriented | programming and object-
programming oriented programming.
paradigm.

11 There are no header | We have to use header file
files in Java. in C++.

Java and Internet

Java is strongly associated with the Intemet because of the fact that the first application program
written in Java was HotJava, a Web browser to run applets on Internet. Internet users can use Java to
create applet programs and run them locally using a “Java-enabled browser” such as HotJava. They
can also use a Java-enabled browser to download an applet located on a computer anywhere in the
Internet and run it on his local computer

. In fact, Java applets have made the Internet a

true extension of the storage system of the local computer.

Ramote:

|

Compuier | C—=———=3 [
| =

/ Remote
{ Applet

Downloading of applets via Inftermet

Java and World Wide Web

World Wide Web (WWW) 1s an open-ended information retrieval system designed to be used in the
Internet’s distributed environment. This system contains what are known as Web pages that provide
both information and controls. Unlike a menu-driven system where we are guided through a particular
direction using a decision tree structure, the Web system is open-ended and we can navigate to a new
document in any direction This is made possible with the help of a language
called Hypertext Markup Language (HTML). Web pages contain HTML tags that enable us to find,
retrieve, manipulate and display documents worldwide.

J b - d
l'l'l.
LN rp."l“ '.‘ / \ p
3 / -."“
I |
; . '\\'1 I.‘IJ \rl I\l\"'\-u_\I "
N / \ i
” “ .H'\-L .A"-{ .

Web structure of information search

Java was meant to be used in distributed environments such as Internet. Since, both the Web and
Java share the same philosophy, Java could be easily incorporated into the Web system. Before Java,
the World Wide Web was limited to the display of still images and texts. However, the incorporation of
Java into Web pages has made it capable of supporting animation, graphics, games, and a wide range of
special effects. With the support of Java, the Web has become more interactive and dynamic. On the
other hand, with the support of Web, we can run a Java program on someone else’s computer across the
Internet.

Java communicates with a Web page through a special tag called <APPLET>. Figure illustrates
this process. The figure shows the following communication steps:

1. The user sends a request for an HTML document to the remote computer’s Web server. The Web
server is a program that accepts a request, processes the request, and sends the required
document.

2. The HTML document is returned to the user’s browser. The document contains the APPLET
tag, which identifics the applet.

3. The corresponding applet bytecode is transferred to the user’s computer. This bytecode had been

previously created by the Java compiler using the Java source code file for that applet.

The Java-cnabled browser on the user’s computer interprets the bytecodes and provides output.
The user may have further interaction with the applet but with no further downloading from the
provider’s Web server. This is because the bytecode contains all the information necessary to
interpret the applet.

-

User's Computer Remote Computer

Java's interaction with the web

JAVA VIRTUAL MACHINE:

As we know that all programming language compilers convert the source code to machine
code.Same job done by Java Compiler to run a Java program, but the difference is that
Java compiler convert the source code into Intermediate code is called

as bytecode. This machine is called the Java Virtual machine and it exits only inside the
computer memory.

Following figure shows the process of compilation.

Java - Java - Virtual
Program "| Compiler - Machine
Source Code Byte Code

The Virtual machine code is not machine specific. The machine specific code is generated.
By Java iterpreter by acting as an itermediary between the virtual machne and real
machines shown below

Byte R Java . Machine code
Code Interpreter
Virtual machine Real Machine

Java Object Framework act as the intermediary between the user programs and the virtual
machine which in turn act as the intermediary between the operating system and the Java
Object Framework

Operating System TN

Java Virtual Machine

Java Object Framework }

Compiler and Interpreter

User Application Programs

Layers of Interaction for Java programs

JAVA ENVIRONMENT:

Java environment includes a number of development tools,classes and methods. The
development tools are part of the system known as Java Development Kit (JDK) and the
classes and methods are part of the Java Standard Library (JSL), also known as the
Application Programming Interface (API).

Java Development kit (JDK) — The JDK comes with a set of tools that are used for
developing and running Java program. It includes:

1. Appletviewer - (It is used for viewing the applet)

2.Javac - (Itis a Java Compiler)

3.Java - (Itis ajava interpreter)

4. Javap - (Java diassembler,which convert byte code into program description)
5.Javah - (It is for java C header files)

6. Javadoc - (Itis for creating HTML document)

7.Jdb - (It is Java debugger)

For compiling and running the program we have to use following commands:

a) javac (Java compiler)

In java, we can use any text editor for writing program and then save that program with
“java” extension. Java compiler convert the source code or program in bytecode and
mterpreter convert “java” file in “.class” file.

