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OBJECTIVES:

To introduce concepts and algebraic structures of Groups and Rings with additional
operations and axioms.

UNIT: 11

GROUP THEORY: Definition of a Group — Some examples of Groups — Some preliminary
lemmas — Subgroups.

(Chapter 2 — Sections: 2.1 to 2.4)

2.1 Definition of a Group

At this juncture it is advisable to recall a situation discussed in the first
chapter. For an arbitrary nonempty set S we defined A(S) to be the set of
all one-to-one mappings of the set S onto itself. For any two eclements o,
T € A(S) we introduced a product, denoted by ¢ © 7, and on further investi-
gation it turned out that the following facts were true for the elements of
A(S) subject to this product:

1. Whenever o, t € A(S), then it follows that ¢ o 7 is also in A(S). This is
described by saying that A(S) is closed under the product (or, sometimes,
as closed under multiplication).

2. For any three elements o, 1, p € A(S), 6o (topn) = (d01) opu. This
relation is called the associative law.

3. There is a very special element 1 € A(S) which satisfies 1cg = 0c1 = 0
for all ¢ € A(S). Such an element is called an identity element for A(S).

4. For every o € A(S) there is an element, written as o~ 1, also in 4(S),
such that 6 o6~ ! = ¢~ ' o6 = 1. This is usually described by saying
that every element in A(S) has an inverse in A(S).

One other fact about A(S) stands out, namely, that whenever S has
three or more elements we can find two elements a, 8 € A(S) such that
o fB # Booa. This possibility, which runs counter to our usual experience
and intuition in mathematics so far, introduces a richness into 4(S) which
would have not been present except for it.

With this example as a model, and with a great deal of hindsight, wec
abstract and make the



DEFINITION A nonempty set of clements G is said to form a group if in
G there is defined a binary operation, called the produ
such that

ct and denoted by -

» b € G implies that a6 € G (closed).

1. a

2. a,b,c € G implies that a-(b+c) = (a-b)-¢ (associative law).

3. There exists an element ¢ € G such that a-¢ = ¢'a = g for all ze G
(the existence of an identity element in G).

4. For every a € G there exists an element a~' € G such that a-a~! =

a”'-a = ¢ (the existence of inverses in G).

7™ 4

Considering the source of this definition it is not surprising that for every
nonempty set § the set A(S) is a group. Thus we already have presented to
us an infinite source of interesting, concrete groups. We shall see later (na
theorem due to Cayley) that these A(S)’s constitute, in some sense, a
universal family of groups. If § has three or more elements, recall that we
can find elements ¢, T € A(S) such that 6 o7 # 70 ¢. This prompts us to
single out a highly special, but very important, class of groups as in the
next definition.

DEFINITION A group G is said to be abelian (or commutative) if for every
a,be G,ab = b-a.

\ g ich is not abelian is called, naturally enough, non-abelian:
having seen a family of examples of such groups we know that non-abelian

a
groups do indeed exist.

Another natural characteristic of a group G is the number of elements it
contains. We call this the order of G and denote it by 6(G). This number is,
of course, most interesting when it is finite. In that case we say that G is a
JSinite group.

To see that finite groups which are not trivial do exist just note that if the
set § contains n elements, then the group A(S) has n! elements. (Prove!)
This highly important example will be denoted by §, whenever it appears
in this book, and will be called the symmeiric group of degree n.” In the next
section we shall more or less dissect S, which is a non-abelian group of
order 6.

~,



2.2 Some Examples of Groups

Example 2.2.1 Let G consist of the integers 0, +1, +2,... where we
mean by a-b for a, b € G the usual sum of integers, that is, a-b = a + b.
Then the reader can quickly verify that G is an infinite abelian group in

which 0 plays the role of e and —a that of a™ .

Example 2.2.2 Let G consist of the real numbers 1, —1 under the
multiplication of real numbers. G is then an abelian group of order 2.

Example 2.2.3 Let G = §;, the group of all 1-1 mappings of the set
{x,, %3, 3} onto itself, under the product which we defined in Chapter 1.
G is a group of order 6. We digress a little before returning to S;.

For a neater notation, not just in S5, but in any group G, let us define for
any-a€G, a° =¢ gt =g a® = a6, 4> =a"a*;.:;d=ad"? and
a2 = (a Y% a? = (a3, etc. The reader may verify that the usual
rules of exponents prevail; namely, for any two integers (positive, negative,
or zero) m, n,

am,an - am+n, (1)
(@) = a™. 2)

(It is worthwhile noting that, in this notation, if G is the group of Example
2.2.1, @" means the integer na).

