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OBJECTIVES:

To introduce concepts and algebraic structures of Groups and Rings with additional
operations and axioms.

UNIT: I
SET THEORY: Definition - Mappings — The Integers.

(Chapter 1 - Sections: 1.1 to 1.3)

1.1 Set Theory

We shall not attempt a formal definition of a set nor shall we try to lay the
groundwork for an axiomatic theory of sets. Instead we shall take the
operational and intuitive approach that a set is some given collection of
objects. In most of our applications we shall be dealing with rather specific
things, and the nebulous notion of a set, in these, will emerge as somcthing
quite recognizable. For those whose tastes run more to the formal and
abstract side, we can consider a set as a primitive notion which one does
not define.

A few remarks about notation and terminology. Given a set § we shall
use the notation throughout a € S to read ““a is an element of S.” In the same
vein, a ¢ S will read “a is not an element of S.” The set 4 will be said to be
a subset of the set S if every element in 4 is an element of S, that is, ifa e 4
implies @ € §. We shall write this as 4 < § (or, sometimes, as § o A),
which may be read “4 is contained in (or, S contains 4). This notation
is not meant to preclude the possibility that 4 = S. By the way, what is
meant by the cquality of two sets? For us this will always mean that they
contain the same elements, that is, every element which is in one is in the
other, and vice versa. In terms of the symbol for the containing relation, the
two sets 4 and B are equal, written 4 = B, if both 4 = B and B — A.
The standard device for proving the equality of two sets, something we shall
be required to do often, is to demonstrate that the two opposite containing
relations hold for them. A subset 4 of .§ will be called a proper subset of §
if 4 = Sbut 4 # S (4 is not equal to ).

The null set is the set having no elements: it is a subset of every set. We
shall often describe that a set S is the null set by saying it is empty.

One final, purely notational remark: Given a set S we shall constantly
use the notation 4 = {a € S| P(a)} to read “4 is the set of all clements in
§ for which the property P holds.” For instance, if S is the set of integers



and if 4 is the subset of positive integers, then we can describe 4 as
A = {ae S|a> 0). Another example of this: If § 1s the set consisting of
the objects (1), (2),..., (10), then the subset 4 consisting of (1), (4), (7],
(10) could he described by 4 = {(7) e S|i=3n 4+ 1, 2 =0,1,2, 3}.

Given two sets we can combine them to form new sets. There is nothing
sacred or particular about this number two; we can carry out the same pro-
cedure for any number of sets, finite or infinite, and in fact we shall. We
do so for two first because it illustrates the general construction but is not
obscured by the additional notational difficulties.

DEFINITION The union of the two scts A and B, written as 4 U B, is the
sct {x | xe 4 or x € B}.

A word about the usc of “or.”” In ordinary English when we say that
something is one or the other we imply that it is not both. The mathematical
“or™ is quite diflerent, at least when we are speaking about sct theory. For
when we say that x is in A or x is in B we mean x is in at {east one of A or B, and
may be in both.

Let us consider a few examples of the union of two sets. For any set 4,
A u 4 = A; in fact, whenever Bis asubsetof 4,4 U B = 4. If A is the
set {¥,, x,, #3} (i.e., the set whose elements are x, x,, x3) and if B is the set
{ Y1592 %1}, then 4 U B = {x,, %5, X3, ¥, Y2} If A is the set of all blonde-
haired people and if B is the set of all people who smoke, then 4 U B
consists of all the people who either have blonde hair or smoke or both.
Pictorially we can illustrate the union of the two sets 4 and B by

Here, 4 is the circle on the left, B that on the right, and 4 U B is the shaded
part.

DEFINITION The intersection of the two sets A and B, written as 4 N B,
is the set {x| x € 4 and x € B}.

The intersection of 4 and B is thus the set of all elements which are both
in 4 and in B. In analogy with the examples used to illustrate the union of
two sets, let us see what the intersections are in those very examples. For



any set A, A n A = A4; in fact, if B is any subset of 4, then 4 n B = B.
If 4 is the set {x;,x,,x3} and B the set {y,,9,, x,}, then 4 " B = {x,}
(we are supposing no y is an x). If A4 is the set of all blonde-haired people
and if B is the set of all people that smoke, then 4 ~ B is the set of all
blonde-haired people who smoke. Pictorially we can illustrate the inter-
section of the two sets 4 and B by

Here 4 is the circle on the left, B that on the right, while their intersection
is the shaded part.

Two sets are said to be disjoint if their intersection is empty, that is, is
the null set. For instance, if 4 is the set of positive integers and B the set of
negative integers, then 4 and B are disjoint. Note however that if C is the
set of nonnegative integers and if D is the set of nonpositive integers, then
they are not disjoint, for their intersection consists of the integer 0, and so is
not empty.

Before we generalize union and intersection from two sets to an arbitrary
number of them, we should like to prove a little proposition interrelating
union and intersection. This is the first of a whole host of such resylts that
can be proved; some of these can be found in the problems at the end of this
section.

PROPOSITION  For any three sets, A, B, C we have
An(BuC)=(AnB)u (4nC).

Proof. The proof will consist of showing, to begin with, the relation
(ANnB)u(ANnC)cAn (BuC) and then the converse relation
An(BuC) c(AnB)u (4n0C).

We first dispose of (AnB)u(4nC)cAn (BuC). Because
B = By C, it is immediate that AnBc A4n (Bu C). In a similar
manner, 4 " C < 4 n (B u C). Therefore

(AnB)u(AnC)c(An(BuC))u(Am(BuC))=An(BuC).

Now for the other direction. Given an element xe 4 A (BuC),
first of all it must be an element of A. Secondly, as an element in B U C it
is either in B or in C. Suppose the former; then as an element both of 4 and
of B, x must be in 4 n B. The second possibility, namely, x € C, leads us



to x € A n €. Thus in either eventuality x e (4 n B) U (4 n C), whence
AnBuC) =(AnBudnC).

The two opposite containing relations combine to give us the equality
asserted in the proposition.

We continue the discussion of sets to extend the notion of union and of
intersection to arbitrary collections of sets.

Given a set T we say that T serves as an index set for the family & = {4}
of sets if for every a € T there exists a set of A, in the family #. The index
set 7" can be any set, finite or infinite. Very often we use t
negative integers as an index set, but, we repeat, T can be any (nonempty)
set.