Syntax:
CY\avac filename.java

If my filename is “abc.java” then the syntax will be
C:\javac abc.java

b) java(Java Interpreter)

As we learn that, we can use any text editor for writing program and then save that
program with “java” extension. Java compiler convert the source code or program in
bytecode and interpreter convert “java” file in “.class” file.

Syntax:
C)\ava filename

If my filename is abc.java then the syntax will be

C:\java abc
'i’ Ii—wi e !7
Tool Description
appletviewer Enables us to run Java applets (without actually using a Java-compatible browser).
java ' Java interpreter, which runs applets and spplications by reading and interpreting bytecode files,
javac The Java compiler, which translates Java sourcecode 1o bytecode files that the interpreter can
understand.
javadoc Creates HTML-format documentation from Java source code files.
javah Produces header files for use with native methods.
javap Java disassembler, which enables us to convert bytecode files into a program deseription.
ydb Java debugger, which helps us to find errors in our programs.
The way these tools are applied to build and run application programs is inFig To

create a Java program, we need to create a source code file using a text editor. The source code is then
compiled using the Java compiler javac and executed using the Java interpreter java. The Java
debugger jdb is used to find crrors, if any, in the source code. A compiled Java program can be
converted into a source code with the help of Java disassembler javap. We learn more about these tools
as we work through the book.

Texti Editor

pa— . A

Java
Source - javadoc . ’::T::
Coue

1

Bavac l

e ——

. H—

!

Java : Header
Class ~§ _ jsvah -

, Fiie |

| S ——

'

Java -i E‘ l

Process of building and running Java application programs

Application Programming Interface

The Java Standard Library (or API) includes hundreds of classes and methods grouped into several
functional packages (sce Appendix G). Most commonly used packages are:
¢ Language Support Package: A collection of classes and methods required for implementing
basic features of Java.
o Utilities Package: A collection of classes to provide utility functions such as date and time
functions.
e Input/Output Package: A collection of classes required for input/output manipulation
o Networking Package: A collection of classes for communicating with other computers via
Internet
o AWT Package: The Abstract Window Tool Kit package contains classes that implements
platform-independent graphical user interface
Applet Package: This includes a set of classes that allows us to create Java applets

The use of these library classes will become evident when we start developing Java programs.

SIMPLE JAVA PROGRAM:

class FirstProgram

[{)ublic static void main(String args[])
éystemout.println (“This is my first program”);
|

The file must be named “FirstProgram.java” to equivalent the class name containing the
main method.

1. Java is case sensitive. This program defines a class called “FirstProgram”.

2. A class is an object oriented term. It is designed to perform a specific task. A Java

class is defined by its class name, an open curly brace, a list of methods and fields,
and a close curly brace.

3. The name of the class is made of alphabetical characters and digits without spaces,
the first character must be alphabetical.

4. The line “public static void main (String [] args)” shows where the program will
start running. The word main means that this is the main method —

The JVM starts running any program by executing this method first.

1. The main method in “FirstProgram.java” consists of a single statement
System.out. println ("This is my first program");

2. The statement outputs the character between quotes to the console.

For writing, compling and executing a java program, the following steps should be
followed:.

1. Edit the program by the use of Notepad.

2. Save the program to the hard disk.

3. Compile the program with the javac command.(Java compiler)

4. If there are syntax errors, go back to Notepad and edit the program.
5. Run the program with the java command.(Java Interpreter)

6. If it does not run correctly, go back to Notepad and edit the program.
7. When it shows result then stop.

DATA TYPES, VARIABLES AND
CONSTANTS

DATA TYPES:

* A data type is a scheme for representing values.

* Values are not just numbers, but any manner of data that a computer can process.
* The data type defines the kind of data that is represented by a variable.

* As with the keyword class, Java data types are case sensitive.

There are two types of data types
1. primitive data type
2. non-pimitive data type

In primitive data types, there are two categories
1. numeric means Integer, Floating points

2. Non-numeric means Character and Boolean

In non-pimitive types, there are three categories

1. classes
2. arrays
3. interface

Following table shows the datatypes with their size and ranges.

Data type Size (byte) Range

byte 1 -128 t0 127

boolean 1 True or false

char 2 A-Z a-z,0-9. etc.

short 2 -32768 to 32767

Int 4 (about) -2 million to 2 million
long 8 (about) -10E18 to 10E18
float 4 -3.4E38 to 3.4E18

double 8 -1.7E308 to 1.7E308

Datatypes with size and range
Integer data type:
Integer datatype can hold the numbers (the number can be positive number or negative
number). In Java, there are four types of integer as follows:
1. byte
2. short
3. int
4. long
We can make integer long by adding ‘I’ or ‘L’ at the end of the number.

Floating point data type:

It is also called as Real number and when we require accuracy then we can use it.
There are two types of floating point data type.

