
PHP

What is OOP?

OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or functions that perform

operations on the data, while object-oriented programming is about creating

objects that contain both data and functions.

Object-oriented programming has several advantages over procedural

programming:

 OOP is faster and easier to execute

 OOP provides a clear structure for the programs

 OOP helps to keep the PHP code DRY "Don't Repeat Yourself", and

makes the code easier to maintain, modify and debug

 OOP makes it possible to create full reusable applications with less code

and shorter development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the

repetition of code. You should extract out the codes that are common for the

application, and place them at a single place and reuse them instead of repeating

it.

PHP - What are Classes and Objects?

Classes and objects are the two main aspects of object-oriented programming.

Look at the following illustration to see the difference between class and

objects:

class

Fruit

objects

Apple

Banana

Mango

Another example:

class

Car

objects

Volvo

Audi

Toyota

So, a class is a template for objects, and an object is an instance of a class.

When the individual objects are created, they inherit all the properties and

behaviors from the class, but each object will have different values for the

properties.

PHP OOP - Classes and Objects

A class is a template for objects, and an object is an instance of class.

OOP Case

Let's assume we have a class named Fruit. A Fruit can have properties like

name, color, weight, etc. We can define variables like $name, $color, and

$weight to hold the values of these properties.

When the individual objects (apple, banana, etc.) are created, they inherit all the

properties and behaviors from the class, but each object will have different

values for the properties.

Define a Class

A class is defined by using the class keyword, followed by the name of the class

and a pair of curly braces ({}). All its properties and methods go inside the

braces:

Syntax

<?php

class Fruit {

 // code goes here...

}

?>

Below we declare a class named Fruit consisting of two properties ($name and

$color) and two methods set_name() and get_name() for setting and getting the

$name property:

Example

<?php

class Fruit {

 // Properties

 public $name;

 public $color;

 // Methods

 function set_name($name) {

 $this->name = $name;

 }

 function get_name() {

 return $this->name;

 }

}

?>

Define Objects

Classes are nothing without objects! We can create multiple objects from a

class. Each object has all the properties and methods defined in the class, but

they will have different property values.

Objects of a class is created using the new keyword.

In the example below, $apple and $banana are instances of the class Fruit:

Example

<?php

class Fruit {

 // Properties

 public $name;

 public $color;

 // Methods

 function set_name($name) {

 $this->name = $name;

 }

 function get_name() {

 return $this->name;

 }

}

$apple = new Fruit();

$banana = new Fruit();

$apple->set_name('Apple');

$banana->set_name('Banana');

echo $apple->get_name();

echo "
";

echo $banana->get_name();

?>

In the example below, we add two more methods to class Fruit, for setting and

getting the $color property:

Example

<?php

class Fruit {

 // Properties

 public $name;

 public $color;

 // Methods

 function set_name($name) {

 $this->name = $name;

 }

 function get_name() {

 return $this->name;

 }

 function set_color($color) {

 $this->color = $color;

 }

 function get_color() {

 return $this->color;

 }

}

$apple = new Fruit();

$apple->set_name('Apple');

$apple->set_color('Red');

echo "Name: " . $apple->get_name();

echo "
";

echo "Color: " . $apple->get_color();

?>

PHP - The $this Keyword

The $this keyword refers to the current object, and is only available inside

methods.

Look at the following example:

Example

<?php

class Fruit {

 public $name;

}

$apple = new Fruit();

?>

So, where can we change the value of the $name property? There are two ways:

1. Inside the class (by adding a set_name() method and use $this):

Example

<?php

class Fruit {

 public $name;

 function set_name($name) {

 $this->name = $name;

 }

}

$apple = new Fruit();

$apple->set_name("Apple");

?>

2. Outside the class (by directly changing the property value):

Example

<?php

class Fruit {

 public $name;

}

$apple = new Fruit();

$apple->name = "Apple";

?>

PHP - instanceof

You can use the instanceof keyword to check if an object belongs to a specific

class:

Example

<?php

$apple = new Fruit();

var_dump($apple instanceof Fruit);

?>

Object Oriented Programming in PHP

We can imagine our universe made of different objects like sun, earth, moon

etc. Similarly we can imagine our car made of different objects like wheel,

steering, gear etc. Same way there is object oriented programming concepts

which assume everything as an object and implement a software using different

objects.

Object Oriented Concepts

Before we go in detail, lets define important terms related to Object Oriented

Programming.

 Class − This is a programmer-defined data type, which includes local

functions as well as local data. You can think of a class as a template for

making many instances of the same kind (or class) of object.

 Object − An individual instance of the data structure defined by a class.

You define a class once and then make many objects that belong to it.

Objects are also known as instance.

 Member Variable − These are the variables defined inside a class. This

data will be invisible to the outside of the class and can be accessed via

member functions. These variables are called attribute of the object once

an object is created.

 Member function − These are the function defined inside a class and are

used to access object data.

 Inheritance − When a class is defined by inheriting existing function of

a parent class then it is called inheritance. Here child class will inherit all

or few member functions and variables of a parent class.

 Parent class − A class that is inherited from by another class. This is

also called a base class or super class.

 Child Class − A class that inherits from another class. This is also called

a subclass or derived class.

 Polymorphism − This is an object oriented concept where same function

can be used for different purposes. For example function name will

remain same but it take different number of arguments and can do

different task.

