
Java Programming – 18BCS43C

By Dr. S. Chitra,
Associate Professor,

Post Graduate & Research Department of Computer Science,
Government Arts College(Autonomous), Coimbatore - 641018

UNIT-II
Classes, Objects and Methods: Classes and Objects - Constructors- Method
Overloading- Static Members-Inheritance- Overriding Methods- Final
Variables, Final Methods and Final Classes - Finalize Method- Abstract
Methods and Abstract Classes –Visibility Control - Arrays - Strings.

Objects in Java

 Object − Objects have states and behaviors. Example: A dog has states - color, name,
breed as well as behaviors – wagging the tail, barking, eating. An object is an
instance of a class.

Some of the real-world objects around us are cars, dogs, humans, etc. All these objects have a
state and a behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking,
wagging the tail, running.

If you compare the software object with a real-world object, they have very similar
characteristics.

Software objects also have a state and a behavior. A software object's state is stored in fields
and behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the
object-to-object communication is done via methods.

Classes in Java

 Class − A class can be defined as a template/blueprint that describes the
behavior/state that the object of its type support.

 A class is a blueprint from which individual objects are created.

Definition: A class is a collection of objects of similar type. Once a class is
defined, any number of objects can be produced which belong to that class.

Class Declaration

class classname
{
… ClassBody
…}

Objects are instances of the Class. Classes and Objects are very much related to
each other. Without objects you can't use a class. Without class objects cannot
be created.

A general class declaration:
class name1
{
//public variable declaration
void methodname()
{
//body of method…
//Anything
}
}

Now following example shows the use of method.

class Demo
{
private int x,y,z;
public void input()
{
x=10;
y=15;
}
public void sum()
{
z=x+y;
}
public void print_data()
{
System.out.println(“Answer is =” +z);
}
public static void main(String args[])
{
Demo object=new Demo();
object.input();
object.sum();
object.print_data();
}
}

In program,
Demo object=new Demo();
object.input();
object.sum();

object.print_data();

In the first line we created an object. The three methods are called by using the
dot operator. When we call a method the code inside its block is executed. The
dot operator is used to call methods or access them.

Creating “main” in a separate class

We can create the main method in a separate class, but during compilation you
need to make sure that you compile the class with the “main” method.

class Demo
{
private int x,y,z;
public void input() {
x=10;
y=15;
}
public void sum()
{
z=x+y;
}
public void print_data()
{
System.out.println(“Answer is =” +z);
}
}
class SumDemo
{
public static void main(String args[])
{
Demo object=new Demo();
object.input();
object.sum();
object.print_data();
}
}

Use of dot operator
We can access the variables by using dot operator. Following program shows
the use of dot operator.

class DotDemo
{
int x,y,z;
public void sum(){
z=x+y;
}

public void show(){
System.out.println("The Answer is "+z);
}
}
class Demo1
{
public static void main(String args[]){
DotDemo object=new DotDemo();
DotDemo object2=new DotDemo();
object.x=10;
object.y=15;
object2.x=5;
object2.y=10;
object.sum();
object.show();
object2.sum();
object2.show();
}}
output :
C:\cc>javac Demo1.java
C:\cc>java Demo1
The Answer is 25
The Answer is 15

Instance Variable
All non-static variables declared inside a class are also known as instance
variable. This is because of the fact that each instance or object has its own copy
of values for the variables. Hence other use of the “dot” operator is to initialize
the value of variable for that instance.

Methods with parameters

Following program shows the method with passing parameter.
class prg
{
int n,n2,sum;
public void take(int x,int y)
{
n=x;
n2=y;
}
public void sum()
{
sum=n+n2;
}
public void print()
{
System.out.println("The Sum is"+sum);

}
}
class prg1
{
public static void main(String args[])
{
prg obj=new prg();
obj.take(10,15);
obj.sum();
obj.print();
}
}

Methods with a Return Type

When method return some value that is the type of that method.

For Example: some methods are with parameter but that method did not return
any value that means type of method is void. And if method return integer value
then the type of method is an integer.

Following program shows the method with their return type.
class Demo1
{
int n,n2;
public void take(int x,int y)
{
n=x;
n=y;
}
public int process()
{
return (n+n2);
}
}
class prg
{
public static void main(String args[])
{
int sum;
Demo1 obj=new Demo1();
obj.take(15,25);
sum=obj.process();
System.out.println("The sum is"+sum);
}
}
Output:

The sum is 25

Following is a sample of a class.

Example

public class Dog {
 String breed;

 int age;
 String color;

 void barking() {
 }

 void hungry() {
 }

 void sleeping() {

 }

}

A class can contain any of the following variable types.

 Local variables − Variables defined inside methods, constructors or blocks are called
local variables. The variable will be declared and initialized within the method and
the variable will be destroyed when the method has completed.

 Instance variables − Instance variables are variables within a class but outside any
method. These variables are initialized when the class is instantiated. Instance

variables can be accessed from inside any method, constructor or blocks of that
particular class.

 Class variables − Class variables are variables declared within a class, outside any
method, with the static keyword.

A class can have any number of methods to access the value of various kinds of methods. In
the above example, barking(), hungry() and sleeping() are methods.

Following are some of the important topics that need to be discussed when looking into
classes of the Java Language.

Creating an Object

A class provides the blueprints for objects. So basically, an object is created from a class. In
Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class −

 Declaration − A variable declaration with a variable name with an object type.

 Instantiation − The 'new' keyword is used to create the object.

 Initialization − The 'new' keyword is followed by a call to a constructor. This call
initializes the new object.

