12

Sequencing Problem

"An order is to be observed in all things"

12:1. INTRODUCTION

The selection of an appropriate *order* for a series of jobs to be done on a finite number of service facilities, in some pre-assigned order, is called sequencing. A practical situation may correspond to an industry producing a number of products, each of which is to be processed through different machines, of course, finite in number.

12:2. PROBLEM OF SEQUENCING

Consider a problem of machine operator who has to perform three operations, namely (i) turning, (ii) threading, and (iii) knurling on a finite number of different jobs. Let there be six jobs and the time required to perform these operations (in minutes) for each job is known. Also it is given that each job first goes for turning, then for threading, and lastly for knurling. The problem of the machine operator is to decide which job should be processed first, which to process next, and so on, *i.e.*, the order (sequence) of the jobs for the above-mentioned operations in order to minimize the total time required to turn out all the jobs. This is an example of six-job and three-machine sequencing problem. We now consider the general case.

The general sequencing problem may be defined as : Let there be n jobs to be performed one at a time on each of m machines. The sequence (order) of the machines in which each job should be performed is given. The actual or expected time required by the jobs on each of the machines is also given. The general sequencing problem, therefore, is to find the sequence out of $(n !)^m$ possible sequences which minimize the total elapsed time between the start of the job in the first machine and the completion of the last job on the last machine.

Given below are the assumptions underlying a sequencing problem :

1. Each job, once started on a machine, is to be performed up to completion on that machine.

2. The processing time on each machine is known. Such a time is independent of the order of the jobs in which they are to be processed.

3. The time taken by each job in changing over from one machine to another is negligible.

4. A job starts on the machines as soon as the job and the machine both are idle and job is next to the machine and the machine is also next to the job.

5. No machine may process more than one job simultaneously.

6. The order of completion of job has no significance, *i.e.*, no job is to be given priority. The order of completion of jobs is independent of sequence of jobs.

12:3. BASIC TERMS USED IN SEQUENCING

1. Number of machines : It refers to the number of service facilities through which a job must Some of the basic terms in sequencing are :

2. Processing order : It refers to the order (sequence) in which given machines are required for pass before it is assumed to be completed.

3. Processing time : It indicates the time required by a job on each machine. completing the job.

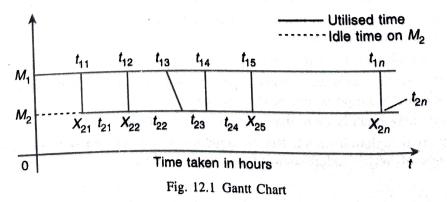
4. Total elapsed time : It is the time interval between starting the first job and completing the last job including the idle time (if any) in a particular order by the given set of machines. 5. Idle time on a machine : It is the time for which a machine does not have a job to process,

i.e., idle time from the end of job (i-1) to the start of job *i*.

6. No passing rule : It refers to the rule of maintaining the order in which jobs are to be processed on given machines. For example, if n jobs are to be processed through three machines M_{1} , M_2 and M_3 in the order M_1 , M_2 , and M_3 , then this rule will mean that each job will go to machine

 M_1 first, then to M_2 and lastly to M_3 .

12:4. PROCESSING n JOBS THROUGH TWO MACHINES


Let there be n jobs, each of which is to be processed through two machines, say M_1 and M_2 in the order M_1M_2 . That is, each job has to pass through the same sequence of operations. In other words, a job is assigned on machine M_1 first and after it has been completely processed on machine M_1 , it is assigned to machine M_2 . If the machine M_2 is not free at the moment for processing the same job, then the job has to wait in a waiting line for its turn on machine M_2 , *i.e.*, passing is not allowed. Let t_{ij} (i = 1, 2; j = 1, 2, ..., n) be the time required for processing *i*th job on the *j*th machine.

Since passing is not allowed, therefore machine M_1 will remain busy in processing all the *n* jobs one-by-one while machine M_2 may remain idle after completion of one job and before starting of another job. Thus the objective is to minimize the idle time of the second machine. Let X_{2j} be the time for which machine M_2 remains idle after finishing (j-1)th job and before starting processing the jth job (j = 1, 2, ..., n). Clearly, the total elapsed time T is given by

$$T = \sum_{j=1}^{n} t_{2j} + \sum_{j=1}^{n} X_{2j}$$

where some of the X_{2j} 's may be zeros.

The problem now is to minimize T. However, since $\sum t_{2j}$ is the total time for which machine M_2 has to work and is thus fixed, it does not form a part of the optimization problem. Thus, the problem reduces to that of minimizing $\sum X_{2j}$. A very convenient procedure for obtaining a sequence of performing jobs to minimize $\sum X_{2j}$ is well illustrated by the following Gantt Chart :

328

From the chart, it is apparent that

$$X_{21} = t_{11}$$

$$X_{22} = \begin{cases} t_{11} + t_{12} - X_{21} - t_{21} & \text{if } t_{11} + t_{12} > X_{21} + t_{21} \\ 0 & \text{otherwise} \end{cases}$$