1. float

2. double

Character data type:
It is used to store single character in memory. It uses 2 bytes storage space.

Boolean data type:

It is used when we want to test a particular condition during the execution of the program.
There are only two values that a boolean type can hold: true and false. Boolean type is
denoted by the keyword boolean and uses only one bit of storage.

Following program shows the use of datatypes.

Program:
import java.io.DatalnputStream;
class cc2

{

public static void main(String args[]) throws Exception
{

DatalnputStream sl=new DatalnputStream(System.in);
byte rollno;

mt marks1,marks2, marks3;

float avg;

System.out.println("Enter roll number:");
rollno=Byte.parse Byte(s1.readLine());
System.out.println("Enter marks ml, m2,m3:");
marks1=Integer.parseInt(s1.readLine());
marks2=Integer.parseInt(s1.readLine());
marks3=Integer.parseInt(s1.readLine());

avg = (marks1+marks2+marks3)/3;
System.out.println("Roll number is="+rollno);
System.out.println("Average is="+avg);

}

}

Output:

Cicc>java cc2

Enter roll number:

07

Enter marks ml, m2,m3:

66

21

77

88

Roll number is=7

Average is=77.0

MIXING DATA TYPES:

Java allows mixing of constants and variables of different types in an expression, but
during assessment it hold to very strict rules of type conversion.

When computer consider operand and operator and if operands are different types then
type is automatically convert in higher type.

Following table shows the automatic type conversion.

char | byte short | int long float | doubl

&
Char int int int int long float double
Byte int int int int long float double
Short | int int int int Iong float double
Int int int int int Iong float double
Long Iong lo ng Iong Iong lo ng float double

Float float float float float float float double

doubl | doubl | doubl | doubl | doubl | doubl | doubl | double
e e e e e e e

2.3 VARIABLES:
Variables are labels that express a particular position in memory and connect it with a data

type.

The first way to declare a variable: This specifies its data type, and reserves memory for it.
It assigns zero to primitive types and null to objects.

dataType variableName;

The second way to declare a variable: This specifies its data type, reserves memory for i,
and puts an initial value into that memory. The initial value must be of the correct data

type.
dataType variableName = initialValue;
The first way to declare two variables: all of the same data type, reserves memory for each.

dataType variableNameOne, variableNameTwo;
The second way to declare two variables: both of the same data type, reserves memory,
and puts an initial value in each variable.

dataType variableNamel = initialValuel,
variableNamell=initialValuell;

Variable name:

** Use only the characters ‘a’ through ‘z’, ‘A’ through ‘Z’, ‘0’ through 9, character °_’,
and character ‘$’.

** A name cannot include the space character.

** Do not begin with a digit.

** A name can be of any realistic length.

*# Upper and lower case count as different characters.

** A name cannot be a reserved word (keyword).

** A name must not previously be in utilized in this block of the program.

CONSTANT :

Constant means fixed value which is not change at the time of execution of program. In
Java, there are two types of constant as follows:

e Numeric Constants
e Integer constant

Real constant
Character Constants
Character constant
String constant

Integer Constant:
An Integer constant refers to a series of digits. There are three types of integer as follows:

a) Decimal integer Embedded spaces, commas and characters are not allowed in
between digits.

For example:

23411

7,00,000

17.33

b) Octal integer
It allows us any sequence of numbers or digits from O to 7 with leading O and it is called as
Octal integer.

For example:
011

00

0425

c) Hexadecimal integer

It allows the sequence which is preceded by 0X or Ox and it also allows alphabets from ‘A’
to ‘F’ or ‘a’ to ‘" (‘A’ to ‘F’ stands for the numbers ‘10’ to ‘15°) it is called as
Hexadecimal integer.

For example:

0x7

00X

0A2B

Real Constant

It allows us fractional data and it is also called as folating point constant. It is used for
percentage, height and so on.

For example:

0.0234

0.777

-1.23

Character Constant

It allows us single character within pair of single coute.
For example:

GA?

‘7,

C\’

String Constant

It allows us the series of characters within pair of double coute.
For example:

“WELCOME”

“END OF PROGRAM”

“BYE ...BYE”

wp

Symbolic constant:

In Java program, there are many things which is requires repeatedly and if we want to
make changes then we have to make these changes in whole program where this variable is
used. For this purpose, Java provides ‘final’ keyword to declare the value of variable as
follows:

Syntax:
final type Symbolic_name=value;

For example:

If I want to declare the value of ‘PI’ then:

final float PI=3.1459

the condition is, Symbolic_name will be in capital letter(it shows the difference between
normal variable and symblic name) and do not declare in method.

Backslash character constant:
Java support some special character constant which are given in following table.