Following is an example of creating an object −

Example

public class Puppy {

 public Puppy(String name) {
 // This constructor has one parameter, name.

 System.out.println("Passed Name is :" + name);

 }

 public static void main(String []args) {
 // Following statement would create an object myPuppy

 Puppy myPuppy = new Puppy("tommy");

 }

}

If we compile and run the above program, then it will produce the following result −

Output

Passed Name is :tommy

Accessing Instance Variables and Methods

Instance variables and methods are accessed via created objects. To access an instance
variable, following is the fully qualified path −

/* First create an object */

ObjectReference = new Constructor();

/* Now call a variable as follows */

ObjectReference.variableName;

/* Now you can call a class method as follows */

ObjectReference.MethodName();

Example

This example explains how to access instance variables and methods of a class.

public class Puppy {
 int puppyAge;

 public Puppy(String name) {

 // This constructor has one parameter, name.

 System.out.println("Name chosen is :" + name);
 }

 public void setAge(int age) {
 puppyAge = age;

 }

 public int getAge() {

 System.out.println("Puppy's age is :" + puppyAge);
 return puppyAge;

 }

 public static void main(String []args) {

 /* Object creation */

 Puppy myPuppy = new Puppy("tommy");

 /* Call class method to set puppy's age */
 myPuppy.setAge(2);

 /* Call another class method to get puppy's age */
 myPuppy.getAge();

 /* You can access instance variable as follows as well */

 System.out.println("Variable Value :" + myPuppy.puppyAge);

 }

}

If we compile and run the above program, then it will produce the following result −

Output

Name chosen is :tommy

Puppy's age is :2
Variable Value :2

Java Program structure

Source File Declaration Rules

Source file declaration rules are essential when declaring classes, import statements
and package statements in a source file.

 There can be only one public class per source file.

 A source file can have multiple non-public classes.

 The public class name should be the name of the source file as well which should be

appended by .java at the end. For example: the class name is public class
Employee{} then the source file should be as Employee.java.

 If the class is defined inside a package, then the package statement should be the first
statement in the source file.

 If import statements are present, then they must be written between the package
statement and the class declaration. If there are no package statements, then the
import statement should be the first line in the source file.

 Import and package statements will imply to all the classes present in the source file.

It is not possible to declare different import and/or package statements to different
classes in the source file.

Classes have several access levels and there are different types of classes; abstract classes,
final classes, etc. We will be explaining about all these in the access modifiers chapter.

Apart from the above mentioned types of classes, Java also has some special classes called
Inner classes and Anonymous classes.

Java Package

In simple words, it is a way of categorizing the classes and interfaces. When developing
applications in Java, hundreds of classes and interfaces will be written, therefore
categorizing these classes is a must as well as makes life much easier.

Import Statements

In Java if a fully qualified name, which includes the package and the class name is given,
then the compiler can easily locate the source code or classes. Import statement is a way of
giving the proper location for the compiler to find that particular class.

For example, the following line would ask the compiler to load all the classes available in
directory java_installation/java/io −

import java.io.*;

A Simple Case Study

For our case study, we will be creating two classes. They are Employee and EmployeeTest.

First open notepad and add the following code. Remember this is the Employee class and
the class is a public class. Now, save this source file with the name Employee.java.

The Employee class has four instance variables - name, age, designation and salary. The
class has one explicitly defined constructor, which takes a parameter.

Example

import java.io.*;
public class Employee {

 String name;
 int age;

 String designation;

 double salary;

 // This is the constructor of the class Employee

 public Employee(String name) {
 this.name = name;

 }

 // Assign the age of the Employee to the variable age.

 public void empAge(int empAge) {
 age = empAge;

 }

 /* Assign the designation to the variable designation.*/

 public void empDesignation(String empDesig) {

 designation = empDesig;
 }

 /* Assign the salary to the variable salary.*/
 public void empSalary(double empSalary) {

 salary = empSalary;
 }

 /* Print the Employee details */
 public void printEmployee() {

 System.out.println("Name:"+ name);

 System.out.println("Age:" + age);
 System.out.println("Designation:" + designation);

 System.out.println("Salary:" + salary);
 }

}

In Java, processing starts from the main method. Therefore, in order for us to run this

Employee class there should be a main method and objects should be created. We will be
creating a separate class for these tasks.

Following is the EmployeeTest class, which creates two instances of the class Employee and
invokes the methods for each object to assign values for each variable.

Save the following code in EmployeeTest.java file.

import java.io.*;
public class EmployeeTest {

 public static void main(String args[]) {

 /* Create two objects using constructor */
 Employee empOne = new Employee("James Smith");

 Employee empTwo = new Employee("Mary Anne");

 // Invoking methods for each object created

 empOne.empAge(26);

 empOne.empDesignation("Senior Software Engineer");
 empOne.empSalary(1000);

 empOne.printEmployee();

 empTwo.empAge(21);

 empTwo.empDesignation("Software Engineer");
 empTwo.empSalary(500);

 empTwo.printEmployee();

 }

}

Now, compile both the classes and then run EmployeeTest to see the result as follows −

Output

C:\> javac Employee.java
C:\> javac EmployeeTest.java

C:\> java EmployeeTest

Name:James Smith
Age:26

Designation:Senior Software Engineer

Salary:1000.0
Name:Mary Anne

Age:21

Designation:Software Engineer
Salary:500.0

Java Methods

A Java method is a collection of statements that are grouped together to perform an
operation. When you call the System.out.println() method, for example, the system actually
executes several statements in order to display a message on the console.