 Overloading − a type of polymorphism in which some or all of operators

have different implementations depending on the types of their

arguments. Similarly functions can also be overloaded with different

implementation.

 Data Abstraction − Any representation of data in which the

implementation details are hidden (abstracted).

 Encapsulation − refers to a concept where we encapsulate all the data

and member functions together to form an object.

 Constructor − refers to a special type of function which will be called

automatically whenever there is an object formation from a class.

 Destructor − refers to a special type of function which will be called

automatically whenever an object is deleted or goes out of scope.

Defining PHP Classes

The general form for defining a new class in PHP is as follows −

<?php

 class phpClass {

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

 }

?>

Here is the description of each line −

 The special form class, followed by the name of the class that you want

to define.

 A set of braces enclosing any number of variable declarations and

function definitions.

 Variable declarations start with the special form var, which is followed

by a conventional $ variable name; they may also have an initial

assignment to a constant value.

 Function definitions look much like standalone PHP functions but are

local to the class and will be used to set and access object data.

Example

Here is an example which defines a class of Books type −

<?php

 class Books {

 /* Member variables */

 var $price;

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

 }

 function getTitle(){

 echo $this->title ."
";

 }

 }

?>

The variable $this is a special variable and it refers to the same object ie. itself.

Creating Objects in PHP

Once you defined your class, then you can create as many objects as you like

of that class type. Following is an example of how to create object

using new operator.

$physics = new Books;

$maths = new Books;

$chemistry = new Books;

Here we have created three objects and these objects are independent of each

other and they will have their existence separately. Next we will see how to

access member function and process member variables.

Calling Member Functions

After creating your objects, you will be able to call member functions related to

that object. One member function will be able to process member variable of

related object only.

Following example shows how to set title and prices for the three books by

calling member functions.

$physics->setTitle("Physics for High School");

$chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10);

$chemistry->setPrice(15);

$maths->setPrice(7);

Now you call another member functions to get the values set by in above

example −

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

Physics for High School

Advanced Chemistry

Algebra

10

15

7

Constructor Functions

Constructor Functions are special type of functions which are called

automatically whenever an object is created. So we take full advantage of this

behaviour, by initializing many things through constructor functions.

PHP provides a special function called __construct() to define a constructor.

You can pass as many as arguments you like into the constructor function.

Following example will create one constructor for Books class and it will

initialize price and title for the book at the time of object creation.

function __construct($par1, $par2) {

 $this->title = $par1;

 $this->price = $par2;

}

Now we don't need to call set function separately to set price and title. We can

initialize these two member variables at the time of object creation only. Check

following example below −

$physics = new Books("Physics for High School", 10);

$maths = new Books ("Advanced Chemistry", 15);

$chemistry = new Books ("Algebra", 7);

/* Get those set values */

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor

Like a constructor function you can define a destructor function using

function __destruct(). You can release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by

using the extends clause. The syntax is as follows −

class Child extends Parent {

 <definition body>

}

The effect of inheritance is that the child class (or subclass or derived class) has

the following characteristics −

 Automatically has all the member variable declarations of the parent

class.

 Automatically has all the same member functions as the parent, which

(by default) will work the same way as those functions do in the parent.

Following example inherit Books class and adds more functionality based on

the requirement.

class Novel extends Books {

 var $publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

 function getPublisher(){

 echo $this->publisher. "
";

 }

}

Now apart from inherited functions, class Novel keeps two additional member

functions.

Function Overriding

Function definitions in child classes override definitions with the same name in

parent classes. In a child class, we can modify the definition of a function

inherited from parent class.

In the following example getPrice and getTitle functions are overridden to

return some values.

function getPrice() {

 echo $this->price . "
";

 return $this->price;

}

function getTitle(){

 echo $this->title . "
";

 return $this->title;

}

Public Members

Unless you specify otherwise, properties and methods of a class are public.

That is to say, they may be accessed in three possible situations −

 From outside the class in which it is declared

 From within the class in which it is declared

 From within another class that implements the class in which it is

declared

Till now we have seen all members as public members. If you wish to limit the

accessibility of the members of a class then you define class members

as private or protected.

Private members

By designating a member private, you limit its accessibility to the class in

which it is declared. The private member cannot be referred to from classes

that inherit the class in which it is declared and cannot be accessed from

outside the class.

A class member can be made private by using private keyword infront of the

member.

class MyClass {

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends,

myPublicFunction() will be visible, as will $driver. The extending class will

not have any awareness of or access to myPrivateFunction and $car, because

they are declared private.

Protected members

A protected property or method is accessible in the class in which it is

declared, as well as in classes that extend that class. Protected members are not

available outside of those two kinds of classes. A class member can be made

protected by using protected keyword in front of the member.

Here is different version of MyClass −

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 }

}

Interfaces

Interfaces are defined to provide a common function names to the

implementers. Different implementors can implement those interfaces

according to their requirements. You can say, interfaces are skeletons which

are implemented by developers.

As of PHP5, it is possible to define an interface, like this −

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this −

class Report implements Mail {

 // sendMail() Definition goes here

}

Constants

A constant is somewhat like a variable, in that it holds a value, but is really

more like a function because a constant is immutable. Once you declare a

constant, it does not change.