The expression for X_{22} may be rewritten as

 $X_{22} = \text{Max.} \{t_{11} + t_{12} - X_{21} - t_{21}, 0\}$

Thus

$$X_{21} + X_{22} = \text{Max.} \{t_{11} + t_{12} - t_{21}, t_{11}\}, \text{ since } X_{21} = t_{11}$$

Similarly

$$X_{23} = \text{Max.} \{t_{11} + t_{12} + t_{13} - t_{21} - t_{22} - X_{21} - X_{22}, 0\}$$

This gives

$$X_{21} + X_{22} + X_{23} = \text{Max.} \left\{ \left(\begin{array}{c} \frac{3}{\sum} t_{1j} - \frac{2}{j=1} t_{2j} \\ j=1 \end{array} \right), \begin{array}{c} \frac{2}{\sum} X_{2j} \\ \frac{3}{j=1} t_{1j} - \frac{2}{j=1} t_{2j} \\ \frac{3}{j=1} t_{1j} - \frac{2}{j=1} t_{2j} \\ \frac{2}{j=1} t_{1j} - t_{2j} \\ \frac{2}{j=1} t_{1j} - t_{2j} \\ \frac{2}{j=1} t_{1j} \\ \frac{2}{j=1} t_{2j} \\ \frac{2}{j=1} t_$$

In general, we have

$$\sum_{j=1}^{n} X_{2j} = \text{Max.} \left\{ \left(\sum_{j=1}^{n-1} t_{1j} - \sum_{j=1}^{n-1} t_{2j} \right), \left(\sum_{j=1}^{n-1} t_{1j} - \sum_{j=1}^{n-2} t_{2j} \right), \dots, t_{11} \right\}$$
$$= \underset{1 \le u \le n}{\text{Max.}} \left\{ \sum_{j=1}^{n} t_{1j} - \sum_{j=1}^{n-1} t_{2j} \right\}.$$

Now, if we denote, $\sum_{j=1}^{n} X_{2j}$ by $D_n(S)$, then the problem becomes that of finding the sequence $\langle S^* \rangle$ for processing the jobs 1, 2, ..., *n* so as to have the inequality $D_n(S^*) \leq D_n(S_0)$ for any sequence $\langle S_0 \rangle$ other than $\langle S^* \rangle$. In other words, one has to determine an optimal sequence so as to minimize $D_n(S)$ applying the above rule. This can be achieved iteratively by successively interchanging the consecutive jobs. Each such interchange of jobs gives a value of $D_n(S)$ smaller than or equal to its value before the change.

Optimum Sequence Algorithm

The iterative procedure for determining the optimum sequence for n jobs on 2 machines can be summarized as follows:

Step 1 : List the jobs along with their processing times in a table as shown below :

cp I ; List in j				1	L.		J.,
Job number		:	J_1	J_2	53		- 11
	M_1	:	t_{11}	12	t ₁₃	***	r_{1n}
Processing time on machine	114		to a	taa	123		t _{2n}
Tiocosting	Ma	:	421	-22	2.1		

Step 2. Examine the rows for processing times on machines M_1 and M_2 , and find the smallest processing time in each row, *i.e.*, find out min. (t_{1j}, t_{2j}) for all *j*.

Step 3. If the smallest processing time is for the first machine M_1 , then place the corresponding job in the first available position in the sequence. If it is for the second machine, then place the corresponding job in the last available position in the sequence.

Step 4. If there is a tie in selecting the minimum of all the processing times, then there may be three situations :

(a) Minimum among all processing times is same for the machine, *i.e.*, min $(t_{1j}, t_{2j}) = t_{1k} = t_{2r}$, then process the kth job first and the rth job last.

330

$$M_1$$
 only, then select

(b) If the tie for the minimum occurs among prod (c) If the tie for the minimum occurs among processing times t_{2j} on machine M_2 , then select arbitrarily the job to process first.

Step 5. Cross off the jobs already assigned and repeat steps 1 through 4, placing the remaining arbitrarily the job to process last.

jobs next to first or next to last, until all the jobs have been assigned.

Step 6. Calculate idle time for machines M_1 and M_2 :

(a) Idle time for M_1 = Total elapsed time – (time when the last job in a sequence finishes on M_1)

(b) Idle time for M_2 = Time at which the first job in a sequence finishes on M_1

+ $\sum_{j=2}^{n}$ {(time when the *j*th job in a sequence starts on M_2) - (time when the (j-1)th job in a sequence finishes on M_2)}.

Step 7. The total elapsed time to process all jobs through two machines is as under : Total elapsed time = Time when the *n*th job in a sequence finishes on machine M_2 .

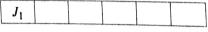
$$= \sum_{j=1}^{n} t_{2j} + \sum_{j=1}^{n} I_{2j}$$

where t_{2j} = Time required for processing *j*th job on machine M_2 .

 I_{2j} = Time for which machine M_2 remains idle after processing (j-1)th job and

before starting work on jth job.

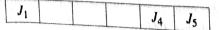
Note. The procedure outlined above for the processing of n jobs on two machines gives us the minimum total elapsed time.


SAMPLE PROBLEMS

1201. In a factory, there are six jobs to perform, each of which should go through two machines A and B, in the order A, B. The processing timings (in hours) for the jobs are given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time, T. What is the value of T?