Now you will learn how to create your own methods with or without return values, invoke a
method with or without parameters, and apply method abstraction in the program design.

Creating Method

Considering the following example to explain the syntax of a method −

Syntax

public static int methodName(int a, int b) {
 // body

}

Here,

 public static − modifier

 int − return type

 methodName − name of the method

 a, b − formal parameters

 int a, int b − list of parameters

Method definition consists of a method header and a method body. The same is shown in the
following syntax −

Syntax

modifier returnType nameOfMethod (Parameter List) {
 // method body

}

The syntax shown above includes −

 modifier − It defines the access type of the method and it is optional to use.

 returnType − Method may return a value.

 nameOfMethod − This is the method name. The method signature consists of the
method name and the parameter list.

 Parameter List − The list of parameters, it is the type, order, and number of
parameters of a method. These are optional, method may contain zero parameters.

 method body − The method body defines what the method does with the statements.

Example

Here is the source code of the above defined method called min(). This method takes two
parameters num1 and num2 and returns the maximum between the two −

/** the snippet returns the minimum between two numbers */

public static int minFunction(int n1, int n2) {
 int min;

 if (n1 > n2)
 min = n2;

 else

 min = n1;

 return min;

}

Method Calling

For using a method, it should be called. There are two ways in which a method is called i.e.,
method returns a value or returning nothing (no return value).

The process of method calling is simple. When a program invokes a method, the program

control gets transferred to the called method. This called method then returns control to the
caller in two conditions, when −

 the return statement is executed.

 it reaches the method ending closing brace.

The methods returning void is considered as call to a statement. Lets consider an example −

System.out.println("This is tutorialspoint.com!");

The method returning value can be understood by the following example −

int result = sum(6, 9);

Following is the example to demonstrate how to define a method and how to call it −

Example

public class ExampleMinNumber {

 public static void main(String[] args) {

 int a = 11;

 int b = 6;
 int c = minFunction(a, b);

 System.out.println("Minimum Value = " + c);

 }

 /** returns the minimum of two numbers */

 public static int minFunction(int n1, int n2) {

 int min;

 if (n1 > n2)
 min = n2;

 else

 min = n1;

 return min;
 }

}

This will produce the following result −

Output

Minimum value = 6

The void Keyword

The void keyword allows us to create methods which do not return a value. Here, in the

following example we're considering a void method methodRankPoints. This method is a
void method, which does not return any value. Call to a void method must be a statement
i.e. methodRankPoints(255.7);. It is a Java statement which ends with a semicolon as shown
in the following example.

Example

public class ExampleVoid {

 public static void main(String[] args) {

 methodRankPoints(255.7);
 }

 public static void methodRankPoints(double points) {
 if (points >= 202.5) {

 System.out.println("Rank:A1");

 }else if (points >= 122.4) {
 System.out.println("Rank:A2");

 }else {
 System.out.println("Rank:A3");

 }

 }

}

This will produce the following result −

Output

Rank:A1

Passing Parameters by Value

While working under calling process, arguments is to be passed. These should be in the

same order as their respective parameters in the method specification. Parameters can be
passed by value or by reference.

Passing Parameters by Value means calling a method with a parameter. Through this, the
argument value is passed to the parameter.

Example

The following program shows an example of passing parameter by value. The values of the
arguments remains the same even after the method invocation.

public class swappingExample {

 public static void main(String[] args) {

 int a = 30;
 int b = 45;

 System.out.println("Before swapping, a = " + a + " and b = " + b);

 // Invoke the swap method

 swapFunction(a, b);

 System.out.println("\n**Now, Before and After swapping values will be same here**:");
 System.out.println("After swapping, a = " + a + " and b is " + b);

 }

 public static void swapFunction(int a, int b) {

 System.out.println("Before swapping(Inside), a = " + a + " b = " + b);

 // Swap n1 with n2

 int c = a;
 a = b;

 b = c;
 System.out.println("After swapping(Inside), a = " + a + " b = " + b);

 }

}

This will produce the following result −

Output

Before swapping, a = 30 and b = 45

Before swapping(Inside), a = 30 b = 45
After swapping(Inside), a = 45 b = 30

Now, Before and After swapping values will be same here:
After swapping, a = 30 and b is 45

Method Overloading

When a class has two or more methods by the same name but different parameters, it is
known as method overloading. It is different from overriding. In overriding, a method has
the same method name, type, number of parameters, etc.

Let’s consider the example discussed earlier for finding minimum numbers of integer type.
If, let’s say we want to find the minimum number of double type. Then the concept of

overloading will be introduced to create two or more methods with the same name but
different parameters.

The following example explains the same −

Example

public class ExampleOverloading {

 public static void main(String[] args) {

 int a = 11;

 int b = 6;

 double c = 7.3;

 double d = 9.4;
 int result1 = minFunction(a, b);

 // same function name with different parameters
 double result2 = minFunction(c, d);

 System.out.println("Minimum Value = " + result1);
 System.out.println("Minimum Value = " + result2);

 }

 // for integer

 public static int minFunction(int n1, int n2) {

 int min;
 if (n1 > n2)

 min = n2;

 else
 min = n1;

 return min;

 }

 // for double

 public static double minFunction(double n1, double n2) {

 double min;
 if (n1 > n2)

 min = n2;
 else

 min = n1;

 return min;

 }

}

This will produce the following result −

Output

Minimum Value = 6

Minimum Value = 7.3

Overloading methods makes program readable. Here, two methods are given by the same

name but with different parameters. The minimum number from integer and double types is
the result.