With this notation at our disposal let us examine §; more closely. Con-
sider the mapping ¢ defined on the set x, x,, x; by :

Xy — %g -
¢ x oo
X3 = X3,
and the mapping
xl - x2
/R Xy = X,
Xy = Xy

Checking, we readily see that ¢p2 = e, Y> = ¢, and that

Xy = X,
(Ve Xy > X
X3 = Xy,

whereas
X, = X,
V¢ X, — Xy
X3 = X3



It is clear that ¢-y # Y -¢ for they do not take x, into the same image.

Since Y3 = ¢, it follows that y~! = y2. Let us now compute the action
of y "' ¢ on x,,x,, x5. Since ™' = Yy? and

— x3

Y2 X, — x4

P

we have that

Xy — X,

Yyt Xy > X

X3 — X;.
In other words, ¢-y = " !-¢@. Consider the elements e, ¢, ¥, Y2, ¢,
Y- ¢; these are all distinct and are in G (since G is closed), which only has
six elements. Thus this list enumerates all the elements of G. One might ask,
for instance, Whatis the entry in the listfor + (¢ *y)? Using ¢y = ¢y~ '+ ¢p,
we see that Y- (¢-) = Y- (Y~ ') = (¥ )¢ = e-¢f = ¢. Of more
interest is the form of (¢¥)- (W ¢) = ¢+ (Y- (Y-9)) = - (W*-¢) —
(Y 'p) =@ (p-Y) = ¢2- Y = ey = Y. (The reader should not be
frightened by the long, wearisome chain of equalities here. It is the last
time we shall be so boringly conscientious.) Using the same techniques as
we have used, the reader can compute to his heart’s content others of the
25 products which do not involve ¢. Some of these will appear in the
exercises.

Example 2.2.4 Let n be any integer. We construct a group of order »
as follows: G will consist of all symbols a’,i = 0, 1,2,...,n — 1 where
we insist that ¢® = o" = ¢, a'-a/ = 2" if i + j < n and a'-af = giti
if 7 + j > n. The reader may verify that this is a group. It is called a
cyclic group of order n.

A geometric realization of the group in Example 2.2.4 may be achieved
as follows: Let S be the circle, in the plane, of radius 1, and let p, be a
rotation through an angle of 2z/n. Then p, € A(S) and p, in 4(S) generates
a group of order n, namely, {¢, p,, p.% ---, p." "1}

Example 2.2.5 Let § be the set of integers and, as usual, let 4(S) be
the set of all one-to-one mappings of § onto itself. Let G be the set of all
elements in A(S) which move only a _finite number of elements of S; that is,
o € G if and only if the number of x in § such that x¢ # x is finite. If
o, t € G, let 6-7 be the product of ¢ and 7 as elements of 4(S). We claim
that G is a group relative to this operation. We verify this now.

To begin with, if ¢, 7 € G, then ¢ and © each moves only a.finite number
of elements of S. In consequence, ¢t can possibly move only those elements
in .§ which are moved by at least one of o or t. Hence o+t moves only a



ginite number of elements in §; this puts ¢-7 in G. The identity element, 1,
of A(S) moves no element of .§; thus 1 certainly must be in G. Since the
associative law holds universally in A(S), it holds for elements of G. Finally,
ifo € Gand x6~ ' # x for some x € S, then (x6~ ')o # xo, which is to say,
x(o” l.6) # xo. This works out to say merely that x # xo. In other
words, 6~ ! moves only those elements of .§ which are moved by ¢. Because
o only moves a finite number of elements of S, this is also true for ¢~ L
Therefore ¢~ ! must be in G.

We have verified that G satisfies the requisite four axioms which define a
group, relative to the operation we specified. Thus G is a group. The reader
should verify that G is an infinite, non-abelian group.

#Example 2.2.6 Let G be the set of all 2 x 2 matrices (a Z) where
¢

a, b, ¢, d are real numbers, such that ad — bc # 0. For the operation in G
we use the multiplication of matrices; that is,

a b\ (w x _ aw + by ax + bz
c d Yy z cw + dy ex + dz)

The entries of this 2 x 2 matrix are clearly real. To see that this matrix is
in G we merely must show that

(aw + by)(ex + dz) — (ax + bz2)(cw + dy) # O

(this is the required relation on the entries of a matrix which puts it in G).
A short computation reveals that

(aw + by)(ex + dz) — (ax + bz2)(cw + dy) = (ad — bc)(wz — xp) # O
since both .
(a b) and (w x)
& :d Yy z

are in G. The associative law of multiplication holds in matrices; therefore
it holds in G. The element
7 — 1 O
0 1

18in G, since 1 -1 — 0-0 = 1 # 0; moreover, as the reader knows, or
can verify, I acts as an identity element relative to the operation of G.