Job	:	J_1	J_2	<i>J</i> ₃	J_4	J_5	J ₆
Machine A	:	1	3	· 8	5	6	3
Machine B	;	5	6	3	2	2	10

[Madras M.B.A. 2004]


Solution. The smallest processing time in the given problem is 1 on machine A. So, perform J_1 in the beginning as shown below :

The reduced set of processing times becomes

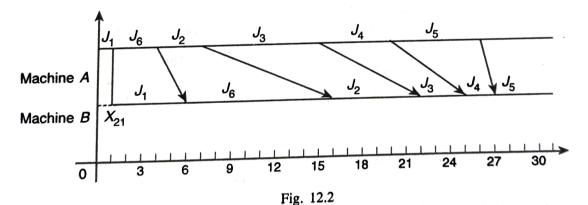
Job	:	J_2	J ₃	J_4	Js	J_6
Machine A	:	3	8	5	6	3
Machine B	:	6	3	2*	2*	10

The minimum processing time in this reduced problem is 2 which corresponds to J_4 and J_5 both on machine B. Since the corresponding processing time of J_5 on machine A is larger than the corresponding processing time of J_4 on machine A, J_5 will be processed in the last and J_4 shall be processed next to last. The updated job sequence is

The remaining processing times are :

Job	:	J_2	J ₃	J_6
Machine A	:	3*	8	3*
Machine B	:	6	3*	10

Now, there is a tie among 3 jobs for the smallest processing time in this reduced problem. These correspond to J_2 and J_6 on machine A, and to J_3 on machine B. As the corresponding processing time of J_6 on machine B is larger than the corresponding processing time of J_2 on machine B, J_6 will be processed next to J_1 . Now step 4(a) applies and J_2 should be placed next. The updated job sequence is


J_1	J_6	J_2	J_3	J_4	J_5	

This sequence is the optimum one. The total elapsed time is calculated below :

	Machine A		Mach	Idle time on B	
Job	In	Out	In	Out	
1.	0	1	1	6	1
	1	4	6	16	
J6 1.	4	7	16	22	
J ₂	7	15	22	25	
J ₃	15	20	25	27	-
J_4	20	26	27	29	

From the above information, we get T = 29 hours.

Idle time of machine A is (29 - 26) = 3 hours and that for machine B is one hour. The Gantt chart for the above problem can be illustrated as below :

1202. A book binder has one printing press, one binding machine, and the manuscripts of a number of different books. The time required to perform the printing and binding operations for each book is shown below. Determine the order in which books should be processed, in order to minimize the total time required to turn out all the books :

		1	2	3	4	5	0
Book	:	1	100	50	20	90	100
Printing time (hrs.)	:	30	120	50	20	20	10
		80	100	90	60	30	10
Binding time (hrs.)		80				(Paniab	B.Com. 2006]

Solution. Here, the books will first go to the printing press and then on the binding machine. If P_i (i = 1, 2, ..., 6) denotes the time in hours on printing press and B_i (i = 1, 2, ..., 6) the binding time for books, then since min. $\{P_i, B_i\} = 10$ corresponding to B_6 , book 6 will be processed in the last. The problem then reduces to the following five and two machines :

OPERATIONS RESEARCH

			4	5
332		3	20*	90
,	2	50		30
Book : 1	120		50	
P_i : 30	100	90	will be proc	essed just in the
B 80	100	P. Therefore,	book 4 will a l	
Book : 1 P_i : 30 B_i : 80 Now, Min. $\{P_i, B_i\} = 20$ which beginning. The entries are shown	ch corresponds to	4. helow		
Now, Min. $\{r_i, b_i\} = 20$ m	in the sequence c	cells as below	-1	
Now, Min. $\{P_i, B_i\} = 20$ which beginning. The entries are shown		6		
	4		two mac	hines with their
		left with 4 b	ooks and two mus	
After assigning books 4 and	6, we are now	lett with		-
After assigning books			3	5
processing times as follows :	2		50	90
Book : I	120			30*
P_i : 30*			90	
B. 80	100	anda to	P_{1} and B_{5} , <i>i.e.</i> , the	re is a ne for the
D_i	B is 30 which of	corresponds to	the last vielding	us the sequence.
P_i : 30^* B_i : 80 Now, the minimum of P_i and minima. So, we place book 1 new	the the first and	book 5 next t	o the last, yielding	•
minima. So, we place book I ney	It to the mat and		6	
	4 1	5	0	
		himon i	with their respective	e processing times
We are now left with the pro	blem of 2 jobs ar	nd 2 machines	with their seal	
We are now left with the pro			2	
as follows :			5	
Book :	2		50*	
P . :	120		90	
<i>B</i> . :	100		na place book 3 in	the third cell and
B_i Here, since smallest printing	time is 50 hour	s for book 3,	we place book 5 h	
Here, since smallest printing	th cell and get the	he following o	ptimal sequence :	

the remaining book 2 in the fourth cell and get the following optimal sequence :

	2	2	5	6
4	5	2	5	U

The minimum elapsed time from the start of the first book to the completion of the last book corresponding the optimal sequence is computed as shown in the following table :

csponding i		machine	Binding	Idle time of binding machine		
Book	Time in	Time out	Time in	Time out	binding machine	
	0	20	20	80	20	
4	20	50	80	160	0	
2	50	100	160	250	0	
2	100	220	250	350	0	
5	220	310	350	380	0	
6	310	420	420	430	40	

From the above table it is clear that minimum elapsed time is 430 hours. Idle time for printing machine is 10 hours (from 420 hours to 430 hours) and for binding machine is 20 + 40 = 60 hours.