Using Command-Line Arguments

Sometimes you will want to pass some information into a program when you run it. This is
accomplished by passing command-line arguments to main().

A command-line argument is the information that directly follows the program's name on
the command line when it is executed. To access the command-line arguments inside a Java
program is quite easy. They are stored as strings in the String array passed to main().

Example

The following program displays all of the command-line arguments that it is called with −

public class CommandLine {

 public static void main(String args[]) {

 for(int i = 0; i<args.length; i++) {

 System.out.println("args[" + i + "]: " + args[i]);
 }

 }

}

Try executing this program as shown here −

$java CommandLine this is a command line 200 -100

This will produce the following result −

Output

args[0]: this
args[1]: is

args[2]: a
args[3]: command

args[4]: line

args[5]: 200
args[6]: -100

The this keyword

this is a keyword in Java which is used as a reference to the object of the current class, with

in an instance method or a constructor. Using this you can refer the members of a class such
as constructors, variables and methods.

Note − The keyword this is used only within instance methods or constructors

In general, the keyword this is used to −

 Differentiate the instance variables from local variables if they have same names,
within a constructor or a method.

class Student {

 int age;
 Student(int age) {

 this.age = age;
 }

}

 Call one type of constructor (parametrized constructor or default) from other in a
class. It is known as explicit constructor invocation.

class Student {
 int age

 Student() {
 this(20);

 }

 Student(int age) {

 this.age = age;

 }

}

Example

Here is an example that uses this keyword to access the members of a class. Copy and paste
the following program in a file with the name, This_Example.java.

public class This_Example {

 // Instance variable num
 int num = 10;

 This_Example() {
 System.out.println("This is an example program on keyword this");

 }

 This_Example(int num) {

 // Invoking the default constructor
 this();

 // Assigning the local variable num to the instance variable num
 this.num = num;

 }

 public void greet() {

 System.out.println("Hi Welcome to Tutorialspoint");
 }

 public void print() {
 // Local variable num

 int num = 20;

 // Printing the local variable

 System.out.println("value of local variable num is : "+num);

 // Printing the instance variable

 System.out.println("value of instance variable num is : "+this.num);

 // Invoking the greet method of a class

 this.greet();
 }

 public static void main(String[] args) {
 // Instantiating the class

 This_Example obj1 = new This_Example();

 // Invoking the print method

 obj1.print();

 // Passing a new value to the num variable through parametrized constructor

 This_Example obj2 = new This_Example(30);

 // Invoking the print method again

 obj2.print();
 }

}

This will produce the following result −

Output

This is an example program on keyword this

value of local variable num is : 20

value of instance variable num is : 10
Hi Welcome to Tutorialspoint

This is an example program on keyword this

value of local variable num is : 20
value of instance variable num is : 30

Hi Welcome to Tutorialspoint

Variable Arguments(var-args)

JDK 1.5 enables you to pass a variable number of arguments of the same type to a method.
The parameter in the method is declared as follows −

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one
variable-length parameter may be specified in a method, and this parameter must be the last
parameter. Any regular parameters must precede it.

Example

public class VarargsDemo {

 public static void main(String args[]) {

 // Call method with variable args

 printMax(34, 3, 3, 2, 56.5);
 printMax(new double[]{1, 2, 3});

 }

 public static void printMax(double... numbers) {

 if (numbers.length == 0) {
 System.out.println("No argument passed");

 return;

 }

 double result = numbers[0];

 for (int i = 1; i < numbers.length; i++)

 if (numbers[i] > result)
 result = numbers[i];

 System.out.println("The max value is " + result);

 }

}

This will produce the following result −

Output

The max value is 56.5
The max value is 3.0

The finalize() Method

It is possible to define a method that will be called just before an object's final destruction by

the garbage collector. This method is called finalize(), and it can be used to ensure that an
object terminates cleanly.

For example, you might use finalize() to make sure that an open file owned by that object is
closed.

To add a finalizer to a class, you simply define the finalize() method. The Java runtime calls
that method whenever it is about to recycle an object of that class.

Inside the finalize() method, you will specify those actions that must be performed before
an object is destroyed.

The finalize() method has this general form −

protected void finalize() {

 // finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined
outside its class.

This means that you cannot know when or even if finalize() will be executed. For example,
if your program ends before garbage collection occurs, finalize() will not execute.

Constructor

Constructors

When discussing about classes, one of the most important sub topic would be constructors.
Every class has a constructor. If we do not explicitly write a constructor for a class, the Java
compiler builds a default constructor for that class.

Each time a new object is created, at least one constructor will be invoked. The main rule of

constructors is that they should have the same name as the class. A class can have more than
one constructor.

Following is an example of a constructor −

Example

public class Puppy {
 public Puppy() {

 }

 public Puppy(String name) {
 // This constructor has one parameter, name.

 }

}

Java also supports Singleton Classes where you would be able to create only one instance of
a class.

Note − We have two different types of constructors. We are going to discuss constructors in
detail in the subsequent chapters.

https://www.tutorialspoint.com/java/java_using_singleton.htm

A constructor initializes an object when it is created. It has the same name as its class and is
syntactically similar to a method. However, constructors have no explicit return type.

Typically, you will use a constructor to give initial values to the instance variables defined
by the class, or to perform any other start-up procedures required to create a fully formed
object.

All classes have constructors, whether you define one or not, because Java automatically
provides a default constructor that initializes all member variables to zero. However, once
you define your own constructor, the default constructor is no longer used.