Constant | Importance
b’ Back space
\t Tab

n’ New line

AV Backslash

v Single coute
" Double coute

Comments:

A comment is a note written to a human reader of a program. The program compiles and
runs exactly the same with or without comments. Comments start with the two characters
“Il” (slash slash). Those characters and everything that follows them on the same line are
ignored by the java compiler. everything between the two characters “/*”and the two
characters ‘““*/” are unobserved by the compiler. There can be many lines of comments
between the ‘/*” and the “*/”.

COMMAND LINE ARGUMENTS:

Command line arguments are parameters that are supplied to the application program at
the time of invoking its execution.They must be supplied at the time of its execution
following the file name.

In the main () method, the args is confirmed as an array of string known as string objects.
Any argument provided in the command line at the time of program execution, are
accepted to the array args as its elements. Using index or subscripted entry can access the
individual elements of an array. The number of element in the array args can be getting
with the length parameter.

For example:
class Add
{

public static void main(String args[])

{

int a=Integer.parselnt(args[0]);

int b=Integer.parselnt(args[1]);

int c=a+b;
System.out.println(“Addition is="+c);
}

}

output:
cjavac Add.java
c\java Add 52

TOKENS IN JAVA:
Smallest individual unit in a program are known as tokens. The compiler recognizes them
for building up expression and statements.

There are five types of token as follows:
1. Literals

2. Identifiers

3. Operators

4. Separators

Literals:

Literals in Java are a sequence of characters (digits, letters

and other characters) that characterize constant values to be stored
in variables. Java language specifies five major types of literals are
as follows:

1. Integer literals

2. Floating point literals

3. Character literals

4. String literals

5. Boolean literals

Identifiers:

Identifiers are programmer-created tokens. They are used

for naming classes, methods, variables, objects, labels, packages
and interfaces in a program. Java identifiers follow the following
rules:

1. They can have alphabets, digits, and the underscore and
dollar sign characters.

2. They must not start with a digit.

3. Uppercase and lowercase letters are individual.

4. They can be of any length.

Identifier must be meaningful, easily understandable and
descriptive.

For example:

Private and local variables like “length”.

Name of public methods and instance variables begin with
lowercase letter like “addition”

Keywords:

Keywords are important part of Java. Java language has

reserved 50 words as keywords. Keywords have specific meaning
in Java. We cannot use them as variable, classes and method.
Following table shows keywords.

abstract char catch boolean
default finally do implements
if long throw private
package static break double
this volatile import protected
class throws byte else
float final public transient
native instanceof case extends
int null const new
return try for switch
interface void while synchronized
short continue goto super
assert const

Operator:

Java carries a broad range of operators. An operator is symbols that specify operation to be
performed may be certain mathematical and logical operation. Operators are used in
programs to operate data and variables. They frequently form a part of mathematical or
logical expressions.

Categories of operators are as follows:

1. Arithmetic operators

2. Logical operators

3. Relational operators

4. Assignment operators

5. Conditional operators

6. Increment and decrement operators

7. Bit wise operators

Arithmetic operators:

Arithmetic operators are used to make mathematical expressions and the working out as
same in algebra. Java provides the fundamental arithmetic operators. These can operate on
built in data type of Java.

Following table shows the details of operators.

Operator | Importance/ significance

+ Addition

- Subtraction

/ Division

¥ Multiplication

% Modulo division or remainder

Now the following programs show the use of arithmetic operators.
“+” operator in Java: program to add two integer numbers and display the result.

class AdditionInt

{

public static void main (String args[])
{

nt a=6;

mt b =3;

System.out.println("a =" + a);
System.out.println("b =" + b);

int c=a+b;
System.out.println("Addition =" + c);
}

}

Output:

a=06

b=3

Addition=9

“-” gperator in Java:

class SubstractionInt

{

public static void main (String args[])
{

mnt a=6;

nt b =3;

System.out.println("a =" + a);
System.out.println("b =" + b);
nt c=a-b;
System.out.println("Subtraction=
1

Output:

a=6

b=3

Subtraction=3

"

+C);

“*” gperator in Java:
Class MultiplicationInt
{

public static void main (String args[])
{

mt a=6;

nt b =3;

System.out.println("a =" + a);
System.out.println("b =" + b);

mt c=a*b;
System.out.println("Multiplication= " + ¢);
1}

Output:

a=6

b=3

Multiplication=18

“/” operator in Java:
Class Divisionlnt
{

public static void main (String args[])
{

nt a=6;

it b=3;

System.out.println("a =" + a);
System.out.println("b =" + b);
c=a/b;
System.out.println("division=" + c);
1

Output:

a=6

b=3

Division=3

Remainder or modulus operator (%) in Java:
Class Remainderoptr

{

public static void main (String args[])
{

nt a=6;

int b=3;

System.out.println("a =" + a);
System.out.println("b =" + b);
c=a%b;
System.out.println("remainder=" + c);

1

Output:

a=6

b=3

Remainder= 0

** When both operands in the expression are integers then the expression is called Integer
expression and the opration is called Integer arithmetic.

