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21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into 
an integral domain R' such that I ( ¢) =I= R, prove that ¢( 1) is the unit 
element of R'. 

3.5 More Ideals and Quotient Rings 

We continue the discussion of ideals and quotient rings. 
Let us take the point of view, for the moment at least, that a field is the 

most desirable kind of ring. Why? If for no other reason, we can divide in 
a field, so operations and results in a field more closely approximate our 
experience with real and complex numbers. In addition, as was illustrated 
by Problem 2 in the preceding problem set, a field has no homomorphic 
images other than itself or the trivial ring consisting of 0. Thus we cannot 
simplify a field by applying a homomorphism to it. Taking these remarks 
into consideration it is natural that we try to link a general ring, in some 
fashion, with fields. What should this linkage involve? We have a machinery 
whose component parts are homomorphisms, ideals, and quotient rings. 
With these we will forge the link. 

But first we must make precise the rather vague remarks of the preceding 
paragraph. We now ask the explicit question: Under what conditions is the 
homomorphic image of a ring a field? For commutative rings we give a 
complete answer in this section. 

Essential to treating this question is the converse to the result of Problem 
2 of the problem list at the end of Section 3·.4. 

LEMMA 3.5.1 Let R be a commutative ring with unit element whose only ideals 
are (0) and R itself. Then R is a field. 

Proof. In order to effect a proof of this lemma for any a =I= 0 E R we 
must produce an element b =I= 0 E R such that ab = 1. 

So, suppose that a =1= 0 is in R. Consider the set Ra = {xa I x E R}. 
We claim that Ra is an ideal of R. In order to establish this as fact we must 
show that it is a subgroup of R under addition and that if u E Ra and 
r E R then ru is also in Ra. (We only need to check that ru is in Ra for 
then ur also is since ru = ur.) 

Now, if u, vERa, then u = r1a, v = r2a for some rv r2 E R. Thus 
u + v = r1a + r2a = (r1 + r2 )a ERa; similarly -u = -r1a = ( -r1)a ERa. 
Hence Ra is an additive subgroup of R. Moreover, if r E R, ru = r(r1a) = 
(rr1 )a E Ra. Ra therefore satisfies all the defining conditions for an ideal 
of R, hence is an ideal of R. (Notice that both the distributive law and 
associative law of multiplication were used in the proof of this fact.) 

By our assumptions on R, Ra = (0) or Ra = R. Since 0 =I= a = Ia ERa, 
Ra =I= (0); thus we are left with the only other possibility, namely that 
Ra = R. This last equation states that every element in R is a multiple of 
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a by some element of R. In particular, 1 E R and so it can be realized as a 
multiple of a; that is, there exists an element b E R such that ba = 1. 
This completes the proof of the lemma. 

DEFINITION An ideal M =j:. R in a ring R is said to be a maximal ideal of 
R if whenever U is an ideal of R such that M c U c R, then either R = U 
orM = U. 

In other words, an ideal of R is a maximal ideal if it is impossible to 
squeeze an ideal between it and the full ring. Given a ring R there is no 
guarantee that it has any maximal ideals! If the ring has a unit element 
this can be proved, assuming a basic axiom of mathematics, the so-called 
axiom of choice. Also there may be many distinct maximal ideals in a 
ring R; this will be illustrated for us below in the ring of integers. 

As yet we have made acquaintance with very few rings. Only by con­
sidering a given concept in many particular cases can one fully appreciate 
the concept and its motivation. Before proceeding we therefore examine 
some maximal ideals in two specific rings. When we come to the discussion 
of polynomial rings we shall exhibit there all the maximal ideals. 

Example 3.5.1 Let R be the ring of integers, and let U be an ideal of R. 
Since U is a subgroup of R under addition, from our results in group theory, 
we know that U consists of all the multiples of a fixed integer n0 ; we write 
this as U = (n0 ). What values of n0 lead to maximal ideals? 

We first assert that if p is a prime number then P = (p) is a maximal 
ideal of R. For if U is an ideal of R and U ::::> P, then U = (n0 ) for some 
integer n0 . Since p E P c U, p = mn0 for some integer m; because p is a 
prime this im:tJlies that n0 = 1 or n0 = p. If n0 = p, then P c U = 
(n0 ) c P, so that U = P follows; if n0 = 1, then 1 E U, hence r = lr E U 
for all r E R whence U = R follows. Thus no ideal, other than R or P 
itself, can be put between P and R, from which we deduce that Pis maximal. 

Suppose, on the other hand, that M = (n0 ) is a maximal ideal of R. 
We claim that n0 must be a prime number, for if n0 = ab, where a, b are 
positive integers, then U = (a) ::::> M, hence U = R or U = M. If U = R, 
then a = 1 is an easy consequence; if U = M, then a E M and so a = rn0 

for some integer r, since every element of M is a multiple of n0 • But then 
n0 = ab = rn0 b, from which we get that rb = 1, so that b = 1, n0 = a. 
Thus n0 is a prime number. 