Syntax

Following is the syntax of a constructor −

class ClassName {
 ClassName() {

 }

}

Java allows two types of constructors namely −

 No argument Constructors

 Parameterized Constructors

No argument Constructors

As the name specifies the no argument constructors of Java does not accept any parameters
instead, using these constructors the instance variables of a method will be initialized with
fixed values for all objects.

Example

Public class MyClass {
 Int num;

 MyClass() {

 num = 100;
 }

}

You would call constructor to initialize objects as follows

public class ConsDemo {

 public static void main(String args[]) {
 MyClass t1 = new MyClass();

 MyClass t2 = new MyClass();

 System.out.println(t1.num + " " + t2.num);
 }

}

This would produce the following result

100 100

Parameterized Constructors

Most often, you will need a constructor that accepts one or more parameters. Parameters are

added to a constructor in the same way that they are added to a method, just declare them
inside the parentheses after the constructor's name.

Example

Here is a simple example that uses a constructor −

// A simple constructor.
class MyClass {

 int x;

 // Following is the constructor

 MyClass(int i) {
 x = i;

 }

}

You would call constructor to initialize objects as follows −

public class ConsDemo {
 public static void main(String args[]) {

 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(20);

 System.out.println(t1.x + " " + t2.x);

 }

}

Inheritance can be defined as the process where one class acquires the properties (methods
and fields) of another. With the use of inheritance the information is made manageable in a
hierarchical order.

The class which inherits the properties of other is known as subclass (derived class, child

class) and the class whose properties are inherited is known as superclass (base class, parent
class).

Inheritance - extends Keyword

A mechanism of creating new classes by acquiring the properties of the existing classes is
called Inheritance.

extends is the keyword used to inherit the properties of a class. Following is the syntax of
extends keyword.

Syntax

class Super {

}

class Sub extends Super {

}

Sample Code

Following is an example demonstrating Java inheritance. In this example, you can observe
two classes namely Calculation and My_Calculation.

Using extends keyword, the My_Calculation inherits the methods addition() and
Subtraction() of Calculation class.

Copy and paste the following program in a file with name My_Calculation.java

Example

class Calculation {
 int z;

 public void addition(int x, int y) {
 z = x + y;

 System.out.println("The sum of the given numbers:"+z);

 }

 public void Subtraction(int x, int y) {
 z = x - y;

 System.out.println("The difference between the given numbers:"+z);

 }
}

public class My_Calculation extends Calculation {
 public void multiplication(int x, int y) {

 z = x * y;
 System.out.println("The product of the given numbers:"+z);

 }

 public static void main(String args[]) {

 int a = 20, b = 10;

 My_Calculation demo = new My_Calculation();
 demo.addition(a, b);

 demo.Subtraction(a, b);

 demo.multiplication(a, b);
 }

}

Compile and execute the above code as shown below.

javac My_Calculation.java

java My_Calculation

After executing the program, it will produce the following result −

Output

The sum of the given numbers:30

The difference between the given numbers:10

The product of the given numbers:200

In the given program, when an object to My_Calculation class is created, a copy of the

contents of the superclass is made within it. That is why, using the object of the subclass you
can access the members of a superclass.

The Superclass reference variable can hold the subclass object, but using that variable you

can access only the members of the superclass, so to access the members of both classes it is
recommended to always create reference variable to the subclass.

If you consider the above program, you can instantiate the class as given below. But using

the superclass reference variable (cal in this case) you cannot call the
method multiplication(), which belongs to the subclass My_Calculation.

Calculation demo = new My_Calculation();
demo.addition(a, b);

demo.Subtraction(a, b);

Note − A subclass inherits all the members (fields, methods, and nested classes) from its
superclass. Constructors are not members, so they are not inherited by subclasses, but the
constructor of the superclass can be invoked from the subclass.

The super keyword

The super keyword is similar to this keyword. Following are the scenarios where the super
keyword is used.

 It is used to differentiate the members of superclass from the members of subclass,
if they have same names.

 It is used to invoke the superclass constructor from subclass.

Differentiating the Members

If a class is inheriting the properties of another class. And if the members of the superclass
have the names same as the sub class, to differentiate these variables we use super keyword
as shown below.

super.variable
super.method();

Sample Code

Demonstration of the usage of the super keyword.

In the given program, you have two classes namely Sub_class and Super_class, both have a
method named display() with different implementations, and a variable named num with

different values. We are invoking display() method of both classes and printing the value of
the variable num of both classes. Here you can observe that we have used super keyword to
differentiate the members of superclass from subclass.

Copy and paste the program in a file with name Sub_class.java.

Example

class Super_class {
 int num = 20;

 // display method of superclass

 public void display() {

 System.out.println("This is the display method of superclass");
 }

}

public class Sub_class extends Super_class {

 int num = 10;

 // display method of sub class

 public void display() {
 System.out.println("This is the display method of subclass");

 }

 public void my_method() {

 // Instantiating subclass
 Sub_class sub = new Sub_class();

 // Invoking the display() method of sub class
 sub.display();

 // Invoking the display() method of superclass
 super.display();

 // printing the value of variable num of subclass
 System.out.println("value of the variable named num in sub class:"+ sub.num);

 // printing the value of variable num of superclass

 System.out.println("value of the variable named num in super class:"+ super.num);

 }

 public static void main(String args[]) {

 Sub_class obj = new Sub_class();
 obj.my_method();

 }

}

Compile and execute the above code using the following syntax.

javac Super_Demo
java Super

On executing the program, you will get the following result −

Output

This is the display method of subclass

This is the display method of superclass
value of the variable named num in sub class:10

value of the variable named num in super class:20

Invoking Superclass Constructor

If a class is inheriting the properties of another class, the subclass automatically acquires the

default constructor of the superclass. But if you want to call a parameterized constructor of
the superclass, you need to use the super keyword as shown below.

super(values);

Sample Code

The program given in this section demonstrates how to use the super keyword to invoke the
parametrized constructor of the superclass. This program contains a superclass and a

subclass, where the superclass contains a parameterized constructor which accepts a integer
value, and we used the super keyword to invoke the parameterized constructor of the
superclass.