** When both operands in the expression are real then the expression is called Real
expression and the opration is called Real arithmetic.

** When one operand in the expression is integer and other is float then the expression is
called Mixed Mode Arithmetic expression and the opration is called Mixed Mode
Arithmetic operation.

The following program shows the use of operators with integer data and store data in float
variable.

Program: a program to calculate average of three numbers.

class Avgl

{

public static void main(String args[])

{

mnt a=3;

nt b=3;

nt c=4;

int avg;

avg=a+b+c;

avg=avg/3;

System.out.println(“Avg of three numbers="+avg);

1

Output:

Avg of three numbers=3

Logical operators:

When we want to form compound conditions by combining two or more relations, then we
can use logical operators.

Following table shows the details of operators.

Operators | Importance/ significance
I Logical - OR
&& Logical —AND
! Logical -NOT

The logical expression defer a value of true or false.
Following table shows the truth table of Logical — OR and Logical —~AND.

Truth table for Logical — OR operator:

Operand1 | Operand3 | Operand1 || Operand3
T T T
T F T
F T T
F F F
T-True
F - False

Truth table for Logical — AND operator:

Operand1 | Operand3 | Operand1 && Operand3
T T T
T F F
F T F
F F F
T—=True
F — False

Now the following program shows the use of Logical operators.
class LogicalOptr

{

public static void main (String args[])

{

boolean a = true;

boolean b = false;

System.out.println("al[b =" +(al|b));

System.out.println("a&&b = "+(a&k&b));

System.out.println("a! = "+(!a));

}

}
Output:

ab = true
a&&b = false
a! = false

Relational Operators:

When evaluation of two numbers is performed depending upon their relation, assured
decisions are made.

The value of relational expression is either true or false.

If A=7 and A <10 is true while 10 < A is false.

Following table shows the details of operators.

Operator Importance/ significance
> Greater than
< Less than
I= Not equal to
>= Greater than or equal to
<= Less than or equal to

Now, following examples show the actual use of operators.
1) If 10 > 30 then result is false

2) If 40 > 17 then result is true

3) If 10 >= 300 then result is false

4) If 10 <= 10 then result is true

Now the following program shows the use of operators.
(1) Program 1:

class Reloptrl

{

public static void main (String args[])
{

mt a=10;

int b =30;

System.out.println("a>b =" +(a>b));
System.out.println("a<b = "+(a<b));
System.out.println("a<=b = "+(a<=b));
}

}
Output:

a>b = false

a<b = true

a<=b = true

(2) Program 3

class Reloptr3

{

public static void main (String args[])
{

nt a=10;

int b =30;

nt ¢ =30;

System.out.println("a>b =" +(a>b));
System.out.println("a<b = "+(a<b));

System.out.println("a<=c = "+(a<=c));
System.out.println("c>b =" +(c>b));
System.out.println("a<c = "+(a<c));
System.out.println("b<=c = "+(b<=c));

}

}

Output:
a>b = false
a<b = true
a<=c = true
c>b = true
a<c = true
b<=c = true

Assignment Operators:

Assignment Operators is used to assign the value of an expression to a variable and is also
called as Shorthand operators.

Variable_name binary_operator = expression

Following table show the use of assignment operators.

Simple Assignment | Statement with shorthand
Operator Operators

A=A+1 A+=1

A=A-1 A-=1

A=A/(B+1) A/=(B+1)

A=A*(B+1) A*=(B+1)

A=A/C A/=C

A=A%C A%=C

These operators avoid repetition, easier to read and write.
Now the following program shows the use of operators.
class Assoptr

{

public static void main (String args[])
{

it a=10;

mt b =30;

it ¢ = 30;

a+=1;

b-=3;

c*=T;
System.out.println("a
System.out.println("b
System.out.println(''c

}
}
Output:

a=11
b=18
c=310

" +a);
|l+b);
"+c);

Conditional Operators:

The character pair ?: is a ternary operator of Java, which is used to construct conditional
expressions of the following form:

Expressionl ? Expression3 : Expression3
The operator ? : works as follows:

Expressionl is evaluated if it is true then Expression3 is evaluated and becomes the value
of the conditional expression. If Expressionl is false then Expression3 is
evaluated and its value becomes the conditional expression.