Declaring one constant is easy, as is done in this version of MyClass −

class MyClass {

 const requiredMargin = 1.7;

 function __construct($incomingValue) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

}

In this class, requiredMargin is a constant. It is declared with the keyword

const, and under no circumstances can it be changed to anything other than 1.7.

Note that the constant's name does not have a leading $, as variable names do.

Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare

an abstract class with the keyword abstract, like this −

When inheriting from an abstract class, all methods marked abstract in the

parent's class declaration must be defined by the child; additionally, these

methods must be defined with the same visibility.

abstract class MyAbstractClass {

 abstract function myAbstractFunction() {

 }

}

Note that function definitions inside an abstract class must also be preceded by

the keyword abstract. It is not legal to have abstract function definitions inside

a non-abstract class.

Static Keyword

Declaring class members or methods as static makes them accessible without

needing an instantiation of the class. A member declared as static can not be

accessed with an instantiated class object (though a static method can).

Try out following example −

<?php

 class Foo {

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

 }

 print Foo::$my_static . "\n";

 $foo = new Foo();

 print $foo->staticValue() . "\n";

?>

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from

overriding a method by prefixing the definition with final. If the class itself is

being defined final then it cannot be extended.

Following example results in Fatal error: Cannot override final method

BaseClass::moreTesting()

<?php

 class BaseClass {

 public function test() {

 echo "BaseClass::test() called
";

 }

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called
";

 }

 }

 class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called
";

 }

 }

?>

Calling parent constructors

Instead of writing an entirely new constructor for the subclass, let's write it by

calling the parent's constructor explicitly and then doing whatever is necessary

in addition for instantiation of the subclass. Here's a simple example −

class Name {

 var $_firstName;

 var $_lastName;

 function Name($first_name, $last_name) {

 $this->_firstName = $first_name;

 $this->_lastName = $last_name;

 }

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name {

 var $_middleInitial;

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

In this example, we have a parent class (Name), which has a two-argument

constructor, and a subclass (NameSub1), which has a three-argument

constructor. The constructor of NameSub1 functions by calling its parent

constructor explicitly using the :: syntax (passing two of its arguments along)

and then setting an additional field. Similarly, NameSub1 defines its non

constructor toString() function in terms of the parent function that it overrides.

PHP extends Keyword

Example

Inherit from a class:

<?php

class MyClass {

 public function hello() {

 echo "Hello World!";

 }

}

class AnotherClass extends MyClass {

}

$obj = new AnotherClass();

$obj->hello();

Definition and Usage

The extends keyword is used to derive a class from another class. This is called

inheritance. A derived class has all of the public and protected properties of the

class that it is derived from.

PHP - Access Modifiers

Properties and methods can have access modifiers which control where they can

be accessed.

There are three access modifiers:

 public - the property or method can be accessed from everywhere. This is

default

 protected - the property or method can be accessed within the class and

by classes derived from that class

 private - the property or method can ONLY be accessed within the class

In the following example we have added three different access modifiers to the

three properties. Here, if you try to set the name property it will work fine

(because the name property is public). However, if you try to set the color or

weight property it will result in a fatal error (because the color and weight

property are protected and private):

Example

<?php

class Fruit {

 public $name;

 protected $color;

 private $weight;

}

$mango = new Fruit();

$mango->name = 'Mango'; // OK

$mango->color = 'Yellow'; // ERROR

$mango->weight = '300'; // ERROR

?>

In the next example we have added access modifiers to two methods. Here, if

you try to call the set_color() or the set_weight() function it will result in a fatal

error (because the two functions are considered protected and private), even if

all the properties are public:

Example

<?php

class Fruit {

 public $name;

 public $color;

 public $weight;

 function set_name($n) { // a public function (default)

 $this->name = $n;

 }

 protected function set_color($n) { // a protected function

 $this->color = $n;

 }

 private function set_weight($n) { // a private function

 $this->weight = $n;

 }

}

$mango = new Fruit();

$mango->set_name('Mango'); // OK

$mango->set_color('Yellow'); // ERROR

$mango->set_weight('300'); // ERROR

?>

PHP Directory Introduction

PHP Directory Functions

The directory functions allow you to retrieve information about directories and

their contents.

Installation

The PHP directory functions are part of the PHP core. No installation is

required to use these functions.

PHP Directory Functions

Function Description

chdir() Changes the current directory

chroot() Changes the root directory

closedir() Closes a directory handle

dir() Returns an instance of the Directory class

getcwd() Returns the current working directory

opendir() Opens a directory handle

https://www.w3schools.com/php/func_directory_chdir.asp
https://www.w3schools.com/php/func_directory_chroot.asp
https://www.w3schools.com/php/func_directory_closedir.asp
https://www.w3schools.com/php/func_directory_dir.asp
https://www.w3schools.com/php/func_directory_getcwd.asp
https://www.w3schools.com/php/func_directory_opendir.asp

readdir() Returns an entry from a directory handle

rewinddir() Resets a directory handle

scandir() Returns an array of files and directories of a specified

directory

PHP File Open/Read/Close

In this chapter how to open, read, and close a file on the server.

PHP Open File - fopen()

A better method to open files is with the fopen() function. This function gives

you more options than the readfile() function.