Copy and paste the following program in a file with the name Subclass.java

Example

class Superclass {
 int age;

 Superclass(int age) {

 this.age = age;

 }

 public void getAge() {

 System.out.println("The value of the variable named age in super class is: " +age);
 }

}

public class Subclass extends Superclass {

 Subclass(int age) {
 super(age);

 }

 public static void main(String args[]) {

 Subclass s = new Subclass(24);

 s.getAge();
 }

}

Compile and execute the above code using the following syntax.

javac Subclass

java Subclass

On executing the program, you will get the following result −

Output

The value of the variable named age in super class is: 24

IS-A Relationship

IS-A is a way of saying: This object is a type of that object. Let us see how
the extends keyword is used to achieve inheritance.

public class Animal {

}

public class Mammal extends Animal {
}

public class Reptile extends Animal {
}

public class Dog extends Mammal {

}

Now, based on the above example, in Object-Oriented terms, the following are true −

 Animal is the superclass of Mammal class.

 Animal is the superclass of Reptile class.

 Mammal and Reptile are subclasses of Animal class.

 Dog is the subclass of both Mammal and Animal classes.

Now, if we consider the IS-A relationship, we can say −

 Mammal IS-A Animal

 Reptile IS-A Animal

 Dog IS-A Mammal

 Hence: Dog IS-A Animal as well

With the use of the extends keyword, the subclasses will be able to inherit all the properties
of the superclass except for the private properties of the superclass.

We can assure that Mammal is actually an Animal with the use of the instance operator.

Example

class Animal {
}

class Mammal extends Animal {

}

class Reptile extends Animal {

}

public class Dog extends Mammal {

 public static void main(String args[]) {

 Animal a = new Animal();
 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);

 System.out.println(d instanceof Animal);
 }

}

This will produce the following result −

Output

true

true

true

Since we have a good understanding of the extends keyword, let us look into how
the implements keyword is used to get the IS-A relationship.

Generally, the implements keyword is used with classes to inherit the properties of an
interface. Interfaces can never be extended by a class.

Example

public interface Animal {

}

public class Mammal implements Animal {

}

public class Dog extends Mammal {

}

The instanceof Keyword

Let us use the instanceof operator to check determine whether Mammal is actually an
Animal, and dog is actually an Animal.

Example

interface Animal{}
class Mammal implements Animal{}

public class Dog extends Mammal {

 public static void main(String args[]) {
 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);
 System.out.println(d instanceof Animal);

 }

}

This will produce the following result −

Output

true

true
true

HAS-A relationship

These relationships are mainly based on the usage. This determines whether a certain
class HAS-A certain thing. This relationship helps to reduce duplication of code as well as
bugs.

Lets look into an example −

Example

public class Vehicle{}

public class Speed{}

public class Van extends Vehicle {

 private Speed sp;

}

This shows that class Van HAS-A Speed. By having a separate class for Speed, we do not
have to put the entire code that belongs to speed inside the Van class, which makes it
possible to reuse the Speed class in multiple applications.

In Object-Oriented feature, the users do not need to bother about which object is doing the

real work. To achieve this, the Van class hides the implementation details from the users of
the Van class. So, basically what happens is the users would ask the Van class to do a

certain action and the Van class will either do the work by itself or ask another class to
perform the action.

Types of Inheritance

There are various types of inheritance as demonstrated below.

A very important fact to remember is that Java does not support multiple inheritance. This
means that a class cannot extend more than one class. Therefore following is illegal −

Example

public class extends Animal, Mammal{}

However, a class can implement one or more interfaces, which has helped Java get rid of the
impossibility of multiple inheritance.

In the previous chapter, we talked about superclasses and subclasses. If a class inherits a

method from its superclass, then there is a chance to override the method provided that it is
not marked final.

The benefit of overriding is: ability to define a behavior that's specific to the subclass type,
which means a subclass can implement a parent class method based on its requirement.

In object-oriented terms, overriding means to override the functionality of an existing
method.

Example

Let us look at an example.

class Animal {

 public void move() {
 System.out.println("Animals can move");

 }

}

class Dog extends Animal {

 public void move() {
 System.out.println("Dogs can walk and run");

 }
}

public class TestDog {

 public static void main(String args[]) {

 Animal a = new Animal(); // Animal reference and object
 Animal b = new Dog(); // Animal reference but Dog object

 a.move(); // runs the method in Animal class

 b.move(); // runs the method in Dog class

 }

}

This will produce the following result −

Output

Animals can move

Dogs can walk and run

In the above example, you can see that even though b is a type of Animal it runs the move

method in the Dog class. The reason for this is: In compile time, the check is made on the
reference type. However, in the runtime, JVM figures out the object type and would run the
method that belongs to that particular object.

Therefore, in the above example, the program will compile properly since Animal class has
the method move. Then, at the runtime, it runs the method specific for that object.