By the union of the sets 4,, where o is in 7, we mean the set {x |x e 4,
for at least one a in T'}. We shall denote it by | J,or 4.. By the intersection
of the sets 4, where « is in T, we mean the set {x | x € 4, for every ¢ € T};
we shall denote it by (Jeer 4, The sets A, are mutually disjoint if for ot # B,
A, N A is the null set.

For instance, if S is the set of real numbers, and if 7 is the set of rational
numbers, let, for a e T, 4, = {x € §|x = «}. Itis an easy exercise to see
that {J,er 4, = S whereas (\yer 4, is the null set. The sets 4, are not
mutually disjoint.

DEFINITION Given the two sets A, B then the difference set, A — B, is the
set {x€ A| x ¢ B}.

Returning to our little pictures, if 4 is the circle on the left, B that on the
right, then 4 — B is the shaded area.

Note that for any set B, the set A satisfies 4 = (4~ B) u (4 — B).
(Prove!d Note further that B n (4 — B) is the null set. A particular case
of interest of the difference of two sets is when one of these is a subset of the
other. In that case, when B is a subset of 4, we call 4 — B the complement
of Bin A.

We still want one more construct of two given sets 4 and B, their Carlesian
product A x B. 'This set A x B is defined as the set of all ordered pairs
(a, b) where a € A and b € B and where we declare the pair (a,. b;) to be
equal to (a,, b,) ifand only if 2, = a; and b; = b,.



A few remarks about the Cartesian product. Given the two sets 4 and B
we could construct the sets 4 x B and B x 4 from them. As sets these are
distinct, yet we feel that they must be closely related. Given three sets 4,
B, C we can construct many Cartesian products from them: for instance, the
set A x D, where D = B x C; the set E x C, where £ = A x B; and
also the set of all ordered triples (a, b, ¢) where a€ 4, be B, and ¢ € C.
These give us three distinct sets, yet here, also, we feel that these sets must
be closely related. Of course, we can continue this process with more and
more sets. To see the exact relation between them we shall have to wait
until the next section, where we discuss one-to-one correspondences.

Given any index set 7" we could define the Cartesian product of the sets
4, as a varies over T’ since we shall not need so general a product, we do
not bother to define it.

Finally, we can consider the Cartesian product of a set A with itself,
A x A. Note that if the set 4 is a finite set having n elements, then the set
4 x A s also a finite set, but has n? elements. The set of elements (a, a) in
A x A is called the diagonal of A x A.

A subset R of A x A is said to define an equivalence relation on A if

1. (a,a) € R for all a € A.
2. (a, b) € R implies (b, a) € R.
3. (a,b) € Rand (b, c) € R imply that (a,¢) € R.

Instead of speaking about subsets of 4 X 4 we can speak about a binary
relation (one between two elements of 4) on 4 itself, defining b to be related
to aif (a, b) € R. The properties 1, 2, 3 of the subset R immediatelytranslate
into the properties 1, 2, 3 of the definition below.

DEFINITION The binary relation ~ on 4 is said to be an equivalence
relation on A if for all a, b, ¢ in 4

l. a ~ a.
2. a ~ bimplies b ~ a.
3. a~band b ~ cimplya ~ c.

The first of these properties is called reflexivity, the second, symmetry, and
the third, transitivity.

The concept of an equivalence relation is an extremely important one
and plays a central role in all of mathematics. We illustrate it with a few
examples.

Example 1.1.1 Let § be any set and define a ~ &, for a, b e, if and
only ifa = b. This clearly defines an equivalence relation on §. In fact, an
equivalence relation is a generalization of equality, measuring equality up
to some property.



Example 1.1.2 Le: § be the set of all integers. Given a, b € S, define
a ~ bifa — bis an even integer. We verify that this defines an equivalence
relation of .

1. Since 0 = a — ais even,a ~ a.

9 Ifa ~ b, thatis,ifa — biseven, then b — a = —(a — &) 1s also even,
whence b ~ a.

3. If a ~b and b ~ ¢, then both a — b and 6 — ¢ arc even, whence
a—¢={a—>5) + (b — ¢)isalso even, proving that a ~ ¢.

Example 1.1.3 Let $ be the set of all integers and let 2 > | be a fixed
integer. Define for a,b€ S,a ~ bifa — b is a multiple of n. We leave it
as an exercise to prove that this defines an equivalence relation on §.

Example 1.1.4 Let § be the sct of all triangles in the plane. Two
triangles are defined to be equivalent if they are similar (i.e., have corre-
sponding angles equal). This defines an equivalence relation on .

Example 1.1.5 Lect S be the set of points in the planc. Two points @ and
b are defined to be equivalent if they are equidistant from the origin. A
simple check verifies that this defines an equivalence relation on §.

There are many more equivalence relations; we shall encounter a few as
we proceed in the book.

DEFINITION If 4 is a sct and if ~ is an equivalence relation on A, then
the equivalence class of a € A is the set {x € A |a ~ x}. We write il as cl(a).

In the examples just discussed, what are the equivalence classes? In
Examplc 1.1.1, the equivalence class of a consists merely of a itself. In
Example 1.1.2 the equivalence class of a consists of all the integers of the
form a + 2m, where m = 0, +1, +2,...; in this example there are only
two distinct cquivalence classes, namely, ¢1{0) and cl(1). In Example 1.1.3,
the equivalence class of a consists of all integers of the form a + kn where
k=0, +!,+2,...: here there are n distinct equivalence classes, namely
cl(0), cl(l},...,cl(n — 1). In Example 1.1.5, the equivalence class of a
consists of all the points in the plane which lie on the circle which has its
center at the origin and passes through a.

Although we have made quite a few definitions, introduced some concepts,
and havc cven established a simple little proposition, cne could say in all
fairness that up to this point we have not proved any result of real substance.
We are now about to prove the first genuine result in the book. 'The proof
of this theorem is not very difficult—actuzlly it is quite easy—but nonetheless
the result 1t embodics will be of great use to us.



THEOREM 1.1.1  The distinct equivalence classes of an equivalence relation on A
provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely,
gien a decomposition of A as a union of mutually disjoint, nonempty subsets, we can
define an equivalence relation on A for which these subsels are the distinct equivalence
classes.

Proof. Let the equivalence relation on 4 be denoted by ~.