Remarks 1. It may be noted that the total elapsed time is equal to the sum of the idle time of binding machine and the total processing time on binding machine.

2. The total elapsed time can also be calculated by using Gnatt chart.

PROBLEMS

1203. We have five jobs, each of which must go through the two machines A and B in the order A^{B} . Processing times in hours are given in the table below :

Job (i)	:	1	2		3 1 1	A	5
Machine $A(A_i)$:	5	1		9	3	10
Machine $B(B_i)$		2	6		7	80.000	4
Determine a sequ		or the five jobs	that will min	imize the ela	apsed time.	(Panjab	M.C.A. 2007]

1204. A ready-made garment company has to process 7 items through two stages of pr	roduction, viz., cutting
d sewing. The time taken by each of these items at the different stages are given as :	

and sewing. The	e time	taken by	each of these ite	ms at the dif	fferent stages	are given a	s :	
Item	:	1	2	3	4	5	6	7
Cutting	;	4	8	3	5	5	12	7
Sewing	•	3	5	6	4	8	5	8
Find an or	der in	which the	se seven items a	re to be proc	essed so as to	minimize	the total proces [Delhi	ssing time. M.Com. 2010)
1205 A co	mnan	v has six i	obs on hand cod	ed 'A' to 'F'	All the jobs	have to zo	through two n	nachines 'M I'
1205. A U	time	required fo	or each job on each	ach machine	in hours is a	viven below		•
	unic	icquired it		ien maenne,	11, 110413, 13 8	siven selev		F
		Α	В	C	D		E	
МΙ		3	12	18	9		15	0
MI		9	18	24	24		3	15
	vence	table sche	duling the six jo	bs on the tw	o machines.		[Punjal	n M.B.A. 2005
	- labo	om to he	processed on t	wo machine	e A and R in	the order	$A \rightarrow B$. Each	machine can
1206. Seve	n joos	are to be	processed on					
ocess only on	e job a	at a time. '	The processing t	imes (in hou	rs) are as foll	ows :		
Jəb		1	2	3	4	5	6	7
	•	10	12	13	7	14	5	16
Machine A	:	10	12	15	,			

Suggest optin	num	sequence of	processing in	o joos and a	1			1.
Suggest optin	~	sequence of	processing th	e jobs and th	e total elapse	ed time.	[De	lhi M.Com. 2006]
Machine B	:	15	11	8	9	0	/	10
Machine A	:	10	12	15	,	4	7	16

1207. In the machine shop, 8 different products are being manufactured each requiring time on two machines A and B as given below :

Product	Time (in min.) on machine A	Time (in min.) on machine B
110000	30	20
1	45	30
11	15	50
III	20	35
IV		36
V	80	40
VI	120	50
VII	65	20
VIII	10	

Decide the optimum sequence of processing of different products in order to minimize the total manufacturing time for all the products. Name and discuss the scheduling model used. [A.I.M.A. P.G. Dip. in Management (June) 1996]

1208. The maintenance crew of a company is divided in two parts C_1 and C_2 which cares for the maintenance of the seven machines $M_1, M_2, ..., M_7$ in the factory. Crew C_1 is responsible for replacement of the parts which are worn out while crew C_2 oils and resets the machines back for operation. The time required by crews C_1 and C_2 on different machines is given below :

	Maintenance	time (in hrs.)
Machines	Crew C ₁	Crew C ₂
	24	10
M _i .	14	20
M ₂	22	8
M ₃	20	18
	30	10
M ₅		6
M ₆	28	4
Mar have alles internal to Martin	16	

In what order the machines should be handled by crew C_1 and C_2 so that the total time taken is minimized. Also determine what shall this time be?

6949

12:5. PROCESSING n JOBS THROUGH k MACHINES

There is no general method available by which we can obtain optimal sequence(s) in problems involving processing of n jobs on k machines. They can be handled only by enumeration, which is a very lengthy and time-consuming exercise because a total of $(n !)^k$ different sequences would require consideration in such a case. However, we do have a method applicable under the condition that no passing of jobs is permissible and if either or both of the conditions stipulated below is/are satisfied. Let there be n jobs, each of which is to be processed through k machines, say $M_1, M_2, ..., M_k$ in

the order $M_1, M_2, ..., M_k$. The list of jobs with their processing times is :

nuci m1, m2,, i	-K	U		2	3		n
	Job Number	;	1	2	t ₁₃		t_{1n}
	M_1	;	<i>t</i> ₁₁	t ₁₂ t ₂₂	t ₂₃		t_{2n}
Processing time	<i>M</i> ₂	:	t ₂₁	t ₃₂	t ₃₃	••••	t_{3n}
on machine	<i>M</i> ₃	:	^t 31	: 32			:
	:		:	t _{k2}	t_{k3}		t _{kn}
	M_k	•	r_{k1}			the following	ng condition

An optimum solution to this problem can be obtained, if either or both of the following conditions hold : for i = 2, 3, ..., k-1

(<i>a</i>)	min. $t_{1j} \geq \max t_{ij}$,	
or (b)	min. $t_{kj} \geq \max. t_{ij}$,	for $i = 2, 3,, k-1$.