Consider the following example −

Example

class Animal {

 public void move() {

 System.out.println("Animals can move");

 }

}

class Dog extends Animal {

 public void move() {
 System.out.println("Dogs can walk and run");

 }
 public void bark() {

 System.out.println("Dogs can bark");

 }
}

public class TestDog {

 public static void main(String args[]) {

 Animal a = new Animal(); // Animal reference and object
 Animal b = new Dog(); // Animal reference but Dog object

 a.move(); // runs the method in Animal class

 b.move(); // runs the method in Dog class

 b.bark();
 }

}

This will produce the following result −

Output

TestDog.java:26: error: cannot find symbol
 b.bark();

 ̂

 symbol: method bark()
 location: variable b of type Animal

1 error

This program will throw a compile time error since b's reference type Animal doesn't have a
method by the name of bark.

Rules for Method Overriding

 The argument list should be exactly the same as that of the overridden method.

 The return type should be the same or a subtype of the return type declared in the
original overridden method in the superclass.

 The access level cannot be more restrictive than the overridden method's access level.
For example: If the superclass method is declared public then the overridding
method in the sub class cannot be either private or protected.

 Instance methods can be overridden only if they are inherited by the subclass.

 A method declared final cannot be overridden.

 A method declared static cannot be overridden but can be re-declared.

 If a method cannot be inherited, then it cannot be overridden.

 A subclass within the same package as the instance's superclass can override any
superclass method that is not declared private or final.

 A subclass in a different package can only override the non-final methods declared
public or protected.

 An overriding method can throw any uncheck exceptions, regardless of whether the
overridden method throws exceptions or not. However, the overriding method should

not throw checked exceptions that are new or broader than the ones declared by the
overridden method. The overriding method can throw narrower or fewer exceptions
than the overridden method.

 Constructors cannot be overridden.

Using the super Keyword

When invoking a superclass version of an overridden method the super keyword is used.

Example

class Animal {

 public void move() {
 System.out.println("Animals can move");

 }

}

class Dog extends Animal {
 public void move() {

 super.move(); // invokes the super class method

 System.out.println("Dogs can walk and run");
 }

}

public class TestDog {

 public static void main(String args[]) {
 Animal b = new Dog(); // Animal reference but Dog object

 b.move(); // runs the method in Dog class
 }

}

This will produce the following result −

Output

Animals can move
Dogs can walk and run

Method Overloading

Method overloading means method name will be same but each method should
be different parameter list.
class prg1
{
int x=5,y=5,z=0;
public void sum()
{
z=x+y;

System.out.println("Sum is "+z);
}

public void sum(int a,int b)
{
x=a;
y=b;
z=x+y;
System.out.println("Sum is "+z);
}
public int sum(int a)
{
x=a;
z=x+y;
return z;
}
}
class Demo
{
public static void main(String args[])
{
prg1 obj=new prg1();
obj.sum();
obj.sum(10,12);
System.out.println(+obj.sum(15));
}
}

Output:

sum is 10
sum is 22
27

Passing Objects as Parameters
Objects can even be passed as parameters.
class para123
{
int n,n2,sum,mul;
public void take(int x,int y)
{
n=x;
n2=y;
}
public void sum()
{
sum=n+n2;
System.out.println("The Sum is"+sum);

}
public void take2(para123 obj)
{
n=obj.n;
n2=obj.n2;
}
public void multi()
{
mul=n*n2;
System.out.println("Product is"+mul);
}
}
class DemoPara
{
public static void main(String args[])
{
para123 ob=new para123();
ob.take(3,7);
ob.sum();
ob.take2(ob);
ob.multi();
}
}
Output:

C:\cc>javac DemoPara.java
C:\cc>java DemoPara
The Sum is10
Product is21

We have defined a method “take2” that declares an object named obj as
parameter. We have passed ob to our method. The method “take2”
automatically gets 3,7 as values for n and n2.

Passing Values to methods and Constructor:
These are two different ways of supplying values to methods. Classified under
these two titles –

1.Pass by Value
2.Pass by Address or Reference

1. Pass by Value-When we pass a data type like int, float or any other datatype
to a method or some constant values like(15,10). They are all passed by value.
A copy of variable’s value is passed to the receiving method and hence any
changes made to the values do not affect the actual variables.

class Demopbv
{

int n,n2;
public void get(int x,int y)
{
x=x*x; //Changing the values of passed arguments
y=y*y; //Changing the values of passed arguments
}
}
class Demo345
{
public static void main(String args[])
{
int a,b;
a=1;
b=2;
System.out.println("Initial Values of a & b "+a+" "+b);
Demopbv obj=new Demopbv();
obj.get(a,b);
System.out.println("Final Values "+a+" "+b);
}
}
Output:
C:\cc>javac Demo345.java
C:\cc>java Demo345
Initial Values of a & b 1 2
Final Values 1 2

2. Pass by Reference

Objects are always passed by reference. When we pass a value by reference, the
reference or the memory address of the variables is passed. Thus any changes
made to the argument causes a change in the values which we pass.
Demonstrating Pass by Reference---
class pass_by_ref
{
int n,n2;
public void get(int a,int b)
{
n=a;
n2=b;
}
public void doubleit(pass_by_ref temp)
{
temp.n=temp.n*2;
temp.n2=temp.n2*2;
}
}
class apply7
{

public static void main(String args[])
{
int x=5,y=10;
pass_by_ref obj=new pass_by_ref();
obj.get(x,y); //Pass by Value

System.out.println("Initial Values are-- ");
System.out.println(+obj.n);
System.out.println(+obj.n2);
obj.doubleit(obj); //Pass by Reference