We will use the text file, "webdictionary.txt", during the lessons:

AJAX = Asynchronous JavaScript and XML

CSS = Cascading Style Sheets

HTML = Hyper Text Markup Language

PHP = PHP Hypertext Preprocessor

SQL = Structured Query Language

SVG = Scalable Vector Graphics

XML = EXtensible Markup Language

The first parameter of fopen() contains the name of the file to be opened and the

second parameter specifies in which mode the file should be opened. The

following example also generates a message if the fopen() function is unable to

open the specified file:

https://www.w3schools.com/php/func_directory_readdir.asp
https://www.w3schools.com/php/func_directory_rewinddir.asp
https://www.w3schools.com/php/func_directory_scandir.asp

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

echo fread($myfile,filesize("webdictionary.txt"));

fclose($myfile);

?>

Tip: The fread() and the fclose() functions will be explained below.

The file may be opened in one of the following modes:

Modes Description

r Open a file for read only. File pointer starts at the beginning of

the file

w Open a file for write only. Erases the contents of the file or

creates a new file if it doesn't exist. File pointer starts at the

beginning of the file

a Open a file for write only. The existing data in file is

preserved. File pointer starts at the end of the file. Creates a new

file if the file doesn't exist

x Creates a new file for write only. Returns FALSE and an error

if file already exists

r+ Open a file for read/write. File pointer starts at the beginning

of the file

w+ Open a file for read/write. Erases the contents of the file or

creates a new file if it doesn't exist. File pointer starts at the

beginning of the file

a+ Open a file for read/write. The existing data in file is

preserved. File pointer starts at the end of the file. Creates a new

file if the file doesn't exist

x+ Creates a new file for read/write. Returns FALSE and an error

if file already exists

PHP Read File - fread()

The fread() function reads from an open file.

The first parameter of fread() contains the name of the file to read from and the

second parameter specifies the maximum number of bytes to read.

The following PHP code reads the "webdictionary.txt" file to the end:

fread($myfile,filesize("webdictionary.txt"));

PHP Close File - fclose()

The fclose() function is used to close an open file.

It's a good programming practice to close all files after you have finished with

them. You don't want an open file running around on your server taking up

resources!

The fclose() requires the name of the file (or a variable that holds the filename)

we want to close:

<?php

$myfile = fopen("webdictionary.txt", "r");

// some code to be executed....

fclose($myfile);

?>

PHP Read Single Line - fgets()

The fgets() function is used to read a single line from a file.

The example below outputs the first line of the "webdictionary.txt" file:

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

echo fgets($myfile);

fclose($myfile);

?>

PHP Check End-Of-File - feof()

The feof() function checks if the "end-of-file" (EOF) has been reached.

The feof() function is useful for looping through data of unknown length.

The example below reads the "webdictionary.txt" file line by line, until end-of-

file is reached:

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

// Output one line until end-of-file

while(!feof($myfile)) {

 echo fgets($myfile) . "
";

}

fclose($myfile);

?>

PHP Read Single Character - fgetc()

The fgetc() function is used to read a single character from a file.

The example below reads the "webdictionary.txt" file character by character,

until end-of-file is reached:

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

// Output one character until end-of-file

while(!feof($myfile)) {

 echo fgetc($myfile);

}

fclose($myfile);

?>

Note: After a call to the fgetc() function, the file pointer moves to the next

character.

Using remote files

As long as allow_url_fopen is enabled in php.ini, you can

use HTTP and FTP URLs with most of the functions that take a filename as a

parameter. In addition, URLs can be used with

the include, include_once, require and require_once statements (since PHP

5.2.0, allow_url_include must be enabled for these). See Supported Protocols

and Wrappers for more information about the protocols supported by PHP.

https://www.php.net/manual/en/function.include.php
https://www.php.net/manual/en/function.include-once.php
https://www.php.net/manual/en/function.require.php
https://www.php.net/manual/en/function.require-once.php
https://www.php.net/manual/en/wrappers.php
https://www.php.net/manual/en/wrappers.php

For example, you can use this to open a file on a remote web server, parse the

output for the data you want, and then use that data in a database query, or

simply to output it in a style matching the rest of your website.

Example #1 Getting the title of a remote page

<?php

$file = fopen ("http://www.example.com/", "r");

if (!$file) {

 echo "<p>Unable to open remote file.\n";

 exit;

}

while (!feof ($file)) {

 $line = fgets ($file, 1024);

 /* This only works if the title and its tags are on one line */

 if (preg_match ("@\<title\>(.*)\</title\>@i", $line, $out)) {

 $title = $out[1];

 break;

 }

}

fclose($file);

?>

You can also write to files on an FTP server (provided that you have connected

as a user with the correct access rights). You can only create new files using this

method; if you try to overwrite a file that already exists, the fopen() call will

fail.

To connect as a user other than 'anonymous', you need to specify the username

(and possibly password) within the URL, such as

'ftp://user:password@ftp.example.com/path/to/file'. (You can use the same sort

of syntax to access files via HTTP when they require Basic authentication.)

Example #2 Storing data on a remote server

<?php

$file = fopen ("ftp://ftp.example.com/incoming/outputfile", "w");

if (!$file) {

 echo "<p>Unable to open remote file for writing.\n";

 exit;

https://www.php.net/manual/en/function.fopen.php

}

/* Write the data here. */

fwrite ($file, $_SERVER['HTTP_USER_AGENT'] . "\n");

fclose ($file);

?>

Note:

You might get the idea from the example above that you can use this technique

to write to a remote log file. Unfortunately that would not work because

the fopen() call will fail if the remote file already exists. To do distributed

logging like that, you should take a look at syslog().