In this particular example the notion of maximal ideal comes alive-it 
corresponds exactly to the notion of prime number. One should not, 
however, jump to any hasty generalizations; this kind of correspondence 
does not usually hold for more general rings. 

I' · .. l 

~ 
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Example 3.5.2 Let R be the ring of all the real-valued, continuous 
functions on the closed unit interval. (See Example 3.3.5.) Let 

M = {f(x) E R lf(f) = 0}. 

is certainly an ideal of R. Moreover, it is a maximal ideal of R, for if the 
U contains M and U =I M, then there is a function g(x) E U, 

¢ M. Since g(x) ¢ M, g(f) = C< =I 0. Now h(x) = g(x) - C< is such 
that h(f) = g(!) - C< = 0, so that h(x) EM c U. But g(x) is also in U; 

C< = g(x) - h(x) E U and so 1 = riC<- 1 E U. Thus for any 
function t(x) E R, t(x) = lt(x) E U, in consequence of which U = R. 
M is therefore a maximal ideal of R. Similarly if y is a real number 0 :::;; 
y:::;; 1, then MY = {f(x) E R lf(y) = 0} is a maximal ideal of R. It 
can be shown (see Problem 4 at the end of this section) that every maximal 
ideal is of this form. Thus here the maximal ideals correspond to the points 
on the unit interval. 

Having seen some maximal ideals in some concrete rings we are ready 
to continue the general development with 

THEOREM 3.5.1 If R is a commutative ring with unit element and M is an 
ideal of R, then M is a maximal ideal of R if and only if Rf M is a field. 

Proof. Suppose, first, that M is an ideal of R such that Rf M is a field. 
Since RfM is a field its only ideals are (0) and RfM itself. But by Theorem 
3.4.1 there is a one-to-one correspondence between the set of ideals of 
RfM and the set of ideals of R which contain M. The ideal M of R corre­
sponds to the ideal (0) of Rf M whereas the ideal R of R correspond;· to 
the ideal RfM of R/M in this one-to-one mapping. Thus there is no ideal 
between M and R other than these two, whence M is a maximal ideal. 

On the other hand, if M is a maximal ideal of R, by the correspondence 
mentioned above R/M has only (0) and itself as ideals. Furthermore RfM 
is commut~tive and has a unit element since R enjoys both these properties. 
All the conditions of Lemma 3.5.1 are fulfilled for R/ M so we can conclude, 
by the result of that lemma, that RfM is a field. 

We shall have many occasions to refer back to this result in our study of 
polynomial rings and in the theory of field extensions. 

Problems 

1. Let R be a ring with unit element, R not necessarily commutative, such 
that the only right-ideals of R are (0) and R. Prove that R is a division 
ring. 
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*2. Let R be a ring such that the only right ideals of R are (0) and R. 
Prove that either R is a division ring or that R is a ring with a prime 
number of elements in which ab = 0 for every a, b E R. 

3. Let J be the ring of integers, p a prime number, and (p) the ideal of 
J consisting of all multiples of p. Prove 
(a) J/ (p) is isomorphic to J P' the ring of integers mod p. 
(b) Using Theorem 3.5.1 and part (a) of this problem, that ]p is a 

field. 

**4. Let R be the ring of all real-valued continuous functions on the closed 
unit interval. If M is a maximal ideal of R, prove that there exists a 
real number y, O~y~ 1, such that M=My={f(x)ERIJ(y) =0}. 

3.6 The Field of Quotients of an Integral Domain 

Let us recall that an integral domain is a commutative ring D with the 
additional property that it has no zero-divisors, that is, if ab = 0 for some 
a, b E D then at least one of a or b must be 0. The ring of integers is, of 
course, a standard example of an integral domain. 

The ring of integers has the attractive feature that we can enlarge it to 
the set of rational numbers, which is a field. Can we perform a similar 
construction for any integral domain? We will now proceed to show that 
indeed we can ! 

DE FIN ITI 0 N A ring R can be imbedded in a ring R 1 if there is an isomorphism 
of R into R 1

• (If R and R 1 have unit elements 1 and 11 we insist, in addition, 
that this isomorphism takes 1 onto 11

.) 

R 1 will be called an over-ring or extension of R if R can be imbedded in R 1
• 

With this understanding of imbedding we prove 

THEOREM 3.6.1 Every integral domain can be imbedded in afield. 

Proof. Before becoming explicit in the details of the proof let us take an 
informal approach to the problem. Let D be our integral domain; roughly 
speaking the field we seek should be all quotients ajb, where a, bED and 
b =j:. 0. Of course in D, afb may very well be meaningless. What should 
we require of these symbols afb? Clearly we must have an answer to the 
following three questions: 

1. When is afb = cfd? 
2. What is (afb) + (c/d)? 
3. What is (afb) (cfd)? 

In answer to 1, what could be more natural than to insist that afb = cfd 
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if and only if ad = be? As for 2 and 3, why not try the obvious, that is, 
define 

~ + !_ = ad + be and ~ !_ = ae . 
b d bd b d bd 

In fact in what is to follow we make these considerations our guide. So 
let us leave the heuristics and enter the domain of mathematics, with 

!llt· ...,,rpr•t<:P definitions and rigorous deductions. 
Let .A be the set of all ordered pairs (a, b) where a, b E D and b =1= 0. 