Optimal Sequence Algorithm

and

The iterative procedure for determining the optimal sequence for 'n' jobs on 'k' machines can be summarized as follows :

Step 1. Find min. t_{1i} , min. t_{ki} and maximum of each of

		$t_{2j}, t_{3j}, \ldots, t_{k-1,j}$	for all $j = 1, 2,, n$.
	Step 2. Check the following :		
	<i>(a)</i>	$\min t_{1j} \geq \max t_{ij},$	for $i = 2, 3,, k-1$
or	(b)	$\min t_{kj} \geq \max t_{ij},$	for $i = 2, 3,, k-1$.

Step 3. If the inequalities of step 2 are not satisfied, method fails. Otherwise go to next step.

Step 4. Convert the k machine problem into a two-machine problem by introducing two fictitious machines G and H, such that

$$t_{Gj} = t_{1j} + t_{2j} + \dots + t_{k-1,j}$$

$$t_{Hi} = t_{2i} + t_{3i} + \dots + t_{ki}$$

Step 5. Determine the optimal sequence for the 'n' jobs and '2' machines equivalent sequencing problem with the prescribed order GH in the same way as discussed earlier. The resulting sequence shall be optimum for the given problem.

Remarks 1. In addition to conditions given in Step 4, if

$$2j + t_{3j} + \dots + t_{k-1,j} = c,$$

is a fixed positive constant for all i = 1, 2, ..., n, then determine the optimal sequence for n jobs and two machines M_1 and M_k in the order M_1 , M_k by using the optimal sequence algorithm.

2. In addition to the conditions given in Step 4, if

$$t_{1j} = t_{kj}$$
 and $t_{Ci} = t_{1i}$

for j = 1, 2, ..., n,

then there will be n! optimal sequences, each of which will yield minimum total elapsed time.

3. The above-mentioned procedure of solving the sequencing problems is not a general procedure. The method is applicable only to those sequencing problems in which the minimum cost (time) of

processing the jobs through first and/or last machine is greater than or equal to the cost of processing the jobs through mediocre machines. There are many industrial operations, in which the machines are set in some order which does not obey this rule.

SAMPLE PROBLEMS

1209. Determine the optimal sequence of jobs that minimizes the total elapsed time based on the following information processing time on machines is given in hours and passing is not allowed :

Machine M ₃		0		5	IM	adras B.E. 1	999; Delhi N	1.Com. 2006]
		6	7	5	11	5	0	12
Machine M ₂	:	4	3	2	3	1		12
	•		2	2	5	1	4	3
Machine M ₁	•	3	8	7	4	9	0	
Job	:	Α	В	C	D	2	8	7
0000			D	C	D	E	F	G

Solution. We are given 7 jobs each of which is to be processed through 3 machines M_1 , M_2 and M_3 in the order M_1 M_2 M_3 .

Therefore, for n = 7 and k = 3; we observe that min. $t_{1j} = 3$, min. $t_{3j} = 5$ and max. $t_{2j} = 5$. Since min. $t_{3j} \ge \max t_{2j}$ is satisfied, the problem can be converted into that of 7 jobs and 2 machines.

Thus, if G and H are the two machines, such that

$$G_i = t_{1j} + t_{2j}$$

 $H_i = t_{2j} + t_{3j}$, for $j = 1, 2, ..., 7$

then the problem can be rewritten as the following 7 jobs and 2 machines problem : G Ε С 9 + 1 = 10 8 + 4 = 12 7 + 3 = 10B A Job 8 + 3 = 11 7 + 2 = 9 4 + 5 = 94 + 6 = 10 3 + 12 = 154 + 6 = 10 3 + 7 = 10 2 + 5 = 7 5 + 11 = 16 1 + 5 = 63 + 4 = 7G Using the optimal sequence algorithm, the following optimal sequence can easily be obtained :

0		A	DGB	F C I	E		
For total elaps	ed time, w	ve have	G	Job B	F	с	E
∫ In :	A 0	D 3	7	14	22 30	30 37	37 46
<i>M</i> ₁ Out :	3	7 7	14 14	22 22	30	37 39	46 47
M_2 In : Out :	3 7	12 13	17 24	25 36	34 43	49	54 59
M_3 In :	13	24	36	43	49	54 Late sime is 1	

This table indicates that the minimum total elapsed times is 59 hours. Idle time is 13 hours for M_1 , 37 hours for M_2 and 7 hours for M_3 .