Runtime Configuration

The behavior of the filesystem functions is affected by settings in php.ini.

Name Default Description Changeable

allow_url_fopen "1" Allows

fopen()-type

functions to

work with

URLs

PHP_INI_SYSTEM

allow_url_include "0" (available since

PHP 5.2)

PHP_INI_SYSTEM

user_agent NULL Defines the

user agent for

PHP to send

(available since

PHP 4.3)

PHP_INI_ALL

https://www.php.net/manual/en/function.fopen.php
https://www.php.net/manual/en/function.syslog.php

default_socket_timeout "60" Sets the default

timeout, in

seconds, for

socket based

streams

(available since

PHP 4.3)

PHP_INI_ALL

from "" Defines the

email address

to be used on

unauthenticated

FTP

connections

and in the

From header

for HTTP

connections

when using ftp

and http

wrappers

PHP_INI_ALL

auto_detect_line_endings "0" When set to

"1", PHP will

examine the

data read by

fgets() and

file() to see if it

is using Unix,

MS-Dos or

Mac line-

ending

characters

PHP_INI_ALL

(available since

PHP 4.3)

sys_temp_dir "" (available since

PHP 5.5)

PHP_INI_SYSTEM

PHP Filesystem Functions

Function Description

basename() Returns the filename component of a path

chgrp() Changes the file group

chmod() Changes the file mode

chown() Changes the file owner

clearstatcache() Clears the file status cache

copy() Copies a file

https://www.w3schools.com/php/func_filesystem_basename.asp
https://www.w3schools.com/php/func_filesystem_chgrp.asp
https://www.w3schools.com/php/func_filesystem_chmod.asp
https://www.w3schools.com/php/func_filesystem_chown.asp
https://www.w3schools.com/php/func_filesystem_clearstatcache.asp
https://www.w3schools.com/php/func_filesystem_copy.asp

delete() See unlink()

dirname() Returns the directory name component of a path

disk_free_space() Returns the free space of a filesystem or disk

disk_total_space() Returns the total size of a filesystem or disk

diskfreespace() Alias of disk_free_space()

fclose() Closes an open file

feof() Checks if the "end-of-file" (EOF) has been

reached for an open file

fflush() Flushes buffered output to an open file

fgetc() Returns a single character from an open file

fgetcsv() Returns a line from an open CSV file

fgets() Returns a line from an open file

https://www.w3schools.com/php/func_filesystem_delete.asp
https://www.w3schools.com/php/func_filesystem_unlink.asp
https://www.w3schools.com/php/func_filesystem_dirname.asp
https://www.w3schools.com/php/func_filesystem_disk_free_space.asp
https://www.w3schools.com/php/func_filesystem_disk_total_space.asp
https://www.w3schools.com/php/func_filesystem_diskfreespace.asp
https://www.w3schools.com/php/func_filesystem_disk_free_space.asp
https://www.w3schools.com/php/func_filesystem_fclose.asp
https://www.w3schools.com/php/func_filesystem_feof.asp
https://www.w3schools.com/php/func_filesystem_fflush.asp
https://www.w3schools.com/php/func_filesystem_fgetc.asp
https://www.w3schools.com/php/func_filesystem_fgetcsv.asp
https://www.w3schools.com/php/func_filesystem_fgets.asp

fgetss() Deprecated from PHP 7.3. Returns a line from an

open file - stripped from HTML and PHP tags

file() Reads a file into an array

file_exists() Checks whether or not a file or directory exists

file_get_contents() Reads a file into a string

file_put_contents() Writes data to a file

fileatime() Returns the last access time of a file

filectime() Returns the last change time of a file

filegroup() Returns the group ID of a file

fileinode() Returns the inode number of a file

filemtime() Returns the last modification time of a file

fileowner() Returns the user ID (owner) of a file

https://www.w3schools.com/php/func_filesystem_fgetss.asp
https://www.w3schools.com/php/func_filesystem_file.asp
https://www.w3schools.com/php/func_filesystem_file_exists.asp
https://www.w3schools.com/php/func_filesystem_file_get_contents.asp
https://www.w3schools.com/php/func_filesystem_file_put_contents.asp
https://www.w3schools.com/php/func_filesystem_fileatime.asp
https://www.w3schools.com/php/func_filesystem_filectime.asp
https://www.w3schools.com/php/func_filesystem_filegroup.asp
https://www.w3schools.com/php/func_filesystem_fileinode.asp
https://www.w3schools.com/php/func_filesystem_filemtime.asp
https://www.w3schools.com/php/func_filesystem_fileowner.asp

fileperms() Returns the file's permissions

filesize() Returns the file size

filetype() Returns the file type

flock() Locks or releases a file

fnmatch() Matches a filename or string against a specified

pattern

fopen() Opens a file or URL

fpassthru() Reads from the current position in a file - until

EOF, and writes the result to the output buffer

fputcsv() Formats a line as CSV and writes it to an open

file

fputs() Alias of fwrite()

fread() Reads from an open file (binary-safe)