(Think of (a, b) as ajb.) In .A we now define a relation as follows: 

(a, b) "' (e, d) if and only if ad= be. 

We claim that this defines an equivalence relation on .A. To establish this 
we check the three defining conditions for an equivalence relation for this 
particular relation. 

1. If (a, b) E .A, then (a, b) ,...., (a, b) since ab = ba. 
2. If (a, b), (e, d) E .A and (a, b) "' (e, d), then ad = be, hence eb = da, 

and so (e, d) "' (a, b). 
3. If (a, b), (e, d), (e, f) are all in .A and (a, b) "' (e, d) and (e, d) "' 

(e,j), then ad = be and cf = de. Thus bcf = bde, and since be = ad, 
it follows that adf = bde. Since D is commutative, this relation becomes 
afd = bed; since, moreover, D is an integral domain and d =1= 0, this 
relation further implies that af = be. But then (a, b) "' (e,f) and our 
relation is transitive. 

Let [a, b] be the equivalence class in .A of (a, b), and let F be the set of 
all such equivalence classes [a, b] where a, b E D and b =1= 0. F is the 
candidate for the field we are seeking. In order to create out ofF a fi~ld 
we must introduce an addition and a multiplication for its elements and then 
show that under these operations F forms a field. 

We first dispose of the addition. Motivated by our heuristic discussion at 
the beginning of the proof we define 

[a, b] -r [e, d] = [ad + be, bd]. 

Since D is an integral domain and both b =1= 0 and d =I= 0 we have that 
bd =I= 0; this, at least, tells us that [ad + be, bd] E F. We now assert that 
this addition is well defined, that is, if [a, b] = [a', b'] and [e, d] = [e', d'], 
then [a, b] + [e, d] = [a', b'] + [e', d']. To see that this is so, from 
[a, b] = [a', b'] we have that ab' = ba'; from [e, d] = [e', d'] we have 
that ed' = de'. What we need is that these relations force the equality of 
[a, b] + [e, d] and [a', b'] + [e', d']. From the definition of addition this 
boils down to showing that [ad+ be, bd] = [a'd' + b'e', b'd'], or, in equiva­
lent terms, that (ad+ be)b'd' = bd(a'd' + b'e'). Using ab' = ba', ed' =de' 
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this becomes: (ad+ bc)b'd' = adb'd' + bcb'd' = ab'dd' + bb'cd' = ba'dd' + 
bb'dc' = bd(a'd' + b'c'), which is the desired equality. 

Clearly [0, b] acts as a zero-element for this addition and [-a, b] as the 

negative of [a, b]. It is a simple matter to verify that F is an abelian group 

under this addition. 
We now turn to the multiplication in F. Again motivated by our pre­

liminary heuristic discussion we define [a, b][c, d] = [ac, bd]. As in the 

case of addition, since b # 0, d # 0, bd # 0 and so [ ac, bd] E F. A com­

putation, very much in the spirit of the one just carried out, proves that if 

[a, b] = [a', b'] and [c, d] = [c', d'] then [a, b][c, d] = [a', b'][c', d']. One 

can now show that the nonzero elements ofF (that is, all the elements 

[a, b] where a -f:. 0) form an abelian group under multiplication in which 

[d, d] acts as the unit element and where 

[c, d]- 1 = [d, c] (since c -f:. 0, [d, c] is in F). 

It is a routine computation to see that the distributive law holds in F. 

F is thus a field. 
All that remains is to show that D can be imbedded in F. We shall 

exhibit an explicit isomorphism of D into F. Before doing so we first notice 

that for x -f:. 0, y -f:. 0 in D, [ax, x] = [ay,y] because (ax) y = x(ay); let us 

denote [ax, x] by [a, 1]. Define ¢:D ~ F by ¢(a) = [a, 1] for every 

a E D. We leave it to the reader to verify that 4> is an isomorphism of D 

into F, and that if D has a unit element 1, then ¢(1) is the unit element of F. 

The theorem is now proved in its entirety. 

F is usually called the field of quotients of D. In the special case in which 

D is the ring of integers, the F so constructed is, of course, the field of 

rational numbers. 

Problems 

1. Prove that if [a, b] = [a', b'] and [c, d] = [c', d'] then [a, b][c, d] == 

[a', b'][c', d']. 

2. Prove the distributive law in F. 

3. Prove that the mapping ¢:D ~ F defined by ¢(a) = [a, 1] is an 

isomorphism of D into F. 

4. Prove that if K is any field which contains D then K contains a subfield 

isomorphic to F. (In this sense F is the smallest field containing D.) 

* 5. Let R be a commutative ring with unit element. A nonempty subset 

S of R is called a multiplicative system if 

1. 0 ¢ s. 
2. s1, s2 E S implies that s1 s2 E S. 
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Let At be the set of all ordered pairs (r, s) where r E R, s E S. In 
At define (r, s) "' (r', s') if there exists an element s" E S such that 

s" (rs' - sr') = 0. 