1210. We have 4 jobs each of which has to go through the machines M_j (j = 1, 2, ..., 6) in the M₆. Processing time (in hours) is given below :

order M ₁ , M ₂ , .	, M ₆ . Processing	time (in ho	Mac	hines		
		na she she		MA	Ms	M ₆
	M_1	M_2	<i>M</i> ₃	2	10	25
Job A :	- 18	8	7	6	8	19
Job B :	17	6	9	5	7	15
Job C :	11	5	2	4	8	12
	20	4	5	1.1	1 time [Mappi	# M.Com. 19

Determine a sequence of these four jobs that minimizes the total elapsed time. [Meerut M.Com. 1998]

OPERATIONS RESEARCH

Solution. Here min. $t_{1j} = 11$ and min. $t_{6j} = 12$; max. of t_{2j} , t_{3j} , t_{4j} and t_{5j} are 8, 9, 6 and 10 pertivolution. Since, the conditions min $t_{2j} \ge \max t_{ij}$ and min $t_{6j} \ge \max t_{ij}$, for (j = 1, 2, 3, 4, 5) are sfind the characteristic for th respectively.

satisfied, the given problem can be written as : С 39 B 36 A

Job 46 31 40 45 Machine C 48 52 Machine H : where $G_i = \sum_{j=1}^{5} t_{ij}$ and $H_i = \sum_{j=2}^{6} t_{ij}$

Using the optimal sequence algorithm, the following optimal sequence is easily obtained :

C	Α	B	D
	and the second se		

The total elapsed time is given in the following table :

The total	ciupoed inter	<u> </u>	Macl	hines		
Job			М	MA	M ₅	<i>M</i> ₆
300	M_1	<u>M₂</u>	<i>M</i> ₃	24-29	29-36	36-51
C	0-11	11-16	16-24		46-56	56-81
C ^	11-29	29-37	37-44	44-46	67-75	81-100
A	29-46	46-52	52-61	61-67	77-85	100-112
B	46-66	66-70	70-73	73-77	11-05	
D	+0-00					

This table shows that the minimum total elapsed time is 112 hours.

1211. Solve the following sequencing problem when passing out is not allowed :

12111 00000 5		Machine (Process	ing time in hours)	
ltem		B	С	D
	A	5	4	15
Ι	15	2	10	12
11	12	3	5	16
111	17	3	4	17
IV	17			

Solution. Here, min. $A_i = 12$, and max. $B_i = 5$ and max. $C_i = 10$.

Since min $A_i \ge \max B_i$ and max. C_i , the given problem can be rewritten as :

14		1	11	111	IV
Item Machine G		24	24	24	24
Martine H	:	24	24	24	24

where $G_i = A_i + B_i + C_i$ and $H_i = B_i + C_i + D_i$.

Since $G_i = H_i$ and $A_i = D_i$ are satisfied, therefore using the optimal sequence algorithm, we get 41 (= 24) sequence, each giving us an optimal sequence :

1 11 111 IV,	1 11 IV 111,	1 III II IV,	I III IV II,	1 IV 11 111,	etc.
Each of the abov	e optimal sequ	ence will yield u	us the same total	elapsed time.	For the elapsed
time, we have					n)

	Item	I	11	\mathbf{m}	IV
	In	0	15	27	43
Machine A	Out	15	27	43	60
	In	15	27	43	60
Machine B	Out	20	29	46	63