For example:

A=3;

B=4;
C=(A<B)?AB;
C=(3<4)?34;
C=4

Now the following program shows the use of operators.

class Coptr

{

public static void main (String args[])
{

mt a=10;

mt b =30;

nt c;

c=(a>b)?ab;
System.out.println("c =" +c);
c=(a<b)?ab;
System.out.println("c =" +c);
}

}

Output:

c=30

c=10

program3: Write a program to check whether number is positive or
negative.

class PosNeg

{

public static void main(String args[])

{i

nt a=10;

int flag=(a<0)?0:1;

if(flag==1)

System.out.println(“Number is positive”);
else

System.out.println(“Number is negative™);

}
}

Output:

Number is positive

Increment and Decrement Operators:

The increment operator ++ adds 1 to a variable. Usually the variable is an integer type, but
it can be a floating point type. The two plus signs must not be split by any character.
Usually they are written immediately next to the variable.

Following table shows the use of operators.

Expression Process Example end result

A++ Add 1 to a variable | int A=10,B; A=11
after use. B=A++; BE=10

++A Add 1 to a variable | int A=10,B; A=11
before use. B=++A; B=11

A-- Subtract 1 from a|int A=10,B; A=9
variable after use. B=A--; B=10

--A Subtract 1 from a|int A=10.B; A=9
variable before use. | B=--A; B=9

Now the following program shows the use of operators.
class IncDecOp

{

public static void main(String args[])

{i

nt x=1;

nt y=3;

nt u;

nt z;

u=++y;

7=X++;

System.out.println(x);
System.out.println(y);
System.out.println(u);
System.out.println(z);

1

Output:

3441

3.2.4.7 Bit Wise Operators:

Bit wise operator execute single bit of their operands.
Following table shows bit wise operator:

Operator

Importance/ significance

Bitwise OR

& Bitwise AND

&= Bitwise AND assignment

|= Bitwise OR assignment
Bitwise Exclusive OR

<< Left shift

>> Right shift

ey

One's complement

Now the following program shows the use of operators.

(1) Program 1
class Boptrl
{

public static void main (String args[])

{

nt a=4;

nt b =a<<3;
38

System.out.println("a =" +a);
System.out.println("b =" +b);

}

}
Output:

a=4

b=16

(2) Program 3
Class Boptr3
{

public static void main (String args[])

{
mt a=16;
nt b=a>>3;

System.out.println("a =" +a);
System.out.println("b =" +b);

}

}
Output:

a=16
b=3
(Please refer following table)

356 138 64

33 16 8 4 3

3° 3/ 3°

Separator:
Separators are symbols. It shows the separated code.they describe function of our code.

Name use

() Parameter in method definition, containing statements
for conditions,etc.

_{ It is used for define a code for method and classes

[] It is used for declaration of array

X It is used to show the separate statement

, It is used to show the separation in identifier in variable

declarartion

It is used to show the separate package name from sub-

packages and classes, separate variable and method

from reference variable.

L

OPERATOR PRECEDENCE IN JAVA:

An arithmetic expression without any parentheses will be calculated from left to right
using the rules of precedence of operators.

There are two priority levels of arithmetic operators are as follows:

(a) High priority (*/ %)

(b) Low priority (+ -)

The evaluation process includes two left to right passes through the expression. During the
first pass, the high priority operators are applied as they are encountered.

During the second pass, the low priority operators are applied as they are encountered.

For example:

7Z=A-B/3+C*3-1
When A=10, B=13, C=3

First pass:
7=10-(13/3) + (3*3)-1
7=10-4+3-1

Second pass:
7=6+3-1
Z=7

Answer is=7

Following table shows associativity of operators.

Operator Associativity Rank
[] Left to right 1
() Left to right

Left to right
- Right to left
++ Right to left 3
-- Right to left
! Right to left
~ Right to left
(type) Right to left
* Left to right
/ Left to right 3
% Left to right
+ Left to right 4
- Left to right
<< Left to right
>> Left to right 5
>>> Left to right
< Left to right
<= Left to right
> Left to right 6
>= Left to right
Instanceof Left to right
== Left to right v
1= Left to right
& Left to right 8
A Left to right 9
| Left to right 10
&& Left to right 11
[l Left to right 13
?: Right to left 13
= Right to left 14

CONTROL STRUCTURE:

In Java, program is a set of statements and which are executed sequentially in order in
which they appear. In that statements, some calculation have need of executing with some
conditions and for that we have to provide control to that statements. In other words,
Control statements are used to provide the flow of execution with condition.

In java program, control structure is divide in three parts:
** Selection statement
** Jteration statement

** Jumps in statement

Selection Statement:
Selection statement is also called as Decision making statements because it provides the
decision making capabilities to the statements.