(a) Prove that this defines an equivalence relation on At. 
Let the equivalence class of (r, s) be denoted by [r, s], and let R8 be 

the set of all the equivalence classes. In R8 define [r1 , s1] + [r2 , s2 ] = 
[r1s2 + r2s1 , s1s2 ] and [r1, s1][r2 , s2 ] = [r1r2 , s1s2 ]. 

(b) Prove that the addition and multiplication described above are 
well defined and that R8 forms a ring under these operations. 

(c) Can R be imbedded in R8 ? 
(d) Prove that the mapping ¢:R ~ Rs defined by ¢(a) = [as, s] is 

a homomorphism of R into R8 and find the kernel of¢. 
(e) Prove that this kernel has no element of S in it. 
(f) Prove that every element of the form [sv s2 ] (where sv s2 E S) in 

R8 has an inverse in R8 • 

6. Let D be an integral domain, a, bE D. Suppose that an = bn and 
am = bm for two relatively prime positive integers m and n. Prove that 
a= b. 

7. Let R be a ring, possibly noncommutative, in which xy = 0 implies 
x = 0 or y = 0. If a, b E R and an = bn and am = bm for two relatively 
prime positive integers m and n, prove that a = b. 

3.7 Euclidean Rings 

The class of rings we propose to study now is motivated by several existing 
examples-the ring of integers, the Gaussian integers (Section 3.8), and 
polynomial rings (Section 3.9). The definition of this class is designed to 
incorporate in it certain outstanding characteristics of the three concrete 
examples listed above. 

DEFINITION An integral domain R is said to be a Euclidean ring if for 
every a #- 0 in R there is defined a nonnegative integer d(a) such that 

I. For all a, bE R, both nonzero, d(a) ~ d(ab). 
2. For any a, b E R, both nonzero, there exist t, r E R such that a = tb + r 

where either r = 0 or d(r) < d(b). 

We do not assign a value to d(O). The integers serve as an example of a 
Euclidean ring, where d(a) = absolute value of a acts as the required 

·.·function. In the next section we shall see that the Gaussian integers also 
form a Euclidean ring. Out of that observation, and the results developed 
in this part, we shall prove a classic theorem in number theory due to 
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Fermat, namely, that every prime number of the form 4n + 1 can be 
written as the sum of two squares. 

We begin with 

THEOREM 3.7.1 Let R be a Euclidean ring and let A be an ideal of R. Then 
there exists an element a0 E A such that A consists exactly of all a0 x as x ranges over R. 

Proof. If A just consists of the element 0, put a0 = 0 and the conclusion 
of the theorem holds. 

Thus we may assume that A =1= (0); hence there is an a =/::. 0 in A. Pick 
an a0 E A such that d ( ao) is minimal. (Since d takes on nonnegative integer 
values this is always possible.) 

Suppose that a E A. By the properties of Euclidean rings there exist 
t, r E R such that a = ta0 + r where r = 0 or d(r) < d(a0 ). Since 
a0 E A and A is an ideal of R, ta0 is in A. Combined with a E A this results 
in a - ta0 E A; but r = a - ta0 , whence rEA. Ifr =I= 0 then d(r) < d(a0 ), 

giving us an element r in A whose d-value is smaller than that of a0 , in 
contradiction to our choice of a0 as the element in A of minimal d-value. 
Consequently r = 0 and a = ta0 , which proves the theorem. 

We introduce the notation (a) = {xa I x E R} to represent the ideal of 
all multiples of a. 

DEFINITION An integral domain R with unit element is a principal ideal 
ring if every ideal A in R is of the form A = (a) for some a E R. 

Once we establish that a Euclidean ring has a unit element, in virtue of 
Theorem 3. 7.1, we shall know that a Euclidean ring is a principal ideal ring. 
The converse, however, is false; there are principal ideal rings which are 
not Euclidean rings. [See the paper by T. Motzkin, Bulletin of the American 
Mathematical Society, Vol. 55 ( 1949), pages 1142-1146, entitled "The 
Euclidean algorithm."] 

COROLLARY TO THEOREM 3.7.1 A Euclidean ring possesses a unit 
element. 

Proof. Let R be a Euclidean ring; then R is certainly an ideal of R, so 
that by Theorem 3. 7.1 we may conclude that R = (u0 ) for some u0 E R. 
Thus every element in R is a multiple of u0 • Therefore, in particular, 
u0 = u0c for some c E R. If a E R then a = xu0 for some x E R, hence 
ac = (xu0 )c = x(u0c) = xu0 = a. Thus c is seen to be the required unit 
element. 

DEFINITION If a =/::. 0 and b are in a commutative ring R then a is said 
to divide b if there exists a c E R such that b = ac. We shall use the symbol 
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a 1 b to represent the fact that a divides b and a~ b to mean that a does 
not divide b. 

The proof of the next remark is so simple and straightforward that we 
omit it. 