System.out.println("Final Values are");
System.out.println(+obj.n);
System.out.println(+obj.n2);
}
}

Abstract Classes

Definition: An abstract class is a class that is declared as abstract. It may or
may not include abstract methods. Abstract classes cannot be instantiated, but
they can be subclass.
An abstract method is a method that is declared without an implementation
(without braces, and followed by a semicolon), like this:

abstract void studtest(int rollno, double testfees);
If a class includes abstract methods, the class itself must be declared abstract, as
in:
public abstract class GraphicObject
{

// declare fields
// declare non-abstract methods

abstract void draw();
}

When an abstract class is subclass, the subclass usually provides
implementations for all of the abstract methods in its parent class. However, if it
does not, the subclass must also be declared abstract.
For example: In an object-oriented drawing application, you can draw circles,
rectangles, lines, Bezier curves, and many other graphic objects. These objects
all have certain states (for example: position, orientation, line color, fill color)
and behaviors (for example: moveTo, rotate, resize, draw) in common. Some of
these states and behaviors are the same for all graphic objects—for example:
position, fill color, and moveTo. Others require different implementations—for
example, resize or draw. All GraphicObjects must know how to draw or resize
themselves; they just differ in how they do it. This is a perfect situation for an
abstract superclass. You can take advantage of the similarities and declare all
the graphic objects to inherit from the same abstract parent object—for

example, GraphicObject, as shown in the following figure.

How to implement above diagram concept with source code:

abstract class GraphicObject
{
int x, y;
...
void moveTo(int newX, int newY)
{
...
}
abstract void draw();
abstract void resize();
}
Each non-abstract subclass of GraphicObject, such as Circle and Rectangle,
must provide implementations for the draw and resize methods:

class Circle extends GraphicObject {
void draw() {
...
}
void resize() {
...
}
}

class Rectangle extends GraphicObject {
void draw() {
...
}
void resize() {
...
}
}
Abstract classes are those which can be used for creation of objects. However
their methods and constructors can be used by the child or extended class. The
need for abstract classes is that you can generalize the super class from which
child classes can share its methods. The subclass of an abstract class which can
create an object is called as "concrete class".
For example:
Abstract class A

{
abstract void method1();
void method2()
{
System.out.println("this is real method");
}}
class B extends A
{
void method1()
{
System.out.println("B is execution of method1");
}}
class demo
{
public static void main(String arg[])
{
B b=new B();
b.method1();
b.method2();
}}

Extending the class:

Inheritance allows to subclass or child class to access all methods and variables
of parent class.

Syntax:
class subclassname extends superclassname
{
Varables;
Methods;
…..
}
For example: calculate area and volume by using Inhertance.
class data
{
int l;
int b;
data(int c, int d)
{
l=c;
b=d;
}
int area()
{
return(l*b);
}
}

class data2 extends data
{
int h;
data2(int c,int d, int a)
{
super(c,d);
h=a;
}
int volume()
{
return(l*b*h);
}
}

class dataDemo
{
public static void main(String args[])
{
data2 d1=new data2(10,20,30);
int area1=d1.area(); //superclass method
int volume1=d1.volume();// subclass method
System.out.println("Area="+area1);
System.out.println("Volume="+volume1);
}
}
Output:
C:\cc>javac dataDemo.java
C:\cc>java dataDemo
Area=200
Volume=6000
"Is A" - is a subclass of a superclass (ex: extends)
"Has A" - has a reference to (ex: variable, ref to object).
***Access Control –
Away to limit the access others have to your code.
** Same package - can access each others’ variables and methods, except for
private members.
** Outside package - can access public classes. Next, can access members that
are public. Also, can access protected members if the class is a subclass of that
class.
Same package - use package keyword in first line of source file, or no package
keyword and in same directory.
***Keywords -

1. public - outside of package access.
2. [no keyword] - same package access only.
3. protected - same package access. Access if class is a subclass of, even if in
 another package.
4. private - same class access only.

LIST OF REFERENCES
1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata
McGraw Hill.
2. An Introduction to Object Oriented Programming with JAVA, C THOMAS
WU
3. “Java Programming” Fourth Edition, E. Balagurusamy, Tata McGraw Hill.

BIBLIOGRAPHY

http://www.michael-homas.com/tech/java/javacert/JCP_Access.htm
http://en.wikipedia.org/wiki/Class_%28computer_science%29#Seal
ed_classes
http://www.javabeginner.com/learn-java/java-abstract-class-andinterface

	Objects in Java
	Some of the real-world objects around us are cars, dogs, humans, etc. All these objects have a state and a behavior.
	Classes in Java
	Example

	Creating an Object
	Example
	Output

	Accessing Instance Variables and Methods
	Example
	Output

	Source File Declaration Rules
	Java Package
	Import Statements
	A Simple Case Study
	Example
	Output

	Creating Method
	Method Calling
	The void Keyword
	Passing Parameters by Value
	Method Overloading
	Using Command-Line Arguments
	The this keyword
	Variable Arguments(var-args)
	The finalize() Method
	Constructors
	Example

	Syntax
	No argument Constructors
	Example
	Example
	Inheritance - extends Keyword
	Sample Code
	The super keyword
	Differentiating the Members
	Sample Code

	Invoking Superclass Constructor
	Sample Code

	IS-A Relationship
	The instanceof Keyword
	HAS-A relationship
	Types of Inheritance
	Example
	Output
	Example
	Output

	Rules for Method Overriding
	Using the super Keyword
	Example
	Output