Machine C	Item	,				
	(-	1	11	111		IV
	_ In	20	29	46		63
	Out	24	39	51		67
	ÍIn	24	39	56		67
Machine D	Out	39	51			84
Total elapse	d time is 84 l	hours.	51	07		0.1
		Р	ROBLEMS			
1212. Given t	the following da	ata :				
1.1	: 1	2	2	1	5	6
(a) Job Machine	A : 12		9	14	7	9
Machine		6	6	14	4	4
Machine		5	6	5 4	4 2	4
	•	_	0	4	2	-
	processing jobs					
		5, 3, 6, 2, 1, 4				
(i) Determine	the total elaps	ed time for the	sequence sugges	ted.		
	en sequence opt					
			mal coquence or	nd the total elapsed	time associate	d with it
· · ·		-	-	-		
1213. We have	five jobs, each	of which must	go through macl	hines A , B and C in	the order A B	C. Processi
times (in hours) are	given in the fo	ollowing table :				
Job	: 1	2	3	4 5	6	7
Machine A (A _i)	: 7	8	11	14 21	17	8
•					4	1
Machine $B(B_i)$		3	1	2 5		
Machine $C(C_i)$: 10	9	15	13 18	11	9
					(Delhi M.E	B.A. (PT.) 200
1214 Determine	e the optimal s	equence of jobs	s that minimizes	the total elapsed t	ime based on	the following
information :	s die optimie s	oquence er jee		1		
	1	2	3	4 5	6	7
lah .		2			11	9
Job :	10		12			7
Machine A :	10	8				
Machine A : Machine B :	6	4	6	5 3	4	2
Machine A : Machine B : Machine C :	6 8	4 7	6 5	5 3 9 10	4 6	2 5
Machine A : Machine B : Machine C : Processing time of	6 8 on machines is	4 7 given in hours	6 5 and passing is 1	5 3 9 10 not allowed.	4 6 [Dell	2 5 hi M.Com.200
Machine A : Machine B : Machine C : Processing time of 1215. Find the s	6 8 on machines is sequence that 1	4 7 given in hours	6 5 and passing is 1	5 3 9 10	4 6 [Dell	2 5 hi M.Com.200
Machine A : Machine B : Machine C : Processing time of 1215. Find the s	6 8 on machines is sequence that 1	4 7 given in hours	6 5 and passing is otal time requir	5 3 9 10 not allowed. red in performing t	4 6 [Dell	2 5 hi M.Com.200
Machine A : Machine B : Machine C : Processing time of 1215. Find the spachines in the order Processing time	6 8 on machines is sequence that 1	4 7 given in hours ninimizes the t	6 5 and passing is r otal time requir	5 3 9 10 not allowed. red in performing t	4 6 [Dell he following	2 5 <i>hi M.Com.200</i> jobs on thr
Machine A : Machine B : Machine C : Processing time of 1215. Find the stachines in the order Processing time (in hours) on	6 8 on machines is sequence that 1	4 7 given in hours ninimizes the t	6 5 and passing is r otal time requir 3	5 3 9 10 not allowed. red in performing t 10b 4	4 6 [Dell he following 5	2 5 hi M.Com.200
Machine A : Machine B : Machine C : Processing time of 1215. Find the spachines in the order Processing time	6 8 on machines is sequence that 1	4 7 given in hours ninimizes the t	6 5 and passing is n otal time requir 3 7	$5 \qquad 3$ $9 \qquad 10$ not allowed. red in performing t $\frac{7}{4}$ 2	4 6 [Dell he following 5 5	2 5 <i>hi M.Com.200</i> jobs on thr <u>6</u> 1
Machine A : Machine B : Machine C : Processing time of 1215. Find the stachines in the order Processing time (in hours) on	$\frac{6}{8}$ on machines is sequence that r - ABC : 	4 7 given in hours ninimizes the t	6 5 and passing is r otal time requir 3	$5 \qquad 3$ $9 \qquad 10$ not allowed. red in performing t 10 4 2 2	4 6 [Dell he following 5 5 1	2 5 <i>hi M.Com.200</i> jobs on thr <u>6</u> 1 6
Machine A :						
Machine A : Machine B : Machine C : Processing time of 1215. Find the spachines in the order	6 8 on machines is sequence that 1	4 7 given in hours	6 5 and passing is otal time requir	5 3 9 10 not allowed. red in performing t	4 6 [Dell	2 5 hi M.Com.20
Machine A : Machine B : Machine C : Processing time of 1215. Find the spachines in the order Processing time	6 8 on machines is sequence that 1	4 7 given in hours ninimizes the t	6 5 and passing is r otal time requir	5 3 9 10 not allowed. red in performing t	4 6 [Dell he following	2 5 <i>hi M.Com.20</i> jobs on th
Machine A : Machine B : Machine C : Processing time of 1215. Find the stachines in the order Processing time (in hours) on	$\frac{6}{8}$ on machines is sequence that r - ABC : 	4 7 given in hours ninimizes the t	6 5 and passing is r otal time requir 3	5 3 9 10 not allowed. red in performing t 10b 4	4 6 [Dell he following 5	2 5 <i>hi M.Com.20</i> jobs on th
Machine A : Machine B : Machine C : Processing time of 1215. Find the s achines in the order Processing time (in hours) on Machine A	$\frac{6}{8}$ on machines is sequence that n $\frac{ABC}{1}$ 8	$\frac{4}{7}$ given in hours ninimizes the t $\frac{2}{3}$	6 5 and passing is n otal time requir 3 7	$5 \qquad 3$ $9 \qquad 10$ not allowed. red in performing t $\frac{7}{4}$ 2	4 6 [Dell he following 5 5	2 5 <i>hi M.Com.20</i> jobs on th 6 1
Machine A : Machine B : Machine C : Processing time of 1215. Find the stachines in the order Processing time (in hours) on Machine A	$\frac{6}{8}$ on machines is sequence that n $\frac{ABC}{1}$ 8	$\frac{4}{7}$ given in hours ninimizes the t $\frac{2}{3}$	6 5 and passing is n otal time requir 3 7	$5 \qquad 3$ $9 \qquad 10$ not allowed. red in performing t $\frac{7}{4}$ 2	4 6 [Dell he following 5 5	2 5 <i>hi M.Com.20</i> jobs on the 6 1

(b) Suppose that an additional operation is added to the process described in (a), viz., finishing. The time equired for this operation is given below : h

· · · · · · · · · · · · · · · · · · ·		a de setupionem de 🖡	linishing time (in	minutes)	
Book	1	2	3	4	5
Finishing time	80	100	60	70	100
What is the and an in		should be proce	acced? Find ale	a the minimum tot	al alanced time

What is the order in which the books should be processed? Find also the minimum total elapsed time.