REMARK I. If a I b and b I c then a I c. 
2. If a I b and a I c then a I ( b ± c) . 
3. If a I b then a I bx for all x E R. 

DEFINITION If a, bE R then dE R is said to be a greatest common divisor 
of a and b if 

I. d I a and d I b. 
2. Whenever c I a and c I b then c I d. 

We shall use the notation d = (a, b) to denote that dis a greatest common 
divisor of a and b. 

LEMMA 3.7.1 Let R be a Euclidean ring. Then any two elements a and b in 
'R have a greatest common divisor d. Moreover d = Aa + Jlb for some A, f.1 E R. 

Proof. Let A be the set of all elements ra + sb where r, s range over R. 
We claim that A is an ideal of R. For suppose that x, yEA; therefore 
~ = r1a + s1b, y = r2a + s2b, and so x ±Y = (r1 ± r2 )a + (s1 ± s2 )b EA. 
Similarly, for any u E R, ux = u(r1a + s1b) = (ur1 )a + (us1 )b EA. 

Since A is an ideal of R, by Theorem 3. 7.1 there exists an element dE A 
such that every element in A is a mutiple of d. By dint of the fact that 
dE A and that every element of A is of the form ra + sb, d = Aa + "'jtb 
for some A, f.1 E R. Now by the corollary to Theorem 3.7.1, R has a unit 
element 1; thus a = la + Ob E A, b = Oa + Ib EA. Being in A, they 
are both multiples of d, whence d I a and d I b. 

Suppose, finally, that c I a and c I b; then c I Aa and c I Jlb so that c 
certainly divides Aa + Jlb = d. Therefore d has all the requisite conditions 
for a greatest common divisor and the lemma is proved. 

DEFINITION Let R be a commutative ring with unit element. An 
element a E R is a unit in R if there exists an element b E R such that ab = 1. 

Do not confuse a unit with a unit element! A unit in a ring is an element 
Whose inverse is also in the ring. 

LEMMA 3.7.2 Let R be an integral domain with unit element and suppose that 
for a, b E R both a I b and b I a are true. Then a = ub, where u is a unit in R. 
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Proof. Since a I b, b = xa for some x E R; since b I a, a = yb for some 
y E R. Thus b = x(yb) = (xy)b; but these are elements of an integral 
domain, so that we can cancel the b and obtain xy = 1; y is thus a unit in 

R and a = yb, proving the lemma. 

DEFINITION Let R be a commutative ring with unit element. Two 

elements a and bin Rare said to be associates if b = ua for some unit u in R. 

The relation of being associates is an equivalence relation. (Problem 1 

at the end of this section.) Note that in a Euclidean ring any two greatest 

common divisors of two given elements are associates (Problem 2). 
Up to this point we have, as yet, not made use of condition 1 in the 

definition of a Euclidean ring, namely that d(a) ~ d(ab) for b i= 0. We 

now make use of it in the proof of 

LEMMA 3.7.3 Let R be a Euclidean ring and a, bE R. If b i= 0 is not a unit 
in R, then d(a) < d(ab). 

Proof. Consider the ideal A = (a) = {xa I x E R} of R. By condition 

1 for a Euclidean ring, d(a) ~ d(xa) for x i= 0 in R. Thus the d-value of 

a is the minimum for the d-value of any element in A. Now ab E A; if 

d(ab) = d(a), by the proof used in establishing Theorem 3.7.1, since the 

d-value of ab is minimal in regard to A, every element in A is a multiple of 

ab. In particular, since a E A, a must be a multiple of ab; whence a = abx 
for some x E R. Since all this is taking place in an integral domain we 

obtain bx = 1. In this way b is a unit in R, in contradiction to the fact that 

it was not a unit. The net result of this is that d(a) < d(ab). 

DEFINITION In the Euclidean ring R a nonunit n is said to be a prime 
element of R if whenever n = ab, where a, b are in R, then one of a or b is a 
unit in R. 

A prime element is thus an element in R which cannot be factored in R 
in a nontrivial way. 

LEMMA 3.7.4 Let R be a Euclidean ring. Then every element in R is either a 
unit in R or can be written as the product of a finite number of prime elements of R. 

Proof. The proof is by induction on d (a). 
If d(a) = d(l) then a is a unit in R (Problem 3), and so in this case, the 

assertion of the lemma is correct. 
We assume that the lemma is true for all elements x in R suth that 

d(x) < d(a). On the basis of this assumption we aim to prove it for a. 
This would complete the induction and prove the lemma. 
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If a is a prime element of R there is nothing to prove. So suppose that 
a= bcwhereneitherbnorcisaunitinR. ByLemma3.7.3,d(b) < d(bc) = 
j(a) and d(c) < d(bc) = d(a). Thus by our induction hypothesis b and c 
can be written as a product of a finite number of prime elements of R; 
•JJ = n1n2 • • • nn, c = n~n~ · · · n;,. where then's and n"s are prime elements 
;,of R. Consequently a = be = n1n2 • • • nnn~n~ · · · n;,. and in this way a 
!bas been factored as a product of a finite number of prime elements. This 
completes the proof. 

DEFINITION In the Euclidean ring R, a and bin Rare said to be relatively 
prime if their greatest common divisor is a unit of R. 

Since any associate of a greatest common divisor is a greatest common 
divisor, and since I is an associate of any unit, if a and b are relatively 
prime we may assume that (a, b) = 1. 

LEMMA 3.7.5 Let R be a Euclidean ring. Suppose that for a, b, c E R, a I be 
but (a, b) = 1. Then a I c. 

Proof. As we have seen in Lemma 3.7.1, the greatest common divisor 
of a and b can be realized in the form .Aa + Jlb. Thus by our assumptions, 
A.a + Jlb = 1. Multiplying this relation by c we obtain .Aac + Jlbc = c. 
Now a I .Aac, always, and a I Jlbc since a I be by assumption; therefore 
a I ( .Aac + Jlbc) = c. This is, of course, the assertion of the lemma. 

We wish to show that prime elements in a Euclidean ring play the same 
role that prime numbers play in the integers. If n in R is a prime element 
of R and a E R, then either n I a or (n, a) = I, for, in particular, (n, d) 
is a divisor of n so it must be n or I (or any unit). If (n, a) = 1, one-half 
our assertion is true; if ( n, a) = n, since ( n, a) I a we get n I a, and the 
other half of our assertion is true. 

LEMMA 3}.6 {f n is a prime element in the Euclidean ring R and n I ab 
where a, b E R then n divides at least one of a or b. 

Proof. Suppose that n does not divide a; then (n, a) 
Lemma 3. 7.5 we are led ton I b. 

1. Applying 

COROLLARY If n is a prime element in the Euclidean ring Rand n I a1a2 ···an 
then n divides at least one a1 , a2 , ••• , an. 

We carry the analogy between prime elements and prime numbers 
further and prove 
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THEOREM 3.7.2 (UNIQUE FACTORIZATION THEOREM) Let R be a Eu­

clidean ring and a =P 0 a no nun it in R. Suppose that a = n 1 n 2 • • • n n ::::: 

n~ n; · · · n:n where the ni and nj are prime elements of R. Then n = m and each 

ni, 1 :::; i :::; n is an associate of some nj, 1 :::; j :::; m and conversely each n'k 

is an associate of some nq. 

Proof. Lookatthe relation a= n 1 n2 • • • nn = n~ n; · · · n:n. Butn1 I n 1 n2 • • • nm 

hence n 1 I n~n; · · · n:n. By Lemma 3.7.6, n 1 must divide some n~; since n 1 and 

n~ are both prime elements of R and n1 In~ they must be associates and 

n~ = u1n 1, where u1 is a unit in R. Thus n1n2 • • • nn = n~n~ · · · n:n = 

u1n1n; · · · n~_ 1 n;+l · · · n:n; cancel off n 1 and we are left with n2 • • • nn = 
u1n; · · · n~_ 1 n~+l · · · n:n. Repeat the argument on this relation with n2 • 

After n steps, the left side becomes 1, the right side a product of a certain 

number of n' (the excess of m over n). This would force n :::; m since the 

n' are not units. Similarly, m :::; n, so that n = m. In the process we have 

also showed that every ni has some ni as an associate and conversely. 

Combining Lemma 3.7.4 and Theorem 3.7.2 we have that every nonzero 

element in a Euclidean ring R can be uniquely written (up to associates) as a product 

of prime elements or is a unit in R. 

We finish the section by determining all the maximal ideals in a Euclidean 

ring. 
In Theorem 3.7.1 we proved that any ideal A in the Euclidean ring R is of 

the form A = (a0 ) where (a0 ) = {xa0 I x E R}. We now ask: What con­

ditions imposed on a0 insure that A is a maximal ideal of R? For this 

question we have a simple, precise answer, namely 

LEMMA 3.7.7 The ideal A = (a0 ) is a maximal ideal of the Euclidean ring 

R if and only if a0 is a prime element of R. 

Proof. We first prove that if a0 is not a prime element, then A = (a0 ) 

is not a maximal ideal. For, suppose that a0 = be where b, c E R and 

neither b nor cis a unit. Let B = (b); then certainly a0 E B so that A c B. 

We claim that A =P Band that B =P R. 
If B = R then 1 E B so that 1 = xb for some x E R, forcing b to be a 

unit in R, which it is not. On the other hand, if A = B then b E B = A 

whence b = xa0 for some x E R. Combined with a0 = be this results in 

a0 = xca0 , in consequence of which xc = 1. But this forces c to be a unit 

in R, again contradicting our assumption. Therefore B is neither A nor R 

and since A c B, A cannot be a maximal ideal of R. 

Conversely, suppose that a0 is a prime element of R and that U is an 

ideal of R such that A= (a0 ) c U cR. By Theorem 3.7.1, U.= (u0 )· 

Since a0 E A c U = (u0), a0 = xu0 for some x E R. But a0 is a prime 

element of R, from which it follows that either x or u0 is a unit in R. If Uo 
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is a unit in R then U = R (see Problem 5). If, on the other hand, x is a 
unit in R, then x- 1 E R and the relation a0 = xu0 becomes u0 = x- 1a0 E A 
since A is an ideal of R. This implies that U c A; together with A c U 
we conclude that U = A. Therefore there is no ideal of R which fits 
strictly between A and R. This means that A is a maximal ideal of R. 

Problems 

I. In a commutative ring with unit element prove that the relation a is 
an associate of b is an equivalence relation. 

2. In a Euclidean ring prove that any two greatest common divisors of 
a and b are as so cia tes. 

3. Prove that a necessary and sufficient condition that the element a m 
the Euclidean ring be a unit is that d(a) = d(l). 

4. Prove that in a Euclidean ring (a, b) can be found as follows: 

b = qoa + r1, where d(r1) < d(a) 

a q1r1 + r2, where d (r2) < d (r1) 

r1 q2r2 + r3, where d(r3) < d(r2) 

rn-1 qnrn 

and rn (a, b). 

5. Prove that if an ideal U of a ring R contains a unit of R, then U = R. 

6. Prove that the units in a commutative ring with a unit element form 
an abelian group. 

7. Given two elements a, b in the Euclidean ring R their least common 
multiple c E R is an element in R such that a I c and b I c and such that 
whenever a I x and b I x for x E R then c I x. Prove that any two elements 
in the Euclidean ring R have a least common multiple in R. 

8. In Problem 7, if the least common multiple of a and b is denoted by 
[a, b], prove that [a, b] = abf(a, b). 

3.8 A Particular Euclidean Ring 

An abstraction in mathematics gains in substance and importance when, 
particularized to a specific example, it sheds new light on this example. 
We are about to particularize the notion of a Euclidean ring to a concrete 

· ring, the ring of Gaussian integers. Applying the general results obtained 
about Euclidean rings to the Gaussian integers we shall obtain a highly 
nontrivial theorem about prime numbers due to Fermat. 
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Let 1[i] denote the set of all complex numbers of the form a + hi where 
a and h are integers. Under the usual addition and multiplication of com­
plex numbers 1[i] forms an integral domain called the domain of Gaussian 
integers. 

Our first objective is to exhibit 1[i] as a Euclidean ring. In order to do 
this we must first introduce a function d (x) defined for every nonzero 
element in 1[i] which satisfies 

1. d ( x) is a nonnegative integer for every x =/= 0 E 1 [ i]. 
2. d(x) :::;; d(xy) for every y =/= 0 in 1[i]. 
3. Given u, v E 1[i] there exist t, r E 1[i] such that v = tu + r where 

r = 0 or d(r) < d(u). 

Our candidate for this function dis the following: if x =a+ hiE 1 [i], 
then d(x) = a2 + h2

. The d(x) so defined certainly satisfies property 1; 
in fact, if x =f. 0 E 1[i] then d (x) ~ 1. As is well known, for any two com­
plex numbers (not necessarily in 1[i]) x, y, d (xy) = d (x)d (y); thus if x 
andy are in addition in 1[i] andy =f. 0, then since d(y) ~ 1, d(x) = 
d (x) 1 :::;; d (x)d (y) = d (xy), showing that condition 2 is satisfied. All our 
effort now will be to show that condition 3 also holds for this function din 
j[i]. This is done in the proof of 

THEOREM 3.8.1 1[i] is a Euclidean ring. 

Proof. As was remarked in the discussion above, to prove Theorem 3.8.1 
we merely must show that, given x,y E 1[i] there exists t, r E 1[i] such 
thaty = tx + r where r = 0 or d(r) < d(x). 

We first establish this for a very special case, namely, where y is arbitrary 
in 1[i] but where x is an (ordinary) positive integer n. Suppose that 
y = a + hi; by the division algorithm for the ring of integers we can find 
integers u, v such that a = un + u1 and h = vn + v1 where u1 and v1 are 
integers satisfying lu1 1:::;; tn and lv1 1:::;; tn. Let t = u + vi and r = u1 + v1i; 
then y = a + hi = un + u1 + (vn + v1)i = (u + vi)n + u1 + v1i = 
tn + r. Sinced(r) = d(u1 + v1i) = u1

2 + v1
2

:::;; n2 /4 + n2 f4 < n2 = d(n), 
we see that in this special case we have shown that y = tn + r with r = 0 
or d ( r) < d ( n) . 

We now go to the general case; let x =1= 0 andy be arbitrary elements 
in 1[i]. Thus xx is a positive integer n where xis the complex conjugate of 
x. Applying the result of the paragraph above to the elements yx and n we 
see that there are elements t, r E 1[i] such that yx = tn + r with r = 0 
or d(r) < d(n). Putting into this relation n = xx we obtain d(yx- txx) < 
d(n) = d(xx); applying to this the fact that d(yx- txx) = d(y- tx)d(x) 
and d(xx) = d(x)d(x) we obtain that d(y - tx)d(x) < d(x)d(x). Since 
x =/= 0, d(x) is a positive integer, so this inequality simplifies to d(y- tx) <. 
d(x). We represent y = tx + r0 , where r0 = y - tx; thus t and r0 are in 
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and as we saw above, r0 = 0 or d(r0 ) = d(y - tx) < d(x). This 
the theorem. 

Since J[i] has been proved to be a Euclidean ring, we are free to use the 
u; .. ·.-"'"'~44~~ established about this class of rings in the previous section to the 
lf!];!;uc:u<Iea.n ring we have at hand, J[i]. 

3.8.1 Let p be a prime integer and suppose that for some integer c 
ll;r-etal~zvety prime to p we can find integers x andy such that x 2 + y 2 = cp. Then 

can be written as the sum of squares of two integers, that is, there exist integers 
and b such thatp = a2 + b2

• 

Proof. The ring of integers is a subring of J[i]. Suppose that the integer 
pis also a prime element of j[i]. Since cp = x 2 + y 2 = (x + yi)(x - yi), 
by Lemma 3. 7.6, pI (x + yi) or pI (x - yi) in J[i]. But if pI (x + yi) then 
x + yi = p(u + vi) which would say that x = pu and y = pv so that p 
also would divide x- yi. But then p 2 I (x + yi) (x - yi) = cp from which we 
would conclude that p I c contrary to assumption. Similarly if p I (x - yi). 

p is not a prime element in J[i] ! In consequence of this, 

p = (a + hi) (g + di) 

a + hi and g + di are in j[i] and where neither a + hi nor g + di 
is a unit in J[i]. But this means that neither a2 + b2 = 1 nor g2 + d2 = 1. 
(See Problem 2.) From p = (a+ bi)(g + di) it follows easily that p = 
(a - hi) (g - di). Thus 

p 2 = (a+ bi)(g + di)(a - hi) (g- di) = (a 2 + b2 )(g2 + d2
). 

Therefore (a 2 + b2
) I p 2 so a2 + b2 = 1, p or p 2

; a2 + b2 =I= 1 since 
a + bi is not a unit, in J[i]; a2 + b2 =1= p 2

, otherwise g 2 + d2 = 1, con­
trary to the fact that g + di is not a unit in J[i]. Thus the only feasibility 
left is that a2 + b2 = p and the lemma is thereby established. 

The odd prime numbers divide into two classes, those which have a 
remainder ,of 1 on division by 4 and those which have a remainder of 3 on 
division by 4. We aim to show that every prime number of the first kind 
can be written as the sum of two squares, whereas no prime in the second 
class can be so represented. 

LEMMA 3.8.2 If p is a prime number of the form 4n + 1, then we can solve 
the congruence x2 = - 1 mod p. 

Proof. Let x = 1 · 2 · 3 · · · (p - 1 )/2 . Since p - 1 = 4n, in this prod­
· Uct for x there are an even number of terms, in consequence of which 

X= (-J)(-2){-3) •• • ( -( p;J )} 
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Butp - k = -k modp, so that 

x
2 ~ (1·2···P; ')<-1)(-2)···( -~; ')) 

- 1·2···p- 1 P + 1 ···(p- 1) 
2 2 

_ (p - 1) ! = - 1 mod p. 

We are using here Wilson's theorem, proved earlier, namely that if p is 
a prime number (p - 1)! = -1 (p). 

To illustrate this result, if p = 13, 

x = 1 · 2 · 3 · 4 · 5 · 6 = 720 = 5 mod 13 and 5 2 = -1 mod 13. 

THEOREM 3.8.2 (FERMAT) If p is a prime number of the form 4n + 1, 
then p = a2 + b2 for some integers a, b. 

Proof. By Lemma 3.8.2 there exists an x such that x 2 = -1 mod p. 
The x can be chosen so that 0 ~ x ~ p - 1 since we only need to use the 
remainder of x on division by p. We can restrict the size of x even further, 
namely to satisfy lxl ~ pf2. For if x > pf2, then y = p - x satisfies 
y 2 = -1 mod p but I Yl ~ pf2. Thus we may assume that we have an 
integer x such that lxl ~ pf2 and x 2 + 1 is a multiple of p, say cp. Now 
cp = x 2 + 1 ~ p 2 f4 + 1 < p 2

, hence c < p and so p ,{'c. Invoking 
Lemma 3.8.1 we obtain that p = a2 + b2 for some integers a and b, 
proving the theorem. 

Problems 

1. Find all the units in j[i]. 

2. If a + hi is not a unit of j[i] prove that a2 + b2 > 1. 

3. Find the greatest common divisor in j[i] of 
(a) 3 + 4i and 4 - 3i. (b) 11 + 7i and 18 - i. 

4. Prove that if p is a prime number of the form 4n + 3, then there is 
no x such that x 2 = - 1 mod p. 

5. Prove that no prime of the form 4n + 3 can be written as a2 + b2 

where a and bare integers. 

6. Prove that there is an infinite number of primes of the form 4n + 3. 

*7. Prove there exists an infinite number of primes of the form 4n + 1. 

*8. Determine all the prime elements in j[i]. 

*9. Determine all positive integers which can be written as a sum of two 
squares (of integers). 