We first note that since for any a € 4, @ ~ a, a must be in cl(a), whence
the union of the cl{a)’s is all of 4. We now assert that given two equivalence
classes they are either equal or disjoint. For, suppose that cl(e) and cl(b)
are not disjoint; then there is an element x € cl(a) N cl(b). Since x € cl(a),
a ~ x; since x ecl(b), b ~ x, whence by the symmetry of the relation,
x ~ b. However, a ~ x and x ~ b by the transitivity of the relation forces
a ~ b. Suppose, now that y e cl(b); thus b ~ ». However, from a ~ &
and b ~ 3, we deduce that a ~ y, that is, that y e ci(a). Therefore, every
element in cl(b) is in cl(a), which proves that cl(6) < cl(a). The argument
is clearly symmetric, whence we conclude that cl{a) = cl(d). The two
opposite containing relations imply that cl(a) = cl(b).

We have thus shown that the distinct cl(a)’s are mutually disjoint and
that their union is 4. This proves the first half of the theorem. Now for
the other half!

Suppose that 4 = | ) 4, where the 4, are mutually disjoint, nonempty
sets (o is in some index set 7"). How shall we use them to define an equiva-
lence relation? The way is clear; given an element a in 4 it is in exactly one
4,. We define for a,be 4, a ~ b if a and b are in the same A,. We leave
it as an exercise to prove that this is an equivalence relation on 4 and that
the distinct equivalence classes are the 4.

Problems

L. (a) If 4 is a subset of B and B is a subset of C, prove that 4 is a subset
of C.
(b) If B = 4, prove that A U B = A4, and conversely.
(c) If B < 4, prove that for any set C both BUC = 4 U C and
B:m GG

2. (a) Provethat AnB=BnAdand AUB = B U A.
(b) Provethat (A nB) N C = 4 n (BnC).

3. Provethat AU (BN C) = (AU B) n (4 u C).

4. For a subset C of § let C' denote the complement of C in §. For any
two subsets 4, B of S prove the De Morgan rules:
(@) (AnB)Y =4vyu B.
(b\ (A llB)' = A ~ B.

OISl

5. For a finite set C
t

and B are fini

e sets prove o{4 U B) = o(4) + o(B) — o(d n B).



6.

%

8.

o

10.

11.

12,

13.

If A is a finite set having z elements, prove that 4 has exactly 2" distinct
subsets.

A survey shows that 639, of the American people like cheese whereas
769, like apples. What can you say about the percentage of the
American people that like both cheese and apples? (The given statistics
are not meant to be accurate.)

Given two sets 4 and B their symmelric difference is defined to be
(A — B) U (B — A). Prove that the symmetric difference of 4 and B
equals (4 U B) — (4 n B.

Let § be a set and let §* be the set whose clements arc the various sub-
sets of §. In S* we define an addition and multiplication as follows: If
A, B € §* (remember, this means that they are subsets of §):

(1) A+ B=(4— B)u (B — A).

(d) A -+ 4 = nul! set.

(e) Ifd + B=A4 + Cthen B = C.

(The system just described is an example of a Booleun algebra.)

For the given set and relation below determine which define equivalence

relations.

(a) &S is the set of all people in the world wday, @ ~ b if ¢ and & have
an ancestor in common.

(b) S is the set of all people in the world today, a ~ b if a lives within
100 milcs of b.

(c) S is the set of all pecple in the world today, a ~ b if @ and b have
the same father.

(d) S is the set of real numbers, a ~ bifa — +5b.

(e) Sis the set of integers, ¢ ~ bifbotha > band b > a.

(f) S§is the set of all straight lines in the plane, a ~ b it a is parallel to b,

(a) Property 2 of an equivalence relation states that if ¢ ~ b then
b ~ a; property 3 states that if ¢ ~ b and & ~ ¢ then a ~ ¢
What is wrong with the following proot that properties 2 and 3
imply property 1? Let a ~ b; then b ~ a, whence, by property 3
(using @ = ¢), a ~ a.

(b) Can you suggest an alternative of property 1 which will insure us
that properties 2 and 3 do imply property 17

In Example 1.1.3 of an equivalence relation given in the text, prove

that the relation defined is an equivalence relation and that there are

exactly n distinct equivalence classes, namely, cl(0], cI(1), ..., cl(n — 1).

Complete the proof of the second half of Theorem 1.1.1.



1.2 Mappings

We are about to introduce the concept of a mapping of one set into another.
Without exaggeration this is probably the single most important and uni-
versal notion that runs through all of mathematics. It is hardly a new thing
to any of us, for we have been considering mappings from the very earliest
days of our mathematical training. When we were asked to plot the relation
7 = x* we were simply being asked to study the particular mapping which
takes every real number onto its square.

Loosely speaking, a mapping from one set, S, into another, T’ is a “rule”
(whatever that may mean) that associates with each element in S a unique
element ¢ in 7. We shall define a mapping somewhat more formally and
precisely but the purpose of the definition is to allow us to think and speak
in the above terms. We should think of them as rules or devices or mech-
anisms that transport us from one set to another.

Let us motivate a little the definition that we will make. The point of
view we take is to consider the mapping to be defined by its “graph.” We
illustrate this with the familiar example y = x? defined on the real numbers
§ and taking its values also in §. For this set §, § x S, the set of all pairs
(a, b) can be viewed as the plane, the pair (a, b) corresponding to the point
whose coordinates are 2 and b, respectively. In this plane we single out all
those points whose coordinates are of the form (x, x?) and call this set of
points the graph of y = x%. 'We even represent this set pictorially as

To find the *“value” of the function or mapping at the point ¥ = a, we look
at the point in the graph whose first coordinate is @ and read off the second
coordinate as the value of the function at x = a.

"This is, no more or less, the approach we take in the general setting to
define a mapping from one set into another.

DEFINITION If.S and T are nonempty sets, then a mapping from S to T
is a subset, M, of § x T such that for every s € S there is a unique t € T such
that the ordered pair (s, ¢) is in M.

This definition serves to make the concept of a mapping precise for us but
we shall almost never use it in this form. Instead we do prefer to think of a



mapping as a rule which associates with any element s in § some element
tin T, the rule being, associate (or map) s € S with t € T if and only if (s, 1) € M.
We shall say that ¢ is the image of s under the mapping.