In selection statement, there are two types:

**if statement

** switch statement

These two statements allows you to control the flow of a program with their conditions.

if Statement:
The “if statement” is also called as conditional branch statement. It is used to program
execution through two paths.

The syntax of “if statement” is as follows:
Syntax:

if (condition)

{

Statement 1;

Statement 2;

}

else

{

Statement 3;
Statement 4;

}
The “if statement” is a commanding decision making statement and is used to manage the
flow of execution of statements. The “if statement” is the simplest one in decision

statements. Above syntax is shows two ways decision statement and is used in
combination with statements.

Following figure shows the “if statement”
true
False

Simple if statement:

Syntax:
If (condition)
{

Statement block;

}

Statement-a;
In statement block, there may be single statement or multiple statements. If the condition is
true then statement block will be executed. If the condition is false then statement block

will omit and statement-a will be executed.

Following figure shows the flow of statement.

false

True
The if...else statement:

Syntax:
If (condition)
{

True - Statement block;

}

else

{
False - Statement block;

]
Statement Block
Statement-a;

If the condition is true then True - statement block will be executed. If the condition is
false then False - statement block will be executed. In both cases the statement-a will
always executed.

Following program shows the use of if statement.
Program: write a program to check whether the number is positive or negative.

import java.io.*;
class NumTest

{
public static void main (String[] args) throws IOException

{

int Result=11;
System.out.println("Number is"+Result);
if (Result <0)

{

System.out.println("The number "+ Result +" is negative");

}

else

{

System.out.println("The number "+ Result +" is positive");

}
System.out.println("-------)
}
}

Output:

C\MCA>java NumTest
Number is 11

The number 11 is positive

%

(All conditional statements in Java require boolean values, and that's what the ==, <, >, <=,
and >= operators all return. A Boolean is a value that is either true or false. If you need to
set a Boolean variable in a Java program, you have to use the constants true and false.
Boolean values are no more integers than are strings).

For example: write a program to check whether the number is
divisible by 2 or not.
import java.io.*;

class divisorDemo

{

public static void main(String[] args)

{

mt a=11;

if(a%2==0)

{

System.out.println(a +"is divisible by 2");
}

else

{

System.out.println(a+" is not divisible by 2");
}

}

}

Output:
C\MCA>java divisorDemo
11 is not divisible by 2

Nesting of if-else statement:

Syntax:

if (conditionl)
{
If{condition2)
{

Statement blockl1;

}

else

{
Statement block2;
}
}

else

{

Statement block3;

}

Statement 4:

If the condition] is true then it will be goes for condition2. If the condition2 is true then
statement blockl will be executed otherwise statement2 will be executed. If the conditionl
is false then statement block3 will be executed. In both cases the statement4 will always
executed.

For example: Write a program to find out greatest number from three numbers.

class greatest

{

public static void main (String args[])
{

nt a=10;

nt b=20;

nt c=3;

ifla>b)

{

ifla>c)
{

System.out.println("a is greater number");

}

else

{

System.out.println("c is greater number");
}

}

else

{

if(c>b)

{

System.out.println("c is greater number");

}

else

{

System.out.println("b is greater number");

}

Output:
C:\MCA>java greatest
b is greater number

switch statement:

In Java, switch statement check the value of given variable or statement against a list of
case values and when the match is found a statement-block of that case is executed. Switch
statement is also called as multiway decision statement.

Syntax:

switch(condition)// condition means case value
{

case value-1:statement block]1;break;

case value-2:statement block2;break;

case value-3:statement block3;break;

default:statement block-default;break;

}

statement a;

The condition is byte, short, character or an integer. value-1,value-2,value-3,...are constant
and is called as labels. Each of these values be matchless or unique with the statement.
Statement block1, Statement block2, Statement block3,..are list of statements which
contain one statement or more than one statements. Case

label is always end with “” (colon).

Program: write a program for bank account to perform following

operations.

-Check balance

-withdraw amount

-deposit amount

For example:
import java.io.*;

class bankac
{

public static void main(String args[]) throws Exception

{
int bal=20000;

int ch=Integer.parselnt(args[0]);

System.out.println("Menu");

System.out.println("1 :check balance");

System.out.println("2:withdraw amount... plz enter choice and amount");
System.out.println("3:deposit amount... plz enter choice and amount");
System.out.println("4:exit");

switch(ch)

{

case 1:System.out.println("Balance is:"+bal);
break;

case 2:int w=Integer.parselnt(args[1]);
if(w>bal)

{

System.out.println("Not sufficient balance");
}

bal=bal-w;

System.out.println("Balance is"+bal);

break;

case 3:int d=Integer.parselnt(args[1]);
bal=bal+d;

System.out.println("Balance is"+bal);

break;

default:break;

}

}

}

Output:
C:\MCA>javac bankac.java
C\MCA>java bankac 1

Menu

I:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4exit

Balance is:20000

C\MCA>java bankac 2 2000

Menu

l:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4-exit

Balance is18000

C:\MCA>java bankac 3 2000

Menu
1:check balance
2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount
4-exit

Balance 1522000

C\MCA>java bankac 4

Menu

I:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4exit

CA\MCA>java bankac

Iteration Statement:

The process of repeatedly executing a statements and is called as looping. The statements
may be executed multiple times (from zero to infinite number). If a loop executing
continuous then it is called as Infinite loop. Looping is also called as iterations.