. . b ’ "
Finally, 1f(a d) € G then, since ad — bc # 0, the matrix
¢

d —b
ad — bc ad — be

—C a

ad — bc ad — be




makes sense. Moreover,

d a _ —b —¢ _ ad — be 1 £ 0
ad — beJ\ad — be ad — bc)\ad — be (ad — bc)?  ad — be ’

hence the matrix

d —b
ad — bc ad — bc

—C a
ad — bc ad — be

is in G. An easy computation shows that

d —b ) - d —b

a b ad — bc ad — be 1 0O ad — bc ad — bec\ fa b
(‘ d) —c a —(0 ‘) —¢ a (" d)’

e
i

I~
— vy

: . a
thus this element of G acts as the inverse of (

c
It is easy to see that G is an infinite, non-abelian group.

Z) In short, G is a group.

fa A\
#Example 2.2.7 Let G be the set of all 2 x 2 matrices (“ ;), where
c

a, b, ¢, d are real numbers such that ad — bc = 1. Define the operation - in
G, as we did in Example 2.2.6, via the multiplication of matrices. We
leave it to the reader to verify that G is a group. It is, in fact, an infinite,
non-abelian group.

One should make a comment about the relationship of the group in
Example 2.2.7 to that in Example 2.2.6. Clearly, the group of Example 2.2.7
is a subset of that in Example 2.2.6. However, more is true. Relative to the
samme operation, as an entity in its own right, it forms a group. One could
describe the situation by declaring it to be a subgroup of the group of Example
2.2.6. We shall see much more about the concept of subgroup in a few

pagcs.

#Example 2.2.8 Let G be the set of all 2 x 2 matrices ( Z b)’
— a

where a and & are real numbers, not both 0. (We can state this more
succinctly by saying that a* + 5? # 0.) Using the same operation as in
the preceding two examples, we can easily show that G becomes a group.
In fact, G is an infinite, abelian group.



Does the multiplication in G remind you of anything? Write ( Z b)
—b a

as al + bJ where J = ( (1) (l)) and compute the product in these terms.

Perhaps that will ring a bell with you.

#Example 2.2.9 Let G be the set of all 2 x 2 matrices (a Z) where
¢

a, b, ¢, d are integers modulo p, p a prime number, such that ad — b¢ #* O.
Define the multiplication in G as we did in Example 2.2.6, understanding
the multiplication and addition of the entries to be those modulo p. We
leave it to the reader to verify that G is a non-abelian finite group.

In fact, how many elements does G have? Perhaps it might be instructive
for the reader to try the early cases p = 2 and p = 3. Here one can write
down all the elements of G explicitly. (A word of warning! For p = 3,
G already has 48 elements.) To get the case of a general prime, p will require
an idea rather than a direct hacking-out of the answer. Try it!

2.3 Some Preliminary Lemmas

We have now been exposed to the theory of groups for several pages and as
yet not a single, solitary fact has been proved about groups. It is high time
to remedy this situation. Although the first few results we demonstrate are,
admittedly, not very exciting (in fact, they are rather dull) they will be
extremely useful. Learning the alphabet was probably not the most interesting
part of our childhood education, yet, once this hurdle was cleared, fascinating
vistas were opened before us.
We begin with

LEMMA 2.3.1 If G is a group, then

The identity element of G is unique.

Every a € G has a unique inverse in G.
For everyae G, (a ')"! = a.
Foralla,be G, (a-b)"* = b~ 1-a" 1.

&0 &8

Proor. Before we proceed with the proof itself it might be advisable to
see what it is that we are going to prove. In part (a) we want to show that if
two elements ¢ and f in G enjoy the property that for every a€ G, a =
‘e =¢-a=a-f = f-a, then e = f. In part (b) our aim is to show that
ifx-a=a-x =c¢and y-a = a-y = e, where all of a, x, y are in G, then
X = y,



First let us consider part (a). Since e-a = a for every a € G, then, in
particular, ¢- f = f. But, on the other hand, since &- f = & for every
b € G, we must have that e¢- f = e. Piecing these two bits of information
together we obtain f = ¢- f = ¢, and so e = [.