https://www.w3schools.com/php/func_filesystem_fileperms.asp
https://www.w3schools.com/php/func_filesystem_filesize.asp
https://www.w3schools.com/php/func_filesystem_filetype.asp
https://www.w3schools.com/php/func_filesystem_flock.asp
https://www.w3schools.com/php/func_filesystem_fnmatch.asp
https://www.w3schools.com/php/func_filesystem_fopen.asp
https://www.w3schools.com/php/func_filesystem_fpassthru.asp
https://www.w3schools.com/php/func_filesystem_fputcsv.asp
https://www.w3schools.com/php/func_filesystem_fputs.asp
https://www.w3schools.com/php/func_filesystem_fwrite.asp
https://www.w3schools.com/php/func_filesystem_fread.asp

fscanf() Parses input from an open file according to a

specified format

fseek() Seeks in an open file

fstat() Returns information about an open file

ftell() Returns the current position in an open file

ftruncate() Truncates an open file to a specified length

fwrite() Writes to an open file (binary-safe)

glob() Returns an array of filenames / directories

matching a specified pattern

is_dir() Checks whether a file is a directory

is_executable() Checks whether a file is executable

is_file() Checks whether a file is a regular file

https://www.w3schools.com/php/func_filesystem_fscanf.asp
https://www.w3schools.com/php/func_filesystem_fseek.asp
https://www.w3schools.com/php/func_filesystem_fstat.asp
https://www.w3schools.com/php/func_filesystem_ftell.asp
https://www.w3schools.com/php/func_filesystem_ftruncate.asp
https://www.w3schools.com/php/func_filesystem_fwrite.asp
https://www.w3schools.com/php/func_filesystem_glob.asp
https://www.w3schools.com/php/func_filesystem_is_dir.asp
https://www.w3schools.com/php/func_filesystem_is_executable.asp
https://www.w3schools.com/php/func_filesystem_is_file.asp

is_link() Checks whether a file is a link

is_readable() Checks whether a file is readable

is_uploaded_file() Checks whether a file was uploaded via HTTP

POST

is_writable() Checks whether a file is writable

is_writeable() Alias of is_writable()

lchgrp() Changes the group ownership of a symbolic link

lchown() Changes the user ownership of a symbolic link

link() Creates a hard link

linkinfo() Returns information about a hard link

lstat() Returns information about a file or symbolic link

mkdir() Creates a directory

https://www.w3schools.com/php/func_filesystem_is_link.asp
https://www.w3schools.com/php/func_filesystem_is_readable.asp
https://www.w3schools.com/php/func_filesystem_is_uploaded_file.asp
https://www.w3schools.com/php/func_filesystem_is_writable.asp
https://www.w3schools.com/php/func_filesystem_is_writeable.asp
https://www.w3schools.com/php/func_filesystem_is_writable.asp
https://www.w3schools.com/php/func_filesystem_lchgrp.asp
https://www.w3schools.com/php/func_filesystem_lchown.asp
https://www.w3schools.com/php/func_filesystem_link.asp
https://www.w3schools.com/php/func_filesystem_linkinfo.asp
https://www.w3schools.com/php/func_filesystem_lstat.asp
https://www.w3schools.com/php/func_filesystem_mkdir.asp

move_uploaded_file() Moves an uploaded file to a new location

parse_ini_file() Parses a configuration file

parse_ini_string() Parses a configuration string

pathinfo() Returns information about a file path

pclose() Closes a pipe opened by popen()

popen() Opens a pipe

readfile() Reads a file and writes it to the output buffer

readlink() Returns the target of a symbolic link

realpath() Returns the absolute pathname

realpath_cache_get() Returns realpath cache entries

realpath_cache_size() Returns realpath cache size

https://www.w3schools.com/php/func_filesystem_move_uploaded_file.asp
https://www.w3schools.com/php/func_filesystem_parse_ini_file.asp
https://www.w3schools.com/php/func_filesystem_parse_ini_string.asp
https://www.w3schools.com/php/func_filesystem_pathinfo.asp
https://www.w3schools.com/php/func_filesystem_pclose.asp
https://www.w3schools.com/php/func_filesystem_popen.asp
https://www.w3schools.com/php/func_filesystem_popen.asp
https://www.w3schools.com/php/func_filesystem_readfile.asp
https://www.w3schools.com/php/func_filesystem_readlink.asp
https://www.w3schools.com/php/func_filesystem_realpath.asp
https://www.w3schools.com/php/func_filesystem_realpath_cache_get.asp
https://www.w3schools.com/php/func_filesystem_realpath_cache_size.asp

rename() Renames a file or directory

rewind() Rewinds a file pointer

rmdir() Removes an empty directory

set_file_buffer() Alias of stream_set_write_buffer(). Sets the

buffer size for write operations on the given file

stat() Returns information about a file

symlink() Creates a symbolic link

tempnam() Creates a unique temporary file

tmpfile() Creates a unique temporary file

touch() Sets access and modification time of a file

umask() Changes file permissions for files

unlink() Deletes a file

https://www.w3schools.com/php/func_filesystem_rename.asp
https://www.w3schools.com/php/func_filesystem_rewind.asp
https://www.w3schools.com/php/func_filesystem_rmdir.asp
https://www.w3schools.com/php/func_filesystem_set_file_buffer.asp
https://www.w3schools.com/php/func_filesystem_stat.asp
https://www.w3schools.com/php/func_filesystem_symlink.asp
https://www.w3schools.com/php/func_filesystem_tempnam.asp
https://www.w3schools.com/php/func_filesystem_tmpfile.asp
https://www.w3schools.com/php/func_filesystem_touch.asp
https://www.w3schools.com/php/func_filesystem_umask.asp
https://www.w3schools.com/php/func_filesystem_unlink.asp

PHP File Create/Write

In this chapter teach ,how to create and write to a file on the server.