In Iteration statement, there are three types of operation:

L] for loop

[J while loop

LJ do-while loop

for loop:

The for loop is entry controlled loop. It means that it providle a more conscious loop
control structure.

Syntax:

for(initialization;,condition;iteration) /fiteration means increment/decrement

{

Statement block;

}

When the loop is starts, first part(ie. initialization) is execute. It is just like a counter and
provides the initial value of loop. But the thing is, 1 nitialization is executed only once. The
next part(ie. condition) is executed after the initialization. The important thing is,

this part provide the condition for looping. If the condition will satisfying then loop will
execute otherwise it will terminate.

Third part(i.e. iteration) is executed after the condition. The statements that incremented or
decremented the loop control variables.

For example:

import java.io.*;

class number

{

public static void main(String args[]) throws Exception
{

nt i

System.out.println("list of 1 to 10 numbers");
for(i=1;i<=10;i++)

{

System.out.println(i);

}

}

}

Output:

C\MCA>javac number.java
C:\MCA>java number
list of 1 to 10 numbers

— O 00 IO\ WL B~ WD

0

Here we declare i=1 and then it check the condition that if i<10 then only loop will be
executed. After first iteration the value of i will print and it will incremented by 1. Now the
value of i=2 and again we have to check the condition and value of i will print and

then increment I by 1 and so on.

while loop:

The while loop is entry controlled loop statement. The condition is evaluated, if the
condition is true then the block of statements or statement block is executed otherwise the
block of statement is not executed.

Syntax:
While(condition)
{

Statement block;

}

For example: Write a program to display 1 to 10 numbers using while loop.

import java.io.*;
class number

{

public static void main(String args[]) throws Exception
{

nt i=1;

System.out.println("list of 1 to 10 numbers");
while(i<=10)

{

System.out.println(i);

H+;

}

}

}

Output:

C:\MCA>javac number.java
C\MCA>java number

list of 1 to 10 numbers

DR W=

6
7
8
9
10

do-while loop:

In do-while loop, first attempt of loop is to execute then it check the condition. The benefit
of do-while loop/statement is that we get entry in loop and then condition will check for
very first time. In while loop, condition will check first and if condition will not satisfied
then the loop will not execute.

Syntax:

do

{

Statement block;

} While(condition);

In program,when we use the do-while loop, then in very first attempt, it allows us to get
enter in loop and execute that loop and then check the condition.

Following program show the use of do-while loop.
For example: Write a program to display 1 to 10 numbers using do while loop.

import java.io.*;

class number

{

public static void main(String args[]) throws Exception
{

nt i=1;

System.out.println("list of 1 to 10 numbers");
do

{

System.out.println(i);

i++;

} while(i<=10);

}

}

Output:
list of 1 to 10 numbers

— O 00 O\ LNt &~ W —

0

Jumps in statement:

Statements or loops perform a set of operartions continually until the control variable will
not satisfy the condition. but if we want to break the loop when condition will satisy then
Java give a permission to jump from one statement to end of loop or beginning

of loop as well as jump out of a loop.

“break” keyword use for exiting from loop and ‘“continue” keyword use for continuing the
loop.

Following statements shows the exiting from loop by using “break” statement.

do-while loop:
do

if(condition)
{
break;//exit from if loop and do-while loop

Following statements shows the continuing the loop by using “continue” statement.

do-while loop:
do

if(condition)

{

continue;//continue the do-while loop

Labelled loop:

We can give label to a block of statements with any valid name.following example shows
the use of label, break and continue.

For example:

Import java.io.™;
class Demo

{

public static void main(String args[]) throws Exception
{

mt j,i;

LOOP1I: for(i=1;i<100;i++)

{

System.out.println(““);

if(i>=10)

{

break;

}
for(j=1;<100;j++)

{

System.out.println(“$);
if(i==))

{

continue LOOPI;

}

}

}
System.out.println(*“ End of program *);

}
}

Output:

L LA LH LA A
@B L L L L
L L AL

$
$$
$$$
$$5588S
$$55588S

$$335588S
End of program