Rather than proving part (b), we shall prove something stronger which
immediately will imply part (b) as a consequence. Suppose that for a in G,
a-x = e¢and a-y = e¢; then, obviously, a-x = a-y. Let us make this our
starting point, that is, assume that 2 -x = a-y for a, x, » in G. There is an
element b € G such that b-a = ¢ (as far as we know yet there may be
several such 4°). Thus b (a'x) = b (a-y); using the associative law this
leads to

x=¢'x= (bra)x=b-(a'x) =b'(ay) = (bra):y = ey = .

We have, in fact, proved that a-x = a-y in a group G forces ¥ = .
Similarly we can prove that x-a = y-a implies that x = y. This says that
we can cancel, from the same side, in equations in groups. A note of caution,
however, for we cannot conclude that a- x = y - @ implies x = y for we have
no way of knowing whether a- x = x-a. Thisisillustrated in §; with a = ¢,
x=y, =y L

Part (c) follows from this by noting thata™'-(a™')"' = e = a™ ! - q;
canceling off the ¢~ ! on the left leaves us with (a~')™! = 4. This is the
analog in general groups of the familiar result —{—5) = 5, say, in the
group of real numbers under addition.

Part (d) is the most trivial of these, for

(a-b)-(b"ta V) =a-((b-b"Y)-a')=a-(era!) =a-a ! =e,

and so by the very definition of the inverse, (a- )" = 671 -4a7 1

Certain results obtained in the proof just given are important enough to
single out and we do so now in

LEMMA 232 Guwen a, b in the group G, then the equations a-x = b and

¥ a = b have unique solutions for x and y in G. In particular, the two cancellation
laws,
a-u = a-wimpliesu = w
and
w-a = w-ampliesu = w
hold in G.

”

The few details needed for the proof of this lemma are left to the reader.
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If they are not, point out w!ul.h of the group axioms fail o hold.

(a) G = sct of all integers, a-b = a — b.

(b) G = set of all positive integers, a+b = ab, the usual product of
integers.

(c) G = ay, a,,...,as where

determin
aetermiur
.

4;* ;= Uiy ; if i1+j<7,
ai~aj=ai+j_-, if 1+j2_7
(for instance, a5 *a, = a5, 4-7 = @3 since 5 + 4 =9 > 7).
(d) G = set of all rational numbers with odd denominators, a* b =
a + b6, the usual addition of rational numbers.

Prove that if (7 is an abelian group, then for all a, b € & and all integers

. f_ . L\n __ _n
n,a-0) = a-v.

IfGis a group such that (a-b)* — a*: b? for all a, b € G, show that

U must UC dU(‘lldn

IfGisa group in which (a- )‘ = a'- b® for three consecutive integers

x wall =2 B = X S
1 10T all 4,0 © U snuw lndl U lb AU(' a,n

Ay &V SN | L[r S iy L T MO I St i) S L S
a-wv) a "o T Just TWO <consecuuv

niegers.

a
)

Show that the conclusion of Problem 4 does not follow if we assume
M /
{

In §; give an cxample of two clements x, y such that (x-3)% # x% -2

In S; show that there are four elements satisfying x* = ¢ and three
elernents satisfying 3 = e.

-

If G is a finite group, show that there exists a positive integer N such
that " = e for all a € G.

(a) If the group (7 has three elements, show it must he abelian.
(b) Do part (a) if G has four elements.

Dart fo2\ S £ Lo Sire alaorrs e

™. -
\L} 47U pait \a) 11 U 1ias 1ive cicinernis.

Show that if every element of the group G is its own inverse, then G

tc nhalin-
iS5 awuciiail.

If (7 is a group of even order, prove it has an element a # e satisfying
X

“ - 0
Let C be a nonempty sct closed undcr an associative product, which
in addition satisfies:

(a) There exists an ¢ €  such that a -
(b) Give a € G, there exists an elemen

Provc that G must be a group under thi

= a for all a € G.
a) € G such tha

product.

€
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13.

14.

15.

16.

| i

18.

19.

#20.

#21.

#22.

#23.
#24.

#25

Prove, by an example, that the conclusion of Problem 12 is false if
we assume instead :

(a’) There exists an ¢ € G such thata-e¢ = a for all a € G.

(b") Given a € G, there exists y(a) € G such that y(a) -a = e.

Suppose a finite set G is closed under an associative product and that
both cancellation laws hold in G. Prove that G must be a group.

(a) Using the result of Problem 14, prove that the nonzero integers
modulo g, p a prime number, form a group under multiplication
mod p.

(b) Do part (a) for the nonzero integers relatively prime to n under
multiplication mod n.

In Problem 14 show by an example that if one just assumed one of
the cancellation laws, then the conclusion need not follow.