PHP Create File - fopen()

The fopen() function is also used to create a file. Maybe a little confusing, but in

PHP, a file is created using the same function used to open files.

If you use fopen() on a file that does not exist, it will create it, given that the file

is opened for writing (w) or appending (a).

The example below creates a new file called "testfile.txt". The file will be

created in the same directory where the PHP code resides:

Example

$myfile = fopen("testfile.txt", "w")

PHP File Permissions

If you are having errors when trying to get this code to run, check that you have

granted your PHP file access to write information to the hard drive.

PHP Write to File - fwrite()

The fwrite() function is used to write to a file.

The first parameter of fwrite() contains the name of the file to write to and the

second parameter is the string to be written.

The example below writes a couple of names into a new file called

"newfile.txt":

Example

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");

$txt = "John Doe\n";

fwrite($myfile, $txt);

$txt = "Jane Doe\n";

fwrite($myfile, $txt);

fclose($myfile);

?>

Notice that we wrote to the file "newfile.txt" twice. Each time we wrote to the

file we sent the string $txt that first contained "John Doe" and second contained

"Jane Doe". After we finished writing, we closed the file using

the fclose() function.

If we open the "newfile.txt" file it would look like this:

John Doe

Jane Doe

PHP Overwriting

Now that "newfile.txt" contains some data we can show what happens when we

open an existing file for writing. All the existing data will be ERASED and we

start with an empty file.

In the example below we open our existing file "newfile.txt", and write some

new data into it:

Example

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");

$txt = "Mickey Mouse\n";

fwrite($myfile, $txt);

$txt = "Minnie Mouse\n";

fwrite($myfile, $txt);

fclose($myfile);

?>

If we now open the "newfile.txt" file, both John and Jane have vanished, and

only the data we just wrote is present:

Mickey Mouse

Minnie Mouse

PHP Directory Functions

PHP Directory Introduction

The directory functions allow you to retrieve information about directories and

their contents.

Installation

The PHP directory functions are part of the PHP core. No installation is

required to use these functions.

PHP Directory Functions

Function Description

chdir() Changes the current directory

chroot() Changes the root directory

closedir() Closes a directory handle

dir() Returns an instance of the Directory class

getcwd() Returns the current working directory

opendir() Opens a directory handle

readdir() Returns an entry from a directory handle

rewinddir() Resets a directory handle

scandir() Returns an array of files and directories of a specified

directory

PHP Directory operations

Some days before we have seen set of basic PHP file functions to perform file

open, read, write or append operations. Similarly, PHP includes set of directory

https://www.w3schools.com/php/func_directory_chdir.asp
https://www.w3schools.com/php/func_directory_chroot.asp
https://www.w3schools.com/php/func_directory_closedir.asp
https://www.w3schools.com/php/func_directory_dir.asp
https://www.w3schools.com/php/func_directory_getcwd.asp
https://www.w3schools.com/php/func_directory_opendir.asp
https://www.w3schools.com/php/func_directory_readdir.asp
https://www.w3schools.com/php/func_directory_rewinddir.asp
https://www.w3schools.com/php/func_directory_scandir.asp
https://phppot.com/php/php-file-handling/

functions to deal with the operations, like, listing directory contents, and create/

open/ delete specified directory and etc. These basic functions are listed below.

 mkdir(): To make new directory.

 opendir(): To open directory.

 readdir(): To read from a directory after opening it.

 closedir(): To close directory with resource-id returned while opening.

 rmdir(): To remove directory.

In this article, we have to discuss each of the above basic directory functions in

PHP with their corresponding usage of these functions, possible parameter to be

passed if any, with suitable examples.

Creating New Directory

For creating a new directory using PHP programming script, mkdir() function

used, and, the usage of this function is as follows.

mkdir($directory_path,$mode,$recursive_flag,$context);

This function accepts four arguments as specified. Among them, the first

argument is mandatory, whereas, the remaining set of arguments are optional.

 $directory_path: By specifying either relative and absolute path, a new

directory will be created in such location if any, otherwise, will return an

error indicating that there are no such locations.

 $mode: The mode parameter accepts octal values in which the

accessibility of the newly created directory depends on.

 $recursive: This parameter is a flag and having values either true or false,

that allow or refuse to create nested directories further.

 $context: As similar as we have with PHP unlink() having a stream for

specifying protocols and etc.

This function will return boolean data, that is, true on successful

execution, false otherwise.

Listing Directory Content in PHP

For listing the contents of a directory, we require two of the above-listed PHP

directory functions, these are, opendir() and readdir(). There are two steps in

directory listing using PHP program.

 Step 1: Opening directory.

 Step 2: Reading content to be listed one by one using PHP loop.

Step 1: Opening Directory Link

As its name, opendir() function is used to perform this step. And, it has two

arguments, one is compulsory for specifying the path of the directory, and the

other is optional, expecting stream context if any. The syntax will be,

opendir($directory_path,$context);

Unlike PHP mkdir() returning boolean value, this function will return resource

data as like as fopen(), mysql_query() and etc. After receiving the resource

identifier return by this function, then only we can progress with the subsequent

steps to read, rewind or to close required directory with the reference of this

resource id. Otherwise, PHP error will occur for indicating the user, that the

resource id is not valid.