Now for some notation for these things. Let ¢ be a mapping from S to
T'; we often denote this by writing 6:§ = Tor § 5 T. If tis the image of
s under o we shall sometimes write this as ¢:s — ¢; more often, we shall
represent this fact by ¢ = so. Note that we write the mapping ¢ on the
right. There is no overall consistency in this usage; many people would
write it as ¢ = o(s). Algebraists often write mappings on the right; other
mathematicians write them on the left. Tn fact, we shall not be absolutely
consistent in this ourselves; when we shall want to emphasize the functional
nature of ¢ we may very well write ¢ = o(s).

Examples of Mappings

In all the examples the sets are assumed to be nonempty.

Example 1.2.1 Let S be any set; define 1:§ = § by s = s1 for any
s € §. This mapping 1 is called the identity mapping of S.

Example 1.2.2 Let S and T be any sets and let £, be an element of 7.
Define 7:§ — T by t:s — ¢, for every s € S.

Example 1.2.3 Let S be the set of positive rational numbers and let
T = J x J where J is the set of integers. Given a rational number s we
can write it as s = mjn, where m and n have no common factor. Define
78 = T by st = (m, n). -

Example 1.2.4 Let Jbcthesctofintegersand § = {(m,n) e J x J|n # 0};
let T be the set of rational numbers; define t:S — T by (m, n)t = m/n for
every (m, n) in S.

Example 1.2.5 Let J be the set of integers and § = J x J. Define
.8 = Jby (m,n)t = m + n.

Note that in Example 1.2.5 the addition in J itself can be represented in
terms of a mapping of J x J into J. Given an arbitrary sct § we call a
mapping of § x S into S a binary operation on §. Given such a mapping
7.5 X § - § we could use it to define a “product” * in § by declaring
a*b = cif (a,b)r = c.

Example 1.2.6 Let § and T be any sels; define ©:§ x 7 — § by
(a, b)t = a for any (a, b) € § x T. This t is called the projection of § x T
on S. We could similarly define the projection of § x 7T on 7.



Example 1.2.7 Let § be the set consisting of the elements X5 %55 X5
Define 1§ — Sby x,1 = x,, 2,7 = x5, 237 = 2

Example 1.2.8 Let S be the set of integers and let 7" be the set consisting
of the elements £ and 0. Define z:§ — T by declaring nt = E if n is even
and nt = 0 if n is odd.

If §is any set, let {x,,...,x,} be its subset consisting of the elements
X{s X25- - -, X, of §. In particular, {x} is the subset of S whose only element
is x. Given § we can use it to construct a new set S$*, the set whose elements
arc the subsets of S. We call $* the set of subsets of S. Thus for mstance, if
S = {x;, x,} then §* has exactly four elements, namely, a; = null set,
a, = the subset, §, of S, a3 = {x,}, 4, = {x,}. The relation of S to g
in general, is a very interesting one; some of its properties are examined in
the problems.

Example 1.29 Let S be a set, T = $*; define 7:§ - T by st =
complement of {s} in § = § — {s}.

Example 1.2.10 Let § be a sct with an equivalence relation, and let
T be the set of equivalence classes in § (note that 7 is a subset of S5*).
Define 7:8§ —» T by st = cl(s).

We leave the examples to continue the general discussion. Given a
mapping 7:§ —» T we define for ¢ € T, the inverse image of t with respect to t
to be the set {se §|¢ = st}. In Example 1.2.8, the inverse image of E is
the subset of § consisting of the even integers. It may happen that for some
t1n T that its inverse image with respect to 7 is empty; that is, ¢ is not the
image under 7 of any element in §. In Example 1.2.3, the element (4,2) is
not the image of any element in § under the ¢ used; in Example 1.2.9, §,
as an clement in §*, is not the image under the 7 used of any element in S.

DEFINITION The mapping t of § into 7 is said to be onto T if given
t € T there exists an element s € § such that ¢ = st.

If we call the subset St = {x € T | x = s7 for some s € S} the image of S
under 7, then 7 is onto if the image of S under 7 is all of 7. Note that in
Examples 1.2.1, 1.2.4-1.2.8, and 1.2.10 the mappings used are all onto.

Another special type of mapping arises often and is important: the one-
to-one mapping.

DEFINITION The mapping 7 of S into 7 is said to be a ore-to-one mapping
if whenever s, # s,, then 5,7 # s,7.



In terms of inverse images, the mapping 7 is one-to-one if for any te T
the inverse image of { is either empty or is a set consisting of one element.
In the examples discussed, the mappings in Examples 1.2.1, 1.2.3, 1.2.7,
and 1.2.9 are all one-to-one.

When should we say that two mappings from S to 7" are equal? A natural
definition for this is that they should have the same effect on every element
of §; that is, the image of any element in § under each of these mappings
should be the same. In a little more formal manner:

DEFINITION The two mappings ¢ and 7 of S into 7" are said to be equal
if s = st for every s € S.

Consider the following situation: We have a mapping ¢ from S to 7" and
another mapping t from 7" to U. Can we compound these mappings to
produce a mapping from § to U? The most natural and obvious way of
doing this is to send a given element s, in S, in two stages into U, first by
applying ¢ to s and then applying 7 to the resulting element s¢ in 7. This
is the basis of the

DEFINITION If ¢:S - T and ©:7 — U then the composition of ¢ and 7
(also called their product) is the mapping ¢ o 7:§ — U defined by means of
s(g 1) = (s0)7 for every s € S.

Note that the order of events reads from left to right; ¢ o 7 reads: first
perform ¢ and then follow it up with 7. Here, too, the left-right business is
not a uniform one. Mathematicians who write their mappings on the left
would read o7 to mean first perform 7t and then 6. Accordinglysin
reading a given book in mathematics one must make absolutely sure as to
what convention is being followed in writing the product of two mappings.
We reiterate, for us ¢ o t will always mean: first apply o and then t.

We illustrate the composition of ¢ and 7 with a few examples.

Example 1.211 Let S = {x,,%,,%;} and let 7 = S. Let ¢:5 — S be
defined by

2,0 = %5,

X0 = X3,

X30 = x;;
and 7:§ - S by

2T =%

X% =i

x3‘t — xz.



Thus
#(001) = (x,0)T = %7 = x5,
%(0017) = (x,0)T = 2,7 = x,,
%3(0 0 1) = (%30)T = x,7 = x,.
At the same time we can compute 7 o g, because in this case it also makes

sense. Now
x(teo0) = (x1)0 = (x,0) = X2,

x,(T 0 @) (%37)0 = 236 = x4,

x3(100) = (x31)0 = x,6 = x,.

Note that x, = x,(1 ¢ ¢), whereas x; = x,(6 o7) whence 601 # 700

Example 1.2.12 Let S be the set of i 1ntegcrs, T'thesetS x S, and suppose
fined by mo = (m — 1,1). Let U = § and suppose that
is defined by (m, n)t = m + n. Thus ¢ - 7:§ — § whereas
; even to speak about the equality of ¢ o v and 70 ¢ would
make no sense since they do not act on the same space. We now compute
¢ o 7 as a mapping of § into itself and then 7 o ¢ as one on T into itself.
Givenm e S, mo = (m — 1, 1) whence m(g o 1) = (mo)t = (m — 1, 1)t =
(m — 1) + 1 = m. Thus o o 7 is the identity mapping of § into itself. What
about 7o o? Given (m, n) € T, (m,n)t = m + n, whereby (m, n) (10) =
((m,n)t)o = (m + n)o = (m + n — 1, 1). Note that 7 o ¢ is not the identity
map of T into itself; it is not even an onto mapping of 7.

o~ X e Aa
U.S —_— T 15 ucu

Example 1.2.13 Let S be the set of real numbers, T the set of integers,
and U = {E,0}. Define ¢:S§ - T by so = largest integer less than or
equal to s, and 7:7 — U defined by nt = Eif nis even, nt = 0 if n is odd.
Note that in this case 7 o ¢ cannot be deﬁncd We computc o o 1 for two
real numbers s = § and s = 7. Now since § = 2 + % %, (3)o = 2, whence
B (eo1) = Bo)r = (7 = E; (n)e = 3, whence n(0o1) = (no)t =
) =20

For mappings of sets, provided the requisite products make sense, a
general associative law holds. This is the content of

LEMMA 1.21 (Associamive Law) If 6:8 » T, 1:T — U, and p:U — V,
then (6 ot) o = o (10 p).

Proof. Note first that ¢ o1 makes sense and takes S into U, thus
(6 o 1) o p also makes sense and takes S into V. Similarly & o (top) is
meaningful and takcs $ into V. Thus we can speak about the equality, or
lack of equality, of (¢ <) e gand g o (10 p).

To prove the asserted equality we merely must s|
s{(dot)opu) =s(co (t o p)). Now by the very d :
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of maps, s((°t)opu) = (s(eo1))y = ((s6)t)u whereas s(g o (7 o W) =
(s0)(r o u) = ((so)r)u. Thus, the elements s((o o ) o ) and s(oo(top))
are indeed equal. This proves the lemma.

We should like to show that if two mappings ¢ and 7 are properly condi-
tioned the very same conditions carry over to ¢ o 7.

LEMMA 122 Lleto:S > Tand 1:T — U; then

1. ¢ o T is onlo if each of ¢ and 7 is onto.
2. 0 o T is one-to-one if each of o and T is one-to-one.

Proof. We prove only part 2, leaving the proof of part 1 as an exercise.

Suppose that 5, 5, € § and that s; # 5,. By the one-to-one nature of o,
510 # $,0. Since 7 is one-to-one and 5,0 and 5,0 are distinct elements of 7 5
(s10)T # (5;0)t whence s5,(601) = (5,0)t # (5,0)7 = s;(6 ° 1), proving
that ¢ o 7 is indeed one-to-one, and establishing the lemma.

Suppose that ¢ is a one-to-one mapping of S onto T'; we call ¢ a one-lo-one
correspondence between § and 7. Given any ¢ € 7T, by the “onto-ness” of &
there exists an element s € S such that ¢ = sq; by the “one-to-oneness’” of
o this 5 is unique. We define the mapping ¢~ ':7 — Sby s = to~ ! if and
only if £ = s6. The mapping ¢~ ! is called the inverse of 5. Let us compute
gdoa~ ' which maps § into itself. Given se S, let ¢ = so, whence by
definition s = 6™ *; thus s(60 6™ 1) = (s6)6™! = t6~ ! = 5. We have shown
that g o 67! is the identity mapping of S onto itself. A similar computation
reveals that ¢~ ! o ¢ is the identity mapping of 7 onto itself,

Conversely, if ¢:5 — 7" is such that there exists a w:T — S with thg
property that g o y and u o ¢ are the identity mappings on § and 7, respec-
tively, then we claim that ¢ is a one-to-one correspondence between S and 7.
First observe that ¢ is onto for, given te T, t = t(poe) = (tp)o (since
I ° ¢ is the identity on 7") and so ¢ is the image under ¢ of the element # in
§. Next observe that ¢ is one-to-one, for if 5,6 = 5,0, using that ¢ o u is the
identity on §, we have s =s51(060p) = (s0)pu = (5,0) p = 52(0 o p) = 55,
We have now proved

LEMMA 123 7k mapping 6.8 — T is a one-to-one correspondence between
Sand T if und only if there exists a mapping p:T — S such that o o pand pog
are the identity mappings on S and T, respectively.

DEFINITION IfSis a nonempty set then A(S) is the set of all one-to-one
Mappings of S onto itself.

) . ' . o o .
Aside from its own intrinsic interest A(S) plays a central and universal
¥pe of role in considering the mathematical system known as a group



(Chapter 2). For this reason wc statc the next thecorem concerning its
nature. All the constituent parts of the theorem have already been proved
in the various lemmas, so we state the theorem without proof.

THEOREM 1.21 If g, 1, u are elements of A(S), then

1. 6 otisin A(S).

2. (6et)op =00 (Top).

3. There exists an element 1 (the identity map) in A(S) such thatec -1 = 100 = o.
4. There exists an element 6~ € A(S) suchthat 6 o6~ ' = 6" oo = 1.

We close the section with a remark about A(S). Suppose that § has more
than two elements; let x,, x,, ¥ be three distinct elements in S; define the
mapping 6:8 = § by x,6 = x,, x,06 =x;, %30 = x,, 56 = s for any
s € § different from x,, x,, ¥;. Define the mapping 7:§ —» § by x,7 = Xy
X3T = X, and st = s for any s € § different from x,, x;. Clearly both o and

7 are in A(S). A simple computation shows that x;(6 1) = x, but that
x(te0) = x, # x3. Thusoot # 700. Thisis

LEMMA 1.2.4 If S has more that two elements we can find two elements o,
T in A(S) such that 6ot # 1o 0.

Problems

I. In the following, where ¢:§ — T, determine whether the ¢ is ento
andfor one-to-one and determine the inverse image of any te T

under 0.
(a) § = set of real numbers, 7" = set of nonnegative real numbers,
2
So = §°.

(b) § = set of nonnegative real numbers, 7' = set of nonnegative real
numbers, s¢ = s52.
(c) § = set of integers, T = set of integers, so¢ = s2.
(d) § = set of integers, T’ = set of integers, s6 = 2s.
2. If § and T are nonempty sets, prove that there exists a one-to-one
correspondence between S x T and T x S.

(L]

. If 8, T, U are nonempty sets, prove that there exists a one-to-one
correspondence between
(a) (§ x T) x Uand § x (T x U).
(b) Either set in part (a) and the set of ordered triples (s, £, #) where
seS, teT, ue U.

4. (a) If there is a one-to-one correspondence between S and 7', prove
that there exists a one-to-one correspondence between 7" and .



*6.

10.

11.

12.

13.

14,

15,

16.

(b) If there is a one-to-one correspondence between 8 and 7 and

between T and U, prove that there is a one-to-one correspondence
between § and U.

. If 1 is the identity mapping on S, prove that for any ¢ e A(S),

gol =106 = 0.
If § is any set, prove that it is impossible to find a mapping of § onto S*.
If the sct § has n elements, prove that A(S) has n! (n factorial) elements.

. If the set § has a finite number of elements, prove the following:

(a) If ¢ maps § onto S, then ¢ is onc-to-onc.
b) If ¢ is a one-to-one mapping of S onto itself, then ¢ is onto.
ppng

(c) Prove, by example, that both part (a) and part (b) are false if §
does not have a finite number of elements.

Prove that the converse to both parts of Lemma 1.2.2 are false; namely,
(a) If ¢ o 7 is onto, it need not be that both ¢ and 7 are onto.

(b) If ¢ o 7 is one-to-one, it need not be that both ¢ and 7 are one-to-
one.

Prove that there is a one-to-one correspondence between the set of
integers and the set of rational numbers.

If 6:§ - T and if 4 is a subset of S, the restriction of o to A, 04 IS
defined by ad, = ao for any ae A. Prove

(a) 04 defines a mapping of 4 into 7.

(b) o4 is one-to-one if ¢ is.

(c) o, may very well be one-tc-one even if ¢ is not.

If 6:§ - .§ and 4 is a subset of § such that Ag < 4, prove that
(@o0)y =0g400, R
A set § is said to be infinite if there is a one-to-one correspondencc
between S and a proper subset of . Prove

(a) The set of integers is infinite.

(b) The set of real numbers is infinite.

(c) If a set S has a subset 4 which is infinite, then § must be infinite.

(Note : By the result of Problem 8, a set finite in the usual sense is not
infinite.)

If S is infinitc and can be brought into one-to-one correspondence

with the set of integers, prove that there is one-to-one correspondence
between S and § x S

Given two sets S and 7" we declare § < T (§ is smaller than ) 1t

there is a mapping of 7" anta S but no mapping of § onto T. Prove that
ifS < Tand T < Uthen S < U.

If § and T are finite sets having m and n elements, respectively, prove
that if m < nthen § < T.



1.3 The Integers

We close this chapter with a brief discussion of the set of integers. We shall
make no attempt to construct them axiomatically, assuming instead that we
already have the set of integers and that we know many of the elementary
facts about them. In this number we include the principle of mathematical
induction (which will be used freely throughout the book) and the fact that
a nonempty set of positive integers always contains a smallest element. As
to notation, the familiar symbols: a > b, @ < b, |a|, etc., will occur with
their usual meaning. To avoid repeating that something is an integer, we
make the assumption that all symbols, in this section, written as lowercase Laiin
letters will be integers.

Given a and b, with & # 0, we can divide a by b to get a nonnegative
remainder r which is smaller in size than b; that is, we can find m and r
such that @ = mb + r where 0 < r < |b|. This fact is known as the
Euclidean algorithm and we assume familiarity with it.

We say that b # 0 divides a if @ = mb for some m. We denote that b
divides a by & | a, and that b does not divide a by b ¥ a. Note thatifa| I then
a = +1, that when both a|b and b|a, then @ = +b, and that any b
divides 0. If b | a, we call b a dizisor of a. Note that if b is a divisor of g
and of 4, then it is a divisor of mg + nh for arbitrary integers m and n. We
leave the verification of these remarks as exercises.

DEFINITION The positive integer ¢ is said to be the greatest common divisor
of @ and b if

I. ¢ 1s a divisor of a and of b.
2. Any divisor of @ and & is a divisor of ¢.

We shall use the notation (a, b) for the greatest common divisor of a and
b. Since we insist that the greatest common divisor be positive, (a, b) =
(a, =b) = (—a,b) = (—a, —b). Forinstance, (60, 24) = (60, —24) = 12.
Another comment: The mere fact that we have defined what is to be meant
by the greatest common divisor does not guarantee that it exists. This will
have to be proved. However, we can say that if it exists then it is unique,
for, if we had ¢, and ¢, satisfying both conditions of the definition above,
then ¢, | ¢, and ¢, | ¢;, whence we would have ¢, = +¢,; the insistence on
positivity would then force ¢; = ¢,. Our first business at hand then is to
dispose of the existence of (a, b). In doing so, in the next lemma, we actually
prove a little more, namely that (¢, ) must have a particular form.

LEMMA 1.3.1 If a and b are integers, not both 0, then (a, b) exisis; moreover,
we can find integers my and ny such that (a, b) = mga + nyb.



Proof. Let # be the set of all integers of the form ma + nb, where m
and n range freely over the set of integers. Since one of a or & is not 0, there
are nonzero integers in #. Becausex = ma + nbisin M, —x = (—m)a +
(—n)b is also in # ; therefore, # always has in it some positive integers.
But then there is a smallest positive integer, ¢, in 4 ; being in ., ¢ has the
form ¢ = mya + ngb. We claim that ¢ = (a, b).