Prove that in Problem 14 infinite examples exist, satisfying the
conditions, which are not groups.

For any n > 2 construct a non-abelian group of order 2n. (Hint:
imitate the relations in S3.)

If S is a set closed under an associative operation, prove that no
matter how you bracket a,a,--*a,, retaining the order of the
elements, you get the same element in S (e.g., (2, a,) - (a3 a,) =
a, - (ay - (a3 - a4)); use induction on n).
; a
Let G be the set of all real 2 x 2 matrices (
¢
is a rational number. Prove that G forms a group under matrix
multiplication.

Z), where ad — bec # 0

Let G be the set of all real 2 x 2 matrices (g Z) where ad # O.

Prove that G forms a group under matrix multiplication. Is G
abelian?
0

)where a # 0.
a” 1

Prove that G is an abelian group under matrix multiplication.

Let G be the set of all real 2 x 2 matrices (a

Construct in the G of Problem 21 a subgroup of order 4.

Let G be the set of all 2 x 2 matrices (a Z) where a, b, ¢, d are
¢

integers modulo 2, such that ad — bc # 0. Using matrix multi-
plication as the operation in G, prove that G is a group of order 6.

(a) Let G be the group of all 2 x 2 matrices (a ‘bl) where
s\.0

ad — bc # 0 and a, b, ¢, d are integers modulo 3, relative to
matrix multiplication. Show that o(G) = 48.



(b) If we modify the example of G in part (a) by insisting that
ad — bc = 1, then what is o(G)?

#%26. (a) Let G be the group of all 2 x 2 matrices (a Z) where a, b, ¢, &
¢

are integers modulo g, p a prime number, such that ad — be # 0.
G forms a group relative to matrix multiplication. What is o(G)?
(b) Let H be the subgroup of the G of part (a) defined by

H={(: 3>e6'lad—bc= 1}.

What is o(H)?

2.4 Subgroups

Before turning to the study of groups we should like to change our notation
slightly. It is cumbersome to keep using the - for the group operation;
henceforth we shall drop it and instead of writing a - 4 for a, b € G we shall
simply denote this product as ab.

In general we shall not be interested in arbitrary subsets of a group G for
they do not reflect the fact that G has an algebraic structure imposed on it.
Whatever subsets we do consider will be those endowed with algebraic

properties derived from those of G. The most natural such subsets are
intraduced in the

et T S & L

DEFINITION A nonempty subset H of a group G is said to be a subgroup
of G if, under the product in G, H itself forms a group.

-

The following remark is clear: if H is a subgroup of G and K is a subgroup

of H, then X is a subgroup of G.

It would be useful to have some criterion for deciding whether a given
subset of a group is a subgroup. This is the purpose of the next two lemmas.

LEMMA 241 A nonempty subset H of the group G is a subgroup of G if and
only if

L. a, b € H implies that ab € H.
2. ae H implies that a~ ' € H.

b Proof. 1If H is a subgroup of G, then it is obvious that (1) and (2) must
old.

Suppose conversely that H is a subset of G for which (1) and (2) hold.
In order to establish that H is a subgroup, all that is needed is to verify that
¢ € H and that the associative law holds for elements of H. Since the as-
sociative law does hold for G, it holds all the more so for H, which is a



subset of G. If a € H, by part 2, a~' € H and soby part 1, ¢ = aa"'e H.
This completes the proof.

In the special case of a finite group the situation becomes even nicer for
there we can dispense with part 2.

LEMMA 2.4.2 If H is a nonempty finite subset of a group G and H 1is closed
under multiplication, then H is a subgroup of G.

Proof. 1In light of Lemma 2.4.1 we need but show that whenever a € H,
then a~ ! e H. Suppose that a € H; thus ¢?> = aae H, a® = a’a e H,

., a™ e H,...since H is closed. Thus the infinite collection of elements
a,a®, ..., a™, ... must all fit into A, which is a finite subset of G. Thus
there must be repetitions in this collection of elements; that is, for some
integers 7, s with » > s > 0, a" = 4. By the cancellation in G, a"° = ¢
(whence ¢ is in H);sincer — s — 1 > 0,47 ° ' € H and @A i gt
since aa” *"! = &% = e. Thus a ! € H, completing the proof of the
lemma.

The lemma tells us that to check whether a subset of a finite group is a
subgroup we just see whether or not it is closed under multiplication.

We should, perhaps, now see some groups and some of their subgroups.
G is always a subgroup of itself; likewise the set consisting of ¢ is a subgroup
of G. Neither is particularly interesting in the role of a subgroup, so we
describe them as trivial subgroups. The subgroups between these two
extremes we call nontrivial subgroups and it is in these we shall exhibit
the most interest.

Example 2.4.1 Let G be the group of integers under addition, H the
subset consisting of all the multiples of 5. The student should check that
H is a subgroup.

In this example there is nothing extraordinary about 5; we could similarly
define the subgroup H, as the subset of G consisting of all the multiples of n.
H, is then a subgroup for every n. What can one say about H, n H,7?
It might be wise to try it for Hg n H,.

Example 2.4.2 Let S be any set, A(S) the set of one-to-one mappings
of S onto itself, made into a group under the composition of mappings. If
xo €S, let H(xy) = {¢p € A(S) | xop = %o}. H(x,) is a subgroup of A(S).
If for x, # x, € S we similarly define H (x,), what is H (x5) n H(x,)?

Example 2.4.3 Let G be any group, a € G. Let (@) = {d|i = 0, %1,
+2,...}. (a) is a subgroup of G (verify!); it is called the ¢yclic subgroup
generated by a. This provides us with a ready means of producing subgroups



of G. If for some choice of a, G = (a), then G is said to be a cyclic group.
Such groups are very special but they play a very important role in the
theory of groups, especially in that part which deals with abelian groups.
Of course, cyclic groups are abelian, but the converse is false.

Example 2.4.4 Let G be a group, W a subset of G. Let (W) be the set
of all elements of G representable as a product of elements of W raised to
ositive, zero, or negative integer exponents. (W) is the subgroup of G
generated by W and is the smallest subgroup of G containing W. In fact, (W)
is the intersection of all the subgroups of G which contain W (this intersec-
tion 1s not vacuous since G is a subgroup of G which contains W).

Example 245 Let G be the group of nonzero real numbers under
multiplication, and let H be the subset of positive rational numbers. Then
H is a subgroup of G.

Example 2.4.6 Let G be the group of all real numbers under addition,
and let H be the set of all integers. Then H is a subgroup of G.

#Example 2.4.7 Let G be the group of all real 2 x 2 matrices (a fn

o

with ad — bc # O under matrix multiplication. Let

H={(g Z)eclad;é o}.

Then, as is easily verified, H is a subgroup of G.

#Example 2.4.8 Let H be the group of Example 24.7, and let

K = {((l) f)} Then K is a subgroup of H.

Example 2.4.9 Let G be the group of all nonzero complex numbers
@ + bi (a, b real, not both 0) under multiplication, and let

H={a+ bieG|a* + b* = 1}.

<

¢ SR

rify hat A is a subgroup of G.

DEFINITION Let G be a group, H a subgroup of G; for a, b € G we say
@ is congruent to b mod H, written asa = b mod Hifab™ ' € H.

LEMMA 2.4.3 The relation a = b mod H is an equivalence relation.



Proof. If we look back in Chapter 1, we see that to prove Lemma 2.4.3
we must verify the following three conditions: For all a, b, c € G,

a mod H.

1. a =
2. a = b mod H implies b6 = a mod H.
3. a = bmod H, b = ¢ mod H implies a = ¢ mod H.

Let’s go through cach of these in turn.

|. To show that a = a mod H we must prove, using the very definition
of congruence mod H, that ea~ ' € H. Since H is a subgroup of G, e e H,
and since aa~ ! = ¢, aa~ ! e H, which is what we were required to demon-
strate.

2. Suppose that ¢ = b mod H, that is, suppose ab~' € H; we want to
get from this b = a mod f, or, equivalently, ba™ 1 ¢ H. Since ab™ ! € H,
which is a subgroup of G, (ab~ ')~ ! e H; but, by Lemma 2.3.1, (ab~ L I
(b-1)"1a~ ! = ba ', and so ba” ' € H and b = a mod H.

3. Finally we reguire that a = & mod H and b = ¢ mod H forces
a = ¢ mod H. The first congruence translates into ab—' € H, the second
into bc~ ! € H; using that H is a subgroup of G, (ab~')(bc™ ') € H. How-
ever, ac” ' = aec™ ! = a(b” 15)¢™ 1 = (ab™")(bc™ ') ; hence ac” ' € H, from
which it follows that a = ¢ mod H.

This establishes that congruence mod H is a bona fide equivalence
relation as defined in Chapter 1, and all results about equivalence relations
have become available to us to be used in examining this particular relation.

A word about the notation we used. If G were the group of integers under
addition, and H = H, were the subgroup consisting of all multiples of =,
then in G, the relation ¢ = b mod H, that is, ab™ ! ¢ H, under the additive
notation, reads “@ — & is a multiple of n.”” This is the usual number theoretic
congruence mod n In other words, the relation we defined using an
arbitrary group and subgroup is the natural generalization of a familiar
relation in a familiar group.

DEFINITION If H is a subgroup of G, ae G, then Ha = {ha|k e H}.
Ha is called a right coset of Hin G.

LEMMA 244 ForallaeG,
Ha = {x€G|a = x mod H}.

Proof. Let [a] = {x € G|a = x mod H}. We first show that Ha < [a].
For, if & € H, then a(ka)™' = a(a™ '™ ') =k~ 1 € H since H is a subgroup
of G. By the definition of congruence mod H this implies that ha € [a]
for every & € H, and so Ha = [a].

Suppose, now, that x € [a]. Thus ax~ 1cH, so (ax )7 "' = xa" ' is
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also in H. That is, xa— ° = h for some h € H. Multiplying both sides by a
from the right we come up with ¥ = A4, and so x € Ha. Thus [a] = Ha.
Having proved the two inclusions [a] < Ha and Ha < [a], we can conclude
that [a] = Ha, which is the assertion of the lemma.

In the terminology of Chapter 1, [al, and thus Ha, is the equivalence class
of ain G. By Theorem 1.1.1 these equlvalcncc classes yield a decomposition
of G into disjoint subsets. Thus any twe right cosets of H in G either are identical
or have no element in common.

We now claim that between any two right cosets Ala and Hb of H in G
there exists a one-to-one correspondence, namely, with any element ka € Ha,
where £ € H, associate the element kb € Hb. Clearly this mapping is onto
Hb, We aver that it 1s a one-to-one correspondcnce, for if kb = h,b, wit
hy, hy € H, then by the cancellation law in G, &k, = 4, and SO hla = h,a.

This proves

LEMMA 245 There is a one-to-one correspondence between any two right cosets
of Hin G.

Lemma 2.4.5 is of most interest when H is a finite group, for then it merely
states that any two right cosets of // have the same number of elements.
How many elements does a right coset of /7 have? Well, note that H = He
is itself a right coset of H, so any right coset of H in G has o(H) elements.
Suppose now that G is a finite group, and let £ be the number of distinct
right cosets of H in G. By Lemmas 2.4.4 and 2.4.5 any two distinct right
cosets of H in G have no element in common, and each has ¢(H) elements.

Since any a € G is in the unique right coset Ha, the right cosets fill out.G.
Thus if £ represents the number of distinct right cosets of / in G we must
have that ko(H) = o(G). We have proved the famous theorem due to

L O\ /- a1av LI IAalllo the il Qucc 10

Lagrange, namcly,

THEOREM 24.1 If G is a finite group and H is a subgroup of G, then o(H)
& a divisor of o(G).

DEFINITION If H is a subgroup of G, the index of H in G is the number of
distinct right cosets of H in G.

We shall denote it by ig(H). In case G is a finite group, ig(H) =
o(G)o(#), as became clear in the proof of Lagrange’s theorem. It is quite

Possible for an infinite group G to have a subgroup H # G which is of finite
index in G.

) It might be difficult, at this point, for the student to see the extreme
Importance of this result. As the subject is penetrated more deeply one will



become more and more aware of its basic character. Because the theorem
is of such stature it merits a little closer scrutiny, a little more analysis,
and so we give, below, a slightly different way of looking at its proof. In
truth, the procedure outlined below is no different from the one already
given. The introduction of the congruence mod H smooths out the listing

A~ ala Anida Big .-l k !.4-“" A Alesiatas tha maad fan Alhaaliaas shas 2lea
o1 Siamcnis us DEIOW, ana ooviailes uUnc need ior Cnedxi 115 inat ineée new

clements introduced at each stage did not appear before.

So suppose again that G is a finite group and that H is a subgroup of G.
Let Ay, hy, ..., k, be a complete list of the elements of H, r = o(H). If
H = G, there is nothing to prove. Suppose, then, that H # G; thus there
isan a € G, a ¢ H. List all the elements so far in two rows as

Ris Bas vivn 5l
hia, hsa, . . ., ha.

We claim that all the entries in the second line are different from each other
and are different from the entries in the first line. If any two in the second
line were equal, then /@ = h;a with i # j, but by the cancellation law this
would lead to h; = k;, a contradiction. If an entry in the second line were
equal to one in the first line, then A = A;, resulting in a = A;" ’kJ e H
since H is a subgroup of G; this violates « ¢ H.

Thus we have, so far, listed 20(H) eclements; if these elements account
for all the elements of G, we are done. If not, there 1s a b € G which did not
occur in these two lines. Consider the new list

bls h25 RoAIENY hr;
hia, hya, ..., ha,

hyby hob, ..., kb

As before (we are now waving our hands) we could show that no two
entries in the third line are Equa.l to each other, and that no niry in the
third line occurs in the first or second line. Thus we have hsted 30(f)
elements. Continuing in this way, every new element introduced, in fact,
produces o(f{) new elements. Since G is a finite group, we must eventually
exhaust all the elements of G. But if we ended up using £ lines to list all the
elements of the group, we would have written down ko(H) distinct elements,
and so ko(H) = o(G).

It is essential to point out that the converse to Lagrange’s theorem is
false—a group G need not have a subgroup of order m if m is a divisor of
o(G). For instance, a group of order 12 exists which has no subgroup of
order 6. The reader might try to find an example of this phenomenon ; the
place to look is in §,, the symmetric group of degree 4 which has a sub-
group of order 12, which will fulfill our requirement. .

Lagrange’s theorem has some very important corollaries. Before we
present these we make one definition,



DEFINITION If G is a group and a & G, the order (or period) of a is the
Jeast positive integer m such that a" = e.

If no such integer exists we say that a is of infinite order. We use the
notation ¢(a) for the order of a. Recall our other notation: for two integers
u, v, u | v reads “u is a divisor of ».”

COROLLARY 1 If G is a finite group and a € G, then o(a) | o(G).

Proof. With Lagrange’s theorem already in hand, it seems most natural
to prove the corollary by exhibiting a subgroup of G whose order is o(a).
The element a itself furnishes us with this subgroup by considering the
cyclic subgroup, (a), of G generated by a; (a) consists of ¢, a, a®,.... How
many clements are there in () ? We assert that this number is the order of a.
Clearly, since a°@ = ¢, this subgroup has at most o(a) elements. If it
should actually have fewer than this number of elements, then a' = a/
for some integers 0 < i < j < o(a). Thena/ ™! = ¢, yet 0 < j — i < o(a)
which would contradict the very mezning of o(a). Thus the cyclic sub-
group generated by a has o(a) elements, whence, by Lagrange’s theorem,

o(a) | o(G).

COROLLARY 2 If G is a finite group and a € G, then a®® = e.

Proof. By Corollary 1, o(a)|o(G); thus o(G) = mo(a). Therefore,
aO(G) 2 amo(a) = (ao{a))m = " = e.

A particular case of Corollary 2 is of great interest in number theory.
The Euler ¢-function, ¢(n), is defined for all integers n by the following:
é(1) = 1; for n > 1, $(n) = number of positive integers less than »n and
relatively prime to n. Thus, for instance, ¢(8) = 4 since only 1,3,5,7
are the numbers less than 8 which are relatively prime to 8. In Problem 15(b)
at the end of Section 2.3 the reader was asked to prove that the numbers
less than » and relatively prime to n formed a group under multiplication
mod n. This group has order ¢(n). If we apply Corollary 2 to this group

we ~lenia
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COROLLARY 3 (EuLerR) If n is a positive integer and a is relatively prime
o n, then a*™ = 1 mod n.

In order to apply Corollary 2 one should replace a by its remainder on
division by n. If n should be a prime number p, then ¢(p) = p — 1. Ifa
is an integer relatively prime to p, then by Corollary 3, @~ ! = 1 mod p,
whence a7 = a mod p. If, on the other hand, a is not relatively prime to p,



since p is a prime number, we must have that p | a, so that @ = 0 mod p:
hence 0 = @ = @ mod p here also. Thus

COROLLARY 4 (FermaT) If p is a prime number and a is any integer, then
a? = amod p.

COROLLARY 5 If G is a finite group whose order is a prime number p, then
G is a cyelic group.

Proof. First we claim that G has no nontrivial subgroups H; for o(H
must divide o((’) = p leaving only two possibilities, namely, o(H) = 1 or
o(H) = p. The first of these implies H = (e), whereas the second implies
that H = G. Suppose now that @ # e¢e G, and let H = (a). H is a sub-
group of G, H # (e) since a # ¢ € H. Thus H = G. This says that G is

cyclic and that every element in G is a power of a.

This section is of great importance in all that comes later, not only for its
results but also because the spirit of the proofs occurring here are genuinely
group-theoretic. The student can expect to encounter other arguments
having a similar flavor. It would be wise to assimilate the material and
approach thoroughly, now, rather than a few theorems later when it will
be too late.