Step 2: Reading Directory Content

For performing this step, we need to call readdir() function recursively until the

directory handle reaches the end of the directory. For that, we need to specify

the resource-id returned while invoking opendir(), indicated as directory handle.

PHP readdir() will return string data on each iteration of the loop, and this

string will be the name of each item stored in the directory with its

corresponding extension. For example,

$directory_handle = opendir($directory_path);

while($directory_item = readdir($directory_handle)) {

echo $directory_item . "
";

}

And, thereby executing the above code sample, we can list the content of a

directory as expected.

https://phppot.com/php/loop-control-structure/
https://phppot.com/php/php-resource-data-type/
https://phppot.com/php/php-resource-data-type/

Closing Directory Link

Once the directory link is opened to perform set of dependent operations like

reading directory content, we need to close this link after completing the related

functionalities required. For example,

$directory_handle = opendir($directory_path);

...

...

closedir($directory_handle);

Removing Directory

We have seen in the previous article about how to delete a file from a directory

using PHP unlink(). Similarly, for removing the entire directory, PHP provides

a function named as rmdir() which accepts the same set of arguments, as like

as mkdir(). These are, the $directory_path and $context(Optional) as stated

below.

rmdir($directory_path,$mode,$recursive_flag,$context);

But, this function will remove the directory, if and only if it is empty. For

removing the non-empty directory, we need to create a user define a function

that recursively calls unlink() function to remove each file stored in the

directory to be deleted.

Example: PHP Directory Functions:

The following PHP program deals with the set of directory functions, that is, for

creating a new directory, open and read for listing directory content and closing

directory as follows.

<?php

mkdir("php_directory_functions_manual",0777);

/*Creating files into php_directory_functions_manual*/

$file_pointer1 = fopen("php_directory_functions_manual/mkdir.txt","x");

https://phppot.com/php/php-unlink-vs-unset/

$file_pointer2 = fopen("php_directory_functions_manual/rmdir.txt","x");

fclose($file_pointer1);

fclose($file_pointer2);

$directory_handle = opendir("php_directory_functions_manual");

while($directory_item = readdir($directory_handle)) {

echo $directory_item . "
";

}

closedir($directory_handle);

?>

This program will return the list of created files by using fopen() function as

shown below.

.

..

mkdir.txt

rmdir.txt

And then, let us have an another example, for looking into how a directory can

be removed.

<?php

$directory_handle = opendir("php_directory_functions_manual");

while($directory_item = readdir($directory_handle)) {

@unlink("php_directory_functions_manual/".$directory_item);

}

closedir($directory_handle);

rmdir("php_directory_functions_manual");

?>

On iterating with a loop for reading each item stored into the directory,

the unlink() function is invoked to wipeout the directory before attempting to

delete it. And then, rmdir() is used by referring with the name of the directory,

to remove it.

Note:

 If we invoked opendir() only once in a PHP program, its dependent

functions, like, readdir(), closedir() and etc., will execute successfully,

without specifying the directory handle resource, since, it refers recently

returned resource by default. Rather, if we have multiple resource data

referring various directory links, then we need to specify the directory

handle appropriately.

 For getting the successful execution of PHP unlink() and rmdir(), all

required permissions should be provided with the entries on which these

functions are applied.

	PHP
	What is OOP?
	PHP - What are Classes and Objects?
	class
	objects
	class (1)
	objects (1)
	PHP OOP - Classes and Objects
	OOP Case
	Define a Class
	Syntax
	Example

	Define Objects
	Example
	Example (1)

	PHP - The $this Keyword
	Example
	Example (1)
	Example (2)

	PHP - instanceof
	Example

	Object Oriented Programming in PHP
	Object Oriented Concepts
	Defining PHP Classes
	Example

	Creating Objects in PHP
	Calling Member Functions
	Constructor Functions
	Destructor
	Inheritance
	Function Overriding
	Public Members
	Private members
	Protected members
	Interfaces
	Constants
	Abstract Classes
	Static Keyword
	Final Keyword
	Calling parent constructors

	PHP extends Keyword
	Example
	Definition and Usage
	PHP - Access Modifiers
	Example
	Example (1)

	PHP Directory Introduction
	PHP Directory Functions
	Installation
	PHP Directory Functions

	PHP File Open/Read/Close
	PHP Open File - fopen()
	Example

	PHP Read File - fread()
	PHP Close File - fclose()
	PHP Read Single Line - fgets()
	Example

	PHP Check End-Of-File - feof()
	Example

	PHP Read Single Character - fgetc()
	Example

	Using remote files
	Runtime Configuration
	PHP Filesystem Functions

	PHP File Create/Write
	PHP Create File - fopen()
	Example

	PHP File Permissions
	PHP Write to File - fwrite()
	Example

	PHP Overwriting
	Example

	PHP Directory Functions (1)
	PHP Directory Introduction
	Installation
	PHP Directory Functions

	PHP Directory operations
	Creating New Directory
	Listing Directory Content in PHP
	Step 1: Opening Directory Link
	Step 2: Reading Directory Content

	Closing Directory Link
	Removing Directory
	Example: PHP Directory Functions:

