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OBJECTIVES:

To introduce concepts and algebraic structures of Groups and Rings with additional
operations and axioms.

UNIT: IV

RING THEORY: Definition and examples of Rings — Some special classes of Rings -
Homomorphism - Ideals and Quotient Rings.

(Chapter 3 — Sections: 3.1 to 3.4)

31 Definition and Examples of Rings

As we indicated in Chapter 2, there are certain algebraic systems
which serve as the building blocks for the structures comprising the
subject which is today called modern algebra. At this stage of the
development we have learned something about one of these, namely
groups. It is our purpose now to introduce and to study a SE(ED.Ild
such, namely rings. The abstract concept of a group has its origins
in the set of mappings, or permutations, of a set onto itself. In con-
trast, rings stem from another and more familiar source, the set of
integers. We shall see that they are patterned after, and are gen-
eralizations of, the algebraic aspects of the ordinary integers. |

In the next paragraph it will become clear that a ring is quite
different from a group in that it is a two-operational system; thesc
operations are usually called addition and multiplication. Yet,
despite the differences, the analysis of rings will follow 'the pattern
already laid out for groups. We shall require the appropriate z?nalogs
of homomorphism, normal subgroups, factor groups, €tc. With the
experience gained in our study of groups we shall be able to make the
requisite definitions, intertwine them with meaningful theof"cms, and
end up proving results which are both interesting and m‘{portant
about mathematical objects with which we have had long acquaintance.
To cite merely one instance, later on in the book, usling the tovls
developed here, we shall prove that it is impossible to trisect an angle
of 60° using only a straight-edge and compass.



DEFINITION A nonempty set R is said to be an associative ring if in R
there are defined two operations, denoted by + and - respectively, such
that for all q, b, ¢ in R:

.a+ bisin R.

a+b=>5+4+ a

(a+b) +e=a+ (b + ).

. There is an element 0 in R such that ¢ + 0 = a (for every a in R).

. There exists an element —a in R such thata + (—a) = 0,

. a*bisin R.

a~{(b+c) = (a-b)-c.

a*(b+c¢)=a-b+a-cand(b+¢)-a=b-a + c-a (the two distrib-
utive laws).
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Axioms | through 5 merely state that R is an abelian group under the
operation +, which we call addition. Axioms 6 and 7 insist that R be closed
under an associative operation -, which we call multiplication. Axiom 8
serves to interrelate the two operations of R.

Whenever we speak of ring it will be understood we mean associative
ring. Nonassociative rings, that is, those in which axiom 7 may fail to hold,
do occur in mathematics and are studied, but we shall have no occasion to
consider them.

It may very well happen, or not happen, that there is an element 1 in
R such that a1 = 1-a = a for every a in R; if there is such we shall
describe R as a ring with unit element.

If the multiplication of R is such thata+b = b - a for every a, b in R, then
we call R a commutative ring.

Before going on to work out some properties of rings, we pause to exarfiine
some examples. Motivated by these examples we shall define various
special types of rings which are of importance.

Example 3.1.1 R is the set of integers, positive, negative, and 0; + is
the usual addition and - the usual multiplication of integers. R is a com-
mutative ring with unit element.

Example 3.1.2 R is the set of even integers under the usual operations
of addition and multiplication. R is a commutative ring but has no unit
element.

Example 3.1.3 R is the set of rational numbers under the usual addition
and multiplication of rational numbers. R is a commutative ring with unit
element. But even more than that, note that the elements of R different
from 0 form an abelian group under multiplication. A ring with this latter
property is called a field.



Example 3.1.4 R is the set of integers mod 7 under the addition and
multiplication mod 7. That is, the elements of R are the seven symbols
0,1,2,3,4,5, 6, where

1. 7 4+ j = % where k is the remainder of i + j on division by 7 (thus, for
instance, 4 + 5 = 2 since 4 + 5 = 9, which, when divided by 7,
leaves a remainder of 2).

9. 1. = m where m is the remainder of i on division by 7 (thus, 5-3=1
since 5+3 = 15 has 1 as a remainder on division by 7).

The student should verify that R is a commutative ring with unit element.
However, much more can be shown; namely, since
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the nonzero elements of R form an abelian group under multiplication.
R is thus a field. Since it only has a finite number of elements it is called a

finite field.

Example 3.1.,6 R is the set of integers mod 6 under addition and
multiplication mod 6. If we denote the elements in R by 0; T 2,504, 5,
one sees that 23 = 0, yet 2 # 0 and 3 # 0. Thus it is possible in a ring R
that a-b = O with neither a = 0 nor b = 0. This cannot happen in a field
(see Problem 10, end of Section 3.2), thus the ring R in this example is
certainly not a field.

Every example given so far has been a commutative ring. We now
present a noncommutative ring.

Example 3.1.6 R will be the set of all symbols

2

Ayge1y + Hizeia t Uzpfay F Azpéay = E %ij€ijs
=1

where all the «;; are rational numbers and where we decree

2 2
Z Lty = Z Bijeis (1)
=1 =1 -

if and only if for all 4,7 = 1, 2, a;; = By,
2 2

2 .
2 mey + 20 Byt = 20 (i + Bues (@)

i, j=1 hj=1

2 2 2
(Z ocu"fj) . (Z ﬁ:.j.gu) = Z Pijijs (3)
i,j=1 i,j=1 i,j=

1



where
2

Yig = E UnBoy = By + 2B
=1

This muitiplication, when first seen, iooks rather complicated. However,
it is founded on relatively simple rules, namely, multiply 3 a;¢;; by 2B, ;¢;;
formally, multiplying out term by term, and collecting terms, and using the
relations ¢;; - ¢, = O forj # k, ¢;;-¢;; = ¢; in this term-by-term collecting.
(Of course those of the readers who have already encountered some linear
algebra will recognize this example as the ring of all 2 x 2 matrices over
the field of rational numbers.)

To illustrate the multiplication, if a = ¢;; — ¢,; + ¢y, and b =
%) + 36’12, then

a-b = (e;7 — eg1 + €33) - (622 + 3ey3)
= €y1°63 + By €15 —€y1'€35 — Beyyvey5 + €337¢55 + 365064,

= 3eyy — ey + &2 = 3e1; — 2ep,.

Note that ¢;; *¢;; = ¢,, whereas ¢;, *¢;; = 0. Thus the multiplication
in R is not commutative. Also it is possible for v = 0 with ¥ # 0 and
v # 0.

The student should verify that R is indeed a ring. It is called the ring of
2 x 2 rational matrices. It, and its relative, will occupy a good deal of
our time later on in the book.

Example 3.1.7 Let C be the set of all symbols (x, f) where ¢, § arc
real numbers. We define

(a, B) = (9, 6) ifand only if « = pand § = 4. (1)
In C we introduce an addition by defining for x = (¢, ),y = (y, 9)
x+y=(p) +(1nd={(+7yppf+0J). (2)

Note that x 4 y is again in C. We assert that C is an abelian group under
this operation with (0, 0) serving as the identity element for addition, and
(—a, —B) as the inverse, under addition, of (o, f8).

Now that C is endowed with an addition, in order to make of C a ring
we still need a multiplication. We achieve this by defining

for X = (o, ), Y = (v, ) in C,
XY = (o, p) (7, 8) = (ay — o, a6 + fy). @)



Note that XYV = ¥Y-X. Also X-(1,0) = (1,0)-X = X so that (1,0)
is a unit element for C.

Again we notice that XY eC. Also, if X = (o, f) # (0, 0) then,
since o, B are real and not both 0, a® + p% # 0; thus

o - i
Y (cx"‘ + g2 o2 +ﬁ2)

is in C. Finally we see that

S =8\
(o, B) (052 Py ﬁz) (1, 0).

All in all we have shown that C is a field. If we write (a, B) as o + fi,
the reader may verify that C is merely a disguised form of the familiar
complex numbers.

Example 3.1.8 This last example is often called the ring of real quaternions.
This ring was first described by the Irish mathematician Hamilton. Initially
it was extensively used in the study of mechanics; today its primary interest
is that of an important example, although it still plays key roles in geometry
and number theory.

Let Q be the set of all symbols ay + o7 + o] + 03k, where all the
numbers &, ;, o,, and ay are real numbers. We declare two such symbols,
oo + 0f + 0y + azkand By + By + BoJ + Bsk, to be equal if and only
ifg, = B, for t = 0,1,2,3. In order to make @ into a ring we must de-
fine a + and a - for its elements. To this end we define

1. For any X = o + 040 + ) + o3k, ¥ = By + Byi + Bj + B3k in
Q, X+ Y = (0 + 0'51.3- + ay) + ask) 4+ (Bo + Bii + BrJ + Bik)=
(0o + Bo) + (g + Br)i + (22 + B2)j + (23 + Ba)k

and

2. X-Y = (0p + i + af + azk) - (Bo + Bt + Boj + Bik) =
(aﬁﬁﬂ - r"":1)!3.1 - “zﬁz - aBﬁS) i (a{)ﬁl o 0513(} -t szﬁ3 = 013}32}3. +
(aof, + B0 + 3y — oy fa)j + (%Bs + a3fo + By — L

Admittedly this formula for the product seems rather formidable; however,
it looks much more complicated than it actually is. It comes from multi-
plying out two such symbols formally and collecting terms using the relations
P2 ==k =gk=—1,4§=—ji=k jk=—k =i ki=—ik=]
The latter part of these relations, called the multiplication table of the
quaternion units, can be remembered by the little diagram on page 125. As
you go around clockwise you read off the product, e.g., § = £, jk =1
ki = j; while going around counterclockwise you read off the negatives.
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Notice that the elements +1, 41, + J» Xk form a non-abelian group of
order 8 under this product. In fact, this is the group we called the group
of quaternion units in Chapter 2.

The reader may prove that @ is a noncommutative ring in which 0 =
04+0/4+0 +0k and 1 =1 + 0i + 0f + Ok serve as the zero and
unit elements respectively. Now if X = ay + a7 + o, + ask is not 0,
then not all of oy, ey, &y, 3 are 0; since they are real, § = o, + o2 +
az® + a3® # 0 follows. Thus
y=2% Eii—-o—c@'—%ke .
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A simple computation now shows that X-¥ = |. Thus the nonzero
clements of ¢ form a non-abelian group under multiplication. A ring in
which the nonzero elements form a group is called a division ring or skew-
field. Of course, a commutative division ring is a field. Q affords us a
division ring which is not a field. Many other examples of noncommutative
division rings exist, but we would be going too far afield to present one here.
The investigation of the nature of division rings and the attempts to classify
them form an important part of algebra.

3.2 Some Special Classes of Rings

The examples just discussed in Section 3.1 point out clearly that although
rings are a direct generalization of the integers, certain arithmetic facts to
which we have become accustomed in the ring of integers need not hold in
general rings. For instance, we have seen the possibility of -4 = 0 with
neither @ nor & being zero. Natural examples exist where a- b % b - a.
All these run counter to our experience heretofore.

For simplicity of notation we shall henceforth drop the dot in a- 4 and
merely write this product as ab.

DEFINITION If R is a commutative ring, then a # 0 € R is said to be a
zero-divisor if there exists a b e R, b 0, such that ab = 0.



DEFINITION A commutative ring is an integral domain if it has no zero-
divisors.

The ring of integers, naturally enough, is an example of an integral
domain.

DEFINITION A ring is said to be a division ring if its nonzero elements
form a group under multiplication.

The unit element under multiplication will be written as I, and the
inverse of an element @ under multiplication will be denoted by a™ 1.
Finally we make the definition of the ultra-important object known as a

field.

DEFINITION A field is a commutative division ring.

In our examples in Section 3.1, we exhibited the noncommutative
division ring of real quaternions and the following fields: the rational
numbers, complex numbers, and the integers mod 7. Chapter 5 will con-
cern itself with fields and their properties.

We wish to be able to compute in rings in much the same manner in
which we compute with real numbers, keeping in mind always that there
are differences—it may happen that ab # ba, or that one cannot divide.
To this end we prove the next lemma, which asserts that certain things we
should like to be true in rings are indeed true.

LEMMA 3.21 If R is a ring, then for all a, be R

l. a0 = 0a = 0.
2. a(—b) = (—a)b = —(ab).
3. (—a)(—b) = ab.

If, in addition, R has a unit element 1, then

4. (—1l)a = —a.
5. (—1)(—1) = L.
Proof.

. If e R, then a0 = a(0 + 0) = a0 + a0 (using the right distributive
law), and since R is a group under addition, this equation implies that
a0 = 0.

Similarly, Oz = (0 + 0)a = 0a + Oa, using the left distributive law,
and so here too, 0a = 0 follows.

2. In order to show that a(—b) = —(ab) we must demonstrate that
ab + a(—b) = 0. But ab + a(—5) = a(b + (—=b)) = a0 = 0 by use of



the distributive law and the result of part 1 of this lemma. Similarly
(—a)b = —(ab).

3. That (—a)(—5) = ab is really a special case of part 2; we single it
out since its analog in the case of real numbers has been so stressed in our
early education. So on with it:

(—a)(—b) = —(a(—b)) (by part2)
—(—(ab)) (by part 2)
ab
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x is a consequence of the fact that in any group

>
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ment 15 thena + (—1)a = la + (=1)a =
(I + (=1))a = O0a = 0, whence (—1)a = —a. In particular, if a =
—1, (=1)(=1) = —(—1) = 1, which establishes part 5.

With this lemma out of the way we shall, from now on, feel free to compute
with negatives and 0 as we always have in the past. The result of Lemma
3.2.1 is our permit to do so. For convenience, a + (—5) will be written
a — b.

The lemma just proved, while it is very useful and important, is not very
exciting. So let us proceed to results of greater interest. Before we do so,
we cnunciate a principle which, though completely trivial, provides a
mighty weapon when wielded properly. This principle says no more or less
than the following: if a postman distributes 101 letters to 100 mailboxes
then some mailbox must receive at least two letters. It does not sound very
promising as a tool, does it? Yet it will surprise us! Mathematical ideas
can often be very difficult and obscure. but no such areument can he made
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against this very simple-minded principle given above. We formalize it and
even give it a name.

THE PIGEONHOLE PRINCIPLE If n objects are distributed over m places,
and if n > m, then some place receives at least two objects.

An equivalent formulation, and one which we shall often use is: If n
objects are distributed over n places in such a way that no place receives
more than one object, then each place receives exactly one object.

We immediately make use of this idea in proving

LEMMA 3.2.2 4 finite integral domain is a field.

Proof. As we may recall, an integral domain is a commutative ring such
that ab = 0 if and only if at least one of a or b is itself 0. A field, on the
other hand, is a commutative ring with unit element in which every non-
zero element has a multiplicative inverse in the ring.



Let D be a finite integral domain. In order to prove that D is a field we
must

1. Produce an element 1 € D such that al = a for every a € D.

2. For every element a # 0 € D produce an element & € D such that
ab = 1.

Let x,, x5, ..., %, be all the elements of D, and suppose that a # 0e D.
Consider the elements x4, x,a, ..., x,a; they are all in D. We claim that
they are all distinct! For suppose that x;a = xa for 1% j; then (x; — x;)a = 0.
Since D is an integral domain and a # 0, this forces x; — x; = 0, and
so x; = x;, contradicting ¢ # j. Thus xa, x3a,..., x,a are n distinct
elements lying in D, which has exactly n elements. By the pigeonhole
principle these must account for all the elements of D; stated otherwise,
every element ¥ € D can be written as x;a for some x;. In particular, since
ae D, a = x,a for some x,, € D. Since D is commutative, ¢ = x; a =

ax We propose to show that x; acts as a unit element for every element

io"
of D. For, if y € D, as we have seen, y = x;a for some x; € D, and so
Y, = (x@)x;, = xi(ax;) = x;a = y. Thus »; is a unit element for D and
we write it as 1. Now 1 € D, so by our previous argument, it too is realizable
r E =N T thhat 1 — /4 Tht

v o srresliseales il e dhimi e 1 heerias Sviele = - crieh s rp
dy d INUILpNeC O ¢, uidl i5, UICTe CXISWS 4 U € L SuCil uidt 1 = dd.

lemma is now completely proved.

COROLLARY If p is a prime number then J,, the ring of inlegers mod p, is a
Sield.

Proof. By the lemma it is enough to prove that J, is an integral domain,
since it only has a finite number of elements. If a, b€ J, and ab = 0,
then p must divide the ordinary integer ab, and so p, being a prime, must
divide @ or 4. But then either 2 = 0 mod p or & = 0 mod p, hence in
J, one of these is 0.

The corollary above assures us that we can find an infinity of fields
having a finite number of elements. Such fields are called finite fields. The
fields /, do not give all the examples of finite fields; there are others. In
fact, in Section 7.1 we give a complete description of all finite fields.

We point out a striking difference between finite fields and fields such as
the rational numbers, real numbers, or complex numbers, with which we
are more familiar.

Let F be a finite field having ¢ elements (if you wish, think of [, with its
p elements). Viewing F merely as a group under addition, siace F has g
elements, by Corollary 2 to Theorem 2.4.1,

a+a+--+a=q9 =0

| S

q-liEl&S



for any @ € /. Thus, in F, we have ga = 0 for some positive integer g, even
if 2 # 0. This certainly cannot happen in the field of rational numbers,
for instance. We formalize this distinction in the definitions we give below.
In these definitions, instead of talking just about fields, we choose to widen
the scope a little and talk about integral domains.

DEFINITION = An integral domain D is said to be of characteristic 0 if the
relation ma = 0, where a # 0 is in D, and where m is an integer, can hold
only if m = 0.

‘The ring of integers is thus of characteristic 0, as are other familiar rings
such as the even integers or the rationals.

DEFINITION An integral domain D is said to be of finite characteristic if
there exists a positive integer m such that ma = 0 for all a e D.

If D is of finite characteristic, then we define the characteristic of D to be
the smallest positive integer p such that pa = 0 for all a € D. It is not too
hard to prove that if D is of finite characteristic, then its characteristic is a prime
number (see Problem 6 below).

As we pointed out, any finite field is of finite characteristic. However, an
integral domain may very well be infinite yet be of finite characteristic (see
Problem 7).

One final remark on this question of characteristic: Why define it for
integral domains, why not for arbitrary rings? The question is perfectly
rcasonable. Perhaps the example we give now points out what can happen
if we drop the assumption “integral domain.” -

Let R be the set of all triples (a, b, ¢), where a € J,, the integers mod 2,
b € J;, the integers mod 3, and ¢ is any integer. We introduce a + and a -
to make of R a ring. We do so by defining (a,, b,,¢;) + (a3, by, ¢,) =
(@1 + a5, by + by, ¢ + ¢3) and (ay, by, ¢,) - (ag, by, 65) = (@123, b6y, ¢1¢5).
It is easy to verify that R is a commutative ring. It is not an integral domain
since (1,2,0)-(0,0,7) = (0, 0, 0), the zero-element of R. Note that in R,
2(1,0,0) = (1,0,0) + (1,0,0) = (2,0,0) = (0,0,0) since addition in
the first component is in J2- Similarly 3(0, 1, 0) = (0, 0, 0). Finally, for
no positive integer m is m(0, 0, 1) = (0, 0, 0).

Thus, from the point of view of the definition we gave above for charac-
teristic, the ring R, which we just looked at, is neither fish nor fowl. The
definition just doesn’t have any meaning for R. We could generalize the
notion of characteristic to arbitrary rings by doing it locally, defining it
relative to given elements, rather than globally for the ring itself. We say
that R has n-torsion, n > 0, if there is an element @ # 0 in R such that
fa = 0, and ma # 0 for 0 < m < n. For an integral domain D, it turns



out that if D has n-torsion, even for one n > 0, then it must be of finite
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cnaracieristic (sec rrobierm o).

Problems

R 1s a ring in all the problems.

1. If a, b, ¢, d € R, evaluate (a + b)(c + d).

_d'!|

10.

11.

12.
13.

14.

. Prove that if a,be R, then (a + b)* = a* = ab + ba + b*, where

by #? we mean xx.

Find the form of the binomial theorem in a general ring; in other words,
find an expression for (a + &)", where n is a positive integer.

If every x € R satisfies x> = x, prove that R must be commutative.
(A ring in which ¥* = x for all elements is called a Boolean ring.)

. If R is a ring, merely considering it as an abelian group under its

addition, we have defined, in Chapter 2, what is meant by na, where
a € R and n is an integer. Prove that if ¢, b6 € R and n, m are integers,
then (na)(mb) = (nm)(ab).

If D is an integeral domain and D is of finite characteristic, prove that
the characteristic of D is a prime number.

Give an example of an integral domain which has an infinite number
of elements, yet is of finite characteristic.

If D is an integral domain and if na = 0 for some a # 0 in D and
some integer n # 0, prove that D is of finite characteristic.

If R is a system satisfying all the conditions for a ring with unit ele-
ment with the possible exception of @ + b = b + a, prove that the axiom
a—b=~5b+a must hold in R and that R is thus a ring. (Hint:
Expand (a + b)(1 + 1) in two ways.)

Show that the commutative ring D is an integral domain if and only
if for a, b, c € D with a # 0 the relation ab = ac implies that b = c.

Prove that any field is an integral domain.

Useing the pigeonhole principle, prove that if m and n are relatively
prime integers and a and b are any integers, there exists an integer x
such that x = amodm and x = é modn. (Hini: Consider the re-
mainders of ¢,a + m.a + 2m,...,a + (n — 1)m on division by n.)

Using the pigeonhole principle, prove that the decimal expansion of
a rational number must, after some point, become repeating.



3.3 Homomorphisms

In studying groups we have seen that the concept of a homomorphism
turned out to be a fruitful one. This suggests that the appropriate analog
for rings could also lead to important ideas. To recall, for groups a homo-
morphism was defined as a mapping such that ¢(ab) = ¢(a)¢(b). Since
a ring has two operations, what could be a more natural extension of this
type of formula than the

DEFINITION A mapping ¢ from the ring R into the ring R’ is said to be a
homomorphism if

. ¢la + b) = ¢(a) + ¢(b),
2. ¢(ab) = ¢(a)¢(b),

for all a, b € R.

As in the case of groups, let us again stress here that the + and - occurring
on the left-hand sides of the relations in 1 and 2 are those of R, whereas the
+ and * occurring on the right-hand sides are those of R’,

A useful observation to make is that a homomorphism of one ring, R,
into another, R’, is, if we totally ignore the multiplications in both these
rings, at least a homomorphism of R into R" when we consider them as
abelian groups under their respective additions. Therefore, as far as
addition 1s concerned, all the properties about homomorphisms of groups
proved in Chapter 2 carry over. In particular, merely restating Lemma
2.7.2 for the case of the additive group of a ring yields for us

LEMMA 3.31 If ¢ is a homomorphism of R into R', then

1. ¢(0) = 0. )
2. ¢(—a) = —¢(a) for every a € R.

A word of caution: if both R and R’ have the respective unit elements
1 and 1’ for their multiplications it need not follow that ¢(1) = 1',
However, if R’ is an integral domain, or if R’ is arbitrary but ¢ is onto, then
- @(1) = 1" is indeed true.

In the case of groups, given a homomorphism we associated with this
homomorphism a certain subset of the group which we called the kernel of
the homomorphism. What should the appropriate definition of the kernel
of a homomorphism be for rings? After all, the ring has two operations,
addition and multiplication, and it might be natural to ask which of these
should be singled out as the basis for the definition. However, the choice
is clear. Built into the definition of an arbitrary ring is the condition that
the ring forms an abelian group under addition. The ring multiplication



was left much more unrestricted, and so, in a sense, much less under our
control than is the addition. For this reason the empbhasis is given to the
operation of addition in the ring, and we make the

DEFINITION If ¢ is a homomorphism of R into R’ then the kernel of @,
I(¢), is the set of all elements a € R such that ¢(a) = 0, the zero-element
of R'.

LEMMA 3.3.2 If ¢ is a homomorphism of R into R' with kernel I(¢p), then

1. I(¢) is a subgroup of R under addition.
2. If a € I{¢) and r € R then both ar and ra are in I(¢).

Proof. Since ¢ is, in particular, a homomorphism of R, as an additive
group, into R’, as an additive group, (1) follows directly from our results in
group theory.

To see (2), suppose that a € I(¢), r€ R. Then ¢{(a) = 0 so that ¢(ar) =
¢(a)p(r) = 0¢(r) =0 by Lemma 3.2.1. Similarly ¢(ra) = 0. Thus
by defining property of I(¢) both ar and ra are in I{@).

Before proceeding we examine these concepts for certain examples.

Example 3.3.1 Let R and R’ be two arbitrary rings and define ¢(a) = 0
for all a € R. Trivially ¢ is a homomorphism and I(¢) = R. ¢ is called
the zero-homomorphism.

Example 3.3.2 Let R be a ring, R' = R and define ¢(x) = x for every
x € R. Clearly ¢ is a homomorphism and I(¢) consists only of 0.

Example 3.3.3 Let J(\/E) be all real numbers of the form m + n\@
where m, n are integers; J(\/E) forms a ring under the usual addition and
multiplication of real numbers. (Verify!) Define ¢:J(+/2) = J(+/2) by

¢(m + ny/2) = m — n/2. ¢ is a homomorphism of J(v/2) onto J(+/2)
and its kernel I{¢), consists only of 0. (Verify!)

Example 3.3.4 Let J be the ring of integers, J,, the ring of integers
modulo n. Define ¢:J — J, by ¢(a) = remainder of a on division by =
The student should verify that ¢ is a homomorphism of J onto J, and that
the kernel, I(¢), of ¢ consists of all multiples of n.

Example 3.3.5 Let R be the set of all continuous, real-valued functions
on the closed unit interval. R is made into a ring by the usual addition and
multiplication of functions; that it is a ring is a consequence of the fact
that the sum and product of two continuous functions are continuous:



functions. Let F be the ring of real numbers and define ¢:R — F by
¢(f(x)) =f(z). ¢ is then a homomorphism of R onto F and its kernel
consists of all functions in R vanishing at x = 1.

All the examples given here have used commutative rings. Many
beautiful examples exist where the rings are noncommutative but it would
- be premature to discuss such an example now.

DEFINITION A homomorphism of R into R’ is said to be an isomorphism
~1f it Is a one-to-one mapping.

DEFINITION Two rings are said to be isomorphic if there is an isomorphism
of one onto the other.

The remarks made in Chapter 2 about the meaning of an isomorphism
-and of the statement that two groups are isomorphic carry over verbatim
: to rings. Likewise, the criterion given in Lemma 2.7.4 that a homomorphism
_be an isomorphism translates directly from groups to rings in the form

'LEMMA 333 The homomorphism ¢ of R into R’ is an isomorphism if and
only if I(¢) = (0).

3.4 Ideals and Quotient Rings

Once the idea of 2 homomorphism and its kernel have been set up for rings,
based on our experience with groups, it should be fruitful to carry over
~some analog to rings of the concept of normal subgroup. Once thi¥ is
achieved, one would hope that this analog would lead to a construction in
rings like that of the quotient group of a group by a normal subgroup.
Finally, if one were an optimist, one would hope that the homomorphism
theorems for groups would come over in their entirety to rings.

Fortunately all this can be done, thereby providing us with an incisive
technique for analyzing rings.

The first business at hand, then, seems to be to define a suitable “normal
subgroup” concept for rings. With a little hindsight this is not difficult.
If you recall, normal subgroups eventually turned out to be nothing else
than kernels of homomorphisms, even though their primary defining
conditions did not involve homomorphisms. Why not use this observation
as the keystone to our definition for rings? Lemma 3.3.2 has already
provided us with some conditions that a subset of a ring be the kernel of a
‘homomorphism. We now take the point of view that, since no other in-
formation is at present available to us, we shall make the conclusions of
Lemma 3.3.2 as the starting point of our endeavor, and so we define



DEFINITION A nonempty subset U of R is said to be a (two-sided) idea/
of R if

1. U is a subgroup of R under addition.
2. For every u € U and r € R, both ur and ru are in U.

Condition 2 asserts that U “swallows up” multiplication from the right
and left by arbitrary ring elements. For this reason U is usually called a
two-sided ideal. Since we shall have no occasion, other than in some of the
problems, to use any other derivative concept of ideal, we shall merely use
the word 1deal, rather than two-sided 1deal, in all that follows.

Given an ideal U of a ring R, let R/U be the set of all the distinct cosets
of U in R which we obtain by considering U as a subgroup of R under
addition. We note that we merely say coset, rather than right coset or left
coset; this 1s justified since R 1s an abelian group under addition. To restate
what we have just said, R/U consists of all the cosets, a + U, where a e R.
By the results of Chapter 2, R/U is automatically a group under addition;
this 1s achieved by the composition law (a+ U) + (b + U) = (a + b) + U.
In order to impose a ring structure on R/U we must define, in it, a multi-
plication. What is more natural than to define (¢ + U)(b + U) =
ab + U? However, we must make sure that this is meaningful. Otherwise
put, we are obliged to show thatifa + U =4 + Uand b + U = b' + U,
then under our definition of the multiplication, (a + U)(b + U) =
(a" + U)(&' + U). Equivalently, it must be established that ab + U =
ab’ + U. To this end we first note that since a + U =ad + U,
a =a + u;, where u; € U; similarly b = & + u, where u, € U. Thus
ab = (a' + u)(b + uy) = a'b’ + w b’ + a'uy + wyu,; since U is an ideal of
R, ub'e U, a'u; e U, and wu, € U. Consequently u,b’ + a'u, + wu, =
u; € U. But then ab = a'b’ + u;, from which we deduce that ab + U =
a't’ + uy + U, and since uy3 e U, u; + U = U. The net consequence
of all this i1s that ab + U = a'd’ + U. We at least have achieved the
principal step on the road to our goal, namely of introducing a well-defined
multiplication. The rest now becomes routine. To establish that R/U 1s a
ring we merely have to go through the various axioms which define a ring
and check whether they hold in R/U. All these verifications have a certain
sameness to them, so we pick one axiom, the right distributive law, and
prove it holds in R/U. The rest we leave to the student as informal exercises.
If X=a+4+ U, Y=b+ U, Z=c¢+ U are three elements of R/U,
where a,b,ceR, then (X + Y)Z = ((a+ U) + (b + U))(c + U) =
((a+86) + Ue+U) =(a+bc+ U=ac+ b+ U= (ac + U) +
(be + U) =(a+ U)e+U) + (b+U)(c+ U) = XZ + YZ

R|U has now been made into a ring. Clearly, if R is commutative then
sois R/U, for (a + U)b+ U) =ab+ U=0ba+ U= (b+ U)(a + U).
(The converse to this is false.) If R has a unit element 1, then R/U hasa-



unit element 1 + U. We might ask: In what relation is R/U to R? With
the experience we now have in hand this is easy to answer. There is a
homomorphism ¢ of R onto R|/U given by ¢(a) = a + U for every a e R,
whose kernel is exactly U. (The reader should verify that ¢ so defined is a
homomorphism of R onto R/U with kernel U.)

We summarize these remarks in

LEMMA 3.4.1 If U is an ideal of the ring R, then R|U is a ring and is a
homomorphic image of R.

With this construction of the quotient ring of a ring by an ideal satisfactorily
accomplished, we are ready to bring over to rings the homomorphism
theorems of groups. Since the proofis an exact verbatim translation of that
for groups into the language of rings we merely state the theorem without
‘proof, referring the reader to Chapter 2 for the proof.

THEOREM 3.41 Let R, R’ be rings and ¢ a homomorphism of R onto R’ with
kernel U. Then R’ is isomorphic to R|U. Moreover there is a one-to-one correspondence
“between the set of ideals of R' and the set of ideals of R which contain U. This
correspondence can be achieved by associating with an ideal W' in R’ the ideal W in
R defined by W = {xe R | ¢(x) e W'}. With W so defined, R|W is isomorphic
o R/W'.

| Problems

1. If Uis an ideal of R and 1 € U, prove that U = R.
2. If F is a field, prove its only ideals are (0) and F itself.

-

3. Prove that any homomorphism of a field is either an isomorphism or
takes each element into O.
4. If R is a commutative ring and a € R,
(a) Show that aR = {ar | r € R} is a two-sided ideal of R.
(b) Show by an example that this may be false if R is not commutative.
. If U, V are ideals of B, let U+ V ={u+v|ueU,veV}. Prove
that U + V is also an ideal.
6. If U, V are ideals of R let UV be the set of all elements that can be
written as finite sums of elements of the form wv where u € U and
v e V. Prove that UV is an ideal of R.
7. In Problem 6 prove that UV < U n V.

8. If R is the ring of integers, let U be the ideal consisting of all multiples
of 17. Prove that if V is an ideal of R and R = V o U then either
V=RorV = U. Generalize!

n
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If U is an ideal of R, let r(U) = {x e R|xu = 0 for all u € U},
Prove that r(U) is an ideal of R,

If U is an ideal of R let [R:U] = {xe R|rx € U for every r € R}.
Prove that [R:U] is an ideal of R and that it contains U.

Let R be a ring with unit element. Using its elements we define a
ring R by defining a® b =a+ b+ 1, and a-b = ab + a + b,
where a, b € R and where the addition and multiplication on the
right-hand side of these relations are those of R.

(a) Prove that R is a ring under the operations @ and -.

(b) What acts as the zero-element of R?

(c) What acts as the unit-element of R?

(d) Prove that R is isomorphic to R.

In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices.
Prove that this ring has no ideals other than (0) and the ring itself.

In Example 3.1.8 we discussed the real quaternions. Using this as a

model we define the quaternions over the integers mod p, p an odd

prime number, in exactly the same way; however, now considering

all symbols of the form «y + ;¢ + o] + a3k, where o, oy, a,, 05

are integers mod p.

(a) Prove that this is a ring with p* elements whose only ideals are
(0) and the ring itself.

**¥(b) Prove that this ring is no! a division ring.

If R is any ring a subset L of R is called a left-ideal of R if

I. L is a subgroup of R under addition.
2 re R, ae Limplies ra e L.

(One can similarly define a right-ideal.) An ideal is thus simultaneously a
left- and right-ideal of R.

14.
15,
16.

17.

18.

¥19.

20.

For a € R let Ra = {xa | x € R}. Prove that Rz is a left-ideal of R.
Prove that the intersection of two left-ideals of R is a left-ideal of R.

What can you say about the intersection of a left-ideal and right-ideal
of R?

If Ris a ring and ae R let r(a) = {x e R|ax = 0}. Prove that
r(a) is a right-ideal of R.

If Ris aring and L is a left-ideal of R let A(L) = {x e R|xa = 0 for
all a e L}. Prove that A(L) is a two-sided ideal of R.

Let R be a ring in which ¥ = x for every x € R. Prove that R is a
commutative ring.

If R 1s a ring with unit element | and ¢ is 2 homomorphism of R onto
R’ prove that ¢(1) is the unit element of R'.