Note first that if d | @ and d | b, the d | (mya + nyb), whence d | c. We now
must show that ¢ | @ and ¢ | b. Given any element x = ma + nb in .#, then
by the Euclidean algorithm, x = #& + r where 0 < r < ¢. Writing this
out explicitly, ma + nb = t(mga + nyb) + r, whence r = (m — tmg)a +
(n — tny)b and so must be in #. Since 0 < r and r < ¢, by the choice of
¢, r = 0. Thus x = tc; we have proved that ¢|x for any x € .#. But
a=la+0be# and b = 0a + 1b € M, whence ¢ |a and ¢ | b.

We have shown that ¢ satisfies the requisite properties to be (a, ) and
so we have proved the lemma.

DEFINITION The integers a and b are relatively prime if (a, b) = 1.
As an immediate consequence of Lemma 1.3.1, we have the

COROLLARY If a and b are relatively prime, we can find integers m and n such
that ma + nb = 1.

We introduce another familiar notion, that of prime number. By this
we shall mean an integer which has no nontrivial factorization. For technical
reasons, we exclude 1 from the set of prime numbers. The sequence 2, 3, 5,
7, 11,... are all prime numbers; equally, —2, —3, —5,... are printe
numbers. Since, in factoring, the negative introduces no essential differences,
for us prime numbers will always be positive.

DEFINITION The integer p > 1 is a prime number if its only divisors are
11, +p.

Another way of putting this is to say that an integer p (larger than 1) is a
prime number if and only if given any other integer n then either (p, n) = 1
or p | n. As we shall soon see, the prime numbers are the building blocks of
the integers. But first we need the important observation,

LEMMA 1.3.2 If a is relatively prime to b but a | be, then a | .

Proof. Since a and b are relatively prime, by the corollary to Lemma
1.3.1, we can find integers m and n such that ma + nb = 1. Thus
mac + nbc = ¢. Now a|mac and, by assumption, a|nbc; consequently,



a| (mac + nbc). Since mac + nbc = ¢, we conclude that a|¢, which is
precisely the assertion of the lemma,

Following immediately from the lemma and the definition of prime

number is the important

COROLLARY  If a prime number divides the product of certain integers it must
divide al least one of these integers.

We leave the proof of the corollary to the reader.

We have asserted that the prime numbers serve as the building blocks
for the set of integers. The precise statement of this is the unique factorization
theorem :

THEOREM 1.3.1 Any positive integer a > | can be factoreé’ in a unique way
as a = p\"py"2 - pit, where py > p, > -+ > p, are prime numbers and
where each a; > 0.

Proof. The theorem as stated actually consists of two distinct sub-
theorems; the first asserts the possibility of factoring the given integer as a
product Of prime powers; the second assures us that this deco nposition is

unique. We shall prove the theorem itself by proving each of these sub-
theorems separately.

An immediate question presents itself: How shall we go about proving
the theorem? A natural method of attack is to use mathematical induction.
A short word about this; we shall use the followxng version of mathematical
induction: If the proposition P(m,) is true and if the truth of P(r) for all »
such that my < r < k implies the truth of P(k), then P(n) is true for all
n = my. This variant of induction can be shown to be a consequence of the
basic property of the integers which asserts that any nonempty set of positive
integers has a minimal element (see Problem 10).

We first prove that every mtegcr a > 1 can be factored as a product of
prime powers; our approach is via mathematical induction.

Certainly my, = 2, being a prime number, has a representation as a
product of prime powers.

Suppose that any integer 7, 2 < r < k can be factored as a product of
prime powers. If £ itself is a prime number, then it is a product of prime
powers. If £ is not a prime number, then ¥ = uz, where 1 < u < k and
I < » < k. By the induction hypothesis, since both u and v are less than k
each of these can be factored as a product of prime powers. Thus k =
is also such a product. We have shown that the truth of the proposition for
all integers 7, 2 < r < £, implies its truth for . Consequently, by the
basic induction principle, the proposmon is true for all integers n > my, = 2;

thimé in Avrane _...L i
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Now for the uniqueness. Here, too, we sha!l use mathematical induction,
and in the form used above. Suppose that

a = plalpzaz i%s rar L & qlﬁlqzﬂz e qsﬁ"

where py > t2 > "“pps G4 > gy > - >4, are prime numbers, and
where each o; > ( and each f; > 0. Our object is to prove

=3

1 =91’pz=?z>---,ﬁr=q,.
1= B = Posn 0 = By

W R =
RN =

.

For a — 2 this is clearly true.  Proceeding by induction we suppose it to
be true for all integers u, 2 < u < a. Now, since

a = ‘blal .o .pr\!r pot qlpl . .qsﬂs

and since o, > 0, p, | a, hence p; | g," - -¢/*. However, since p, is a
prime number, by the corollary to Lemma 1.3.2, it follows easily that
#y = q; for some i. Thus ¢, = ¢; = ¢,. Similarly, since ¢, |a we get
g, = p; for some j, whence p; > p; = ;- In short, we have shown that
£ = q;- Therefore a = p*'p, -+ p" = pPrgP - g fs. We claim that
this forces a; = f;. (Prove!) But then

b*—a—=pz“""ﬁ,"'=qu’°"qf’.
P
If 6=1, then a, =*-=a, =0 and f, == fiy = 0; that is,

71 = ¢ = |, and we are done. Ifb > 1, thensince b < a we can apply,our
induction hypothesis to & to get

1. The number of distinct prime power factors (in b) on both sides is equal,
thatis,7 — 1 = s — I, hencer = s.

2. %y = Pas-os % = Py

3. pZ = QZS"'ipr = 4,

Together with the information we already have obtained, namely, p, = ¢,
and ¢, = B,, this is precisely what we were trying to prove. Thus we see
that the assumption of the uniqueness of factorization for the integers less
than a implied the uniqueness of factorization for ¢. In consequence, the

induction is completed and the assertion of unique factorization is estab-
lished.

We change direction a little to study the important notion of congruence
modulo a given integer. As we shall see later, the relation that we now
introduce is a special case of a much more general one that can be defined
in a much broader context.



DEFINITION Let n > 0 be a fixed integer. We define a2 = b mod n if
n|(a — b).

The relation is referred to as congruence modulo n, n is called the modulus of
the relation, and we read a = b mod n as “a is congruent to b modulo ».”
Note, for example, that 73 = 4 mod 23, 21 = —9 mod 10, etc.

This congruence relation enjoys the following basic properties:

LEMMA 1.3.3

I. The relation congruence modulo n defines an equivalence relation on the set of
integers.

2. This equivalence relation has n distinct equivalence classes.

3. Ifa=bmodnandc = dmod n, thena + ¢ = b 4+ d mod n and ac
bd mod n.

4. If ab = ac mod n and a is relatively prime to n, then b = ¢ mod n.

Proof. We first verify that the relation congruence modulo n is an
equivalence relation. Since n | 0, we indeed have that n | (¢ — @) whence
a = a mod n for every a. Further, ifa = b mod n then n| (a — 5), and so
n|(b —a) = —(a — b); thus b = a mod n. Finally, if a = b mod n and
b=¢ mod n, then n|(a — b) and n| (b — ¢) whence n| {(a — b) +
(b — ¢)}, thatis, n| (a — ¢). This, of course, implies that @ = ¢ mod n.

Let the equivalence class, under this relation, of a be denoted by [a];
we call it the congruence class (mod n) of a. Given any integer a, by the
Euclidean algorithm, @ = kn + r where 0 < r < n. But then, @ € [r] and
so [a] = [r]. Thus there are at most n distinct congruence classes; namely,
[0], [1],..., [» — 1]. However, these are distinct, for if [i] = [;] with,
say, 0 <7 < j < n, then n|(j — ¢) where j — 7 is a positive integer less
than n, which is obviously impossible. Consequently, there are exactly the
n distinct congruence classes [0], [1],..., [» — 1]. We have now proved
assertions | and 2 of the lemma.

We now prove part 3. Suppose that ¢ = b mod » and ¢ = d mod n;
therefore, n | (¢ — b) and n| (¢ — d) whencen | {(a — d) + (¢ — d)}, and
son|{(a+¢) — (b +4d)} Butthena + ¢ = b + d mod n. In addition,
n|{(a — bc + (¢ — d)b} = ac — bd, whence ac = bd mod n.

Finally, notice that if ab = ac mod n and if a is relatively prime to n,
then the fact that n | a(b — ¢), by Lemma 1.3.2, implies that n | (b — ¢) and
so b = ¢ mod n.

If a is not relatively prime to n, the result of part 4 may be false; for
instance, 2.3 = 4.3 mod 6, yet 2 # 4 mod 6.
Lemma 1.3.3 opens certain interesting possibilities for us. Let J, be the



set of the congruence classes mod #; that is, J, = {[0], [1],..., [» — 1]}.
Given two elements, [¢] and [;] in /,, let us define

Gl + 0] = [+l (a)
0] = Y] b)

We assert that the lemma assures us that this “addition” and “multipli-
cation” are well defined; that is, if [z] = [2'] and [j] = [J'], then [7] +[J]=
[+ =0 +71=[]+[7T and that [][j] = ['][]. (Verily!)
These operations in f, have the following interesting properties (whose
proofs we leave as exercises): for any [i], [j], [£] in J,

1 1 ] = [J1 + [20)

[i] Lt] U] [1 jcommutanve laws.
([ + G + [0 = 0] + (U] + DD o
(GILDIK) = (LKD) J* >

[2]([y1 + [} = [1[y] + [z][k] distributive law.
[0] + [] = [z].
[1]lz] = 2]

One more remark: if n = p is a prime number and if [a] # [0] is in /),
then there is an element [h] in ], such that [2][6] = [1].
The set /, plays an important role in algebra and number theory. It is

called the set of integers mod n; before we proceed much further we will have
become well acquainted with it.

NG G e

Problems

1. Ifa| band b | a, show that a = + 6.
2. If b is 2 divisor of g and of k, show it is a divisor of mg + nh.

- If @ and b are integers, the least common mulliple of a and b, written as
[a, 8], is defined as that positive integer d such that
(a) a|dand b | d.
(b) Whenever @ | x and b | x then d| x.
Prove that [a, 6] exists and that [a, b] = ab/(a, b), ifa > 0, b > 0.

4. Ifa|xand b| x and (4, b) = 1 prove that (ab) | x.
5. If a = p% '--pf‘" and b = plﬂl Py B where the p; are distinct

Trrenia smavsema b oiin maa -

Plllllc lluu.lUle dllu WllClC (d(‘[l CZ = U ,)‘ Z U ]')I'(')Vf‘

(a) (@, b) = [Jl pk where §; = minimum of ¢; and B, for each 1.
(b) [a, bl =2 N "th‘l‘l“\) = maximum of o; and B. for each 1.



6.

10.

11.
12.
13.

*14.
15,

16.
17.

Given a, b, on applying the Euclidean algorithm successively we have

a = qob + rl, O S 1'1 < Ib',
b = qiry + 13 0<r<n,
.rl = qzrz + r3, 0 S r3 < rz,

Te = Qus1Th+1 + Tes2s 042 €1y

Since the integers r, are decreasing and are all nonnegative, there is a
first integer n such that r ., = 0. Prove that r, = (a,b). (We
consider, here, r, = |4].)

. Use the method in Problem 6 to calculate

(a) (1128, 33). (b) (6540, 1206).
To check that n is a prime number, prove that it is sufficient to show

that it is not divisible by any prime number p, such that p < \/ n.

Show that » > | is a prime number if and only if for any a either
(a,n) = 1l ora|a.
Assuming that any nonempty set of positive integers has a minimal
element, prove
(a) If the proposition P is such that

(1) P(my) is true,

(2) the truth of P(m — 1) implies the truth of P(m),

then P(n) is true for all n > m,.
(b) If the proposition P is such that

(1) P(m,) is true,

(2) P(m) is true whenever P(a) is true for all a such that

my < a < m,

then P(n) is true for ali n = my,.
Prove that the addition and multiplication used in J, are well defined.
Prove the properties 1-7 for the addition and multiplication in /.

If (a, n) = 1, prove that one can find [6] € J, such that [a][b] = [1]
in J,.
If p is a prime number, prove that for any integer @, ¢ = @ mod .

If (m,n) = 1, given a and b, prove that there exists an x such that
x = amod m and x = b mod n.

Prove the corollary to Lemma 1.3.2.

»

Prove that n is a prime number if and only if in J,, [a][b] = [0]
implies that [a] = [b] = [0].