OPERATIONS RESEARCH

338			(har	wah two stag	es of prod	
1017 A made	and composite manil	facturer has to proce	ss 7 items through	re given below	in appror	uction, viz.
1217. A readyn	hade garments manu	facturer has to proce ach of these at the dif	ferent stages a	s s	in approp	inate units
cutting and sewing.		2 3		6	7	
	Item 1 Cutting 5	7 3	4	9	5	12
Process time	Cutting 5 Serving 2		5		0	8
(a) Find an ord	er in which these ite	6 / ems are to be process	ed through the	se stages so u	,	lize the total
processing time.			and na	king, with pr	ocessing ti	me for it
(b) Suppose a 1	third stage of produc	tion is added, viz., p	ressing and par	JKING, MART P	a second d	for these
items as follows :				5	6	
ltem	1	2 3	4 13	12	10	7 11
Processing time	10	12 11	15		- •	11
(Pressing and pa	acking)	1	aced so as to t	ninimize the t	ime taken	to process in
		items are to be proce	555CU 30 US to 1			[IAS 1991]
the items through a	Il the three stages.			an when need	ing is not	
1218. Solve the	e following sequenci	ng problem, giving a	n optimal solut	ion when pass	ing is not	allowed :
			JOD			
	Α	В	С	D		E
Machine M_1	10	12	8	15		16
Machine M_2	3	2	4	1		5
Machine M_3	5	6	4	7		3
Machine M_4	14	7	12	8		10
1219 Solve th	e following sequenc	ing problem, giving a	n optimal solu	tion when pas	sing is no	t allowed :
1217: 50170 0	ie following sequene	Machine	(Processing time	in hours)		
Job	M_{1}	M ₂	(1.00020008 0000	M ₃		M_4
1	20	3		3		25
2	12	5	,	1		11
3	18	4		2		10
4	17	2		4		28
					[Mad	ras M.B.A. 1996]
1220. When p	assing is not allowe	d, solve the sequenci	ng problem giv	ving an optima	al solution	:
			es (processing tim			
Job	M_1	M_2	(r	M ₃		M ₄
Α	11	4		2		11
В	8	1		8		8
С	12	2		3		12
D	13	2		2		13

[Meerut M.Sc. (Math.) 1999]

12:6. PROCESSING 2 JOBS THROUGH k MACHINES

Let there be two jobs 1 and 2 each of which is to be processed on k machines say $M_1, M_2, ..., M_k$ in two different orders. The technological ordering of each of the two jobs through k machines is known in advance. Such ordering may not be same for both the jobs. The exact or expected processing times on all the given machines are known. Each machine can perform only one job at a time. The objective is to determine an optimal sequence of processing the jobs so as to minimize total elapsed time.

The optimal sequence in this case can be obtained by making use of graph. The solution procedure can be summarised in the following steps :

Step 1. Draw two perpendicular lines, horizontal one representing the processing time for job while job 2 remains idle, and the vertical one representing the processing time for job 2 while job remains idle.

Step 2. Mark the processing time for jobs 1 and 2 on the horizontal and vertical lines respectively according to the given order of machines.

Step 3. Construct various blocks starting from the origin (starting point) by pairing the same machines until the end point.

Step 4. Draw the line starting from origin to end point by moving horizontally, vertically and diagonally along a line which makes an angle of 45° with the horizontal line (base). The horizontal segment of this line indicates that first job is under process while second job is idle. Similarly, the vertical segment of the line indicates that the second job is under process while first job is idle. The diagonal segment of the line shows that both the jobs are under process simultaneously.

Step 5. An optimum path is one that minimizes the idle time for both the jobs. Thus, we must choose the path on which diagonal movement is maximum.

Step 6. The total elapsed time is obtained by adding the idle time for either job to the processing time for that job.

SAMPLE PROBLEM

1221. Use graphical method to minimize the time added to process the following jobs on the machines shown, i.e., for each machine find the job which should be done first. Also calculate the total time elapsed to complete both the jobs :

Job 1	Sequence	Α	В	С	D	Ε
500 I	Time	3	4	2	6	2
Job 2	Sequence	B	С	Α	D	Ε
JOU 2	Time	5	4	3	2	6

[Karnataka B.E. (Prod.) 1994; Meerut M.Sc. (Math.) 1996]

Solution. The solution procedure for solving the above problem can be summarised in the following steps.

Step 1. Draw the set of axes at right angle to each other where X-axis represents the processing time of job 1 on different machines while job 2 remains idle and Y-axis represents processing time of job 2 while job 1 remains idle.

Step 2. Mark the processing times for jobs 1 and 2 on X-axis and Y-axis respectively according to the given order of machines as shown in Fig. 12.3 :

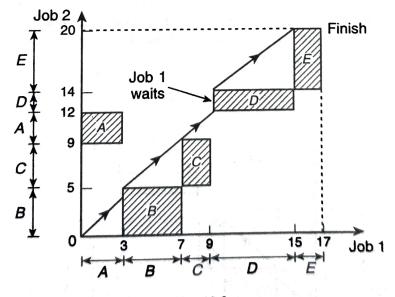


Fig. 12.3

For example, machine A takes 3 hours for job 1 and 3 hours for job 2. Construct the rectangle for machine A as shown in Fig. 12.3. Similarly construct other rectangles for machine B, C,D and E. Step 3. Construct various blocks starting from the origin by pairing the same machines until a

point marked 'finish' is obtained.

Step 4. Draw a line starting from origin to the point marked 'finish' by moving horizontally, vertically and diagonally along a line which makes an angle of 45° with the horizontal axis. Moving horizontally along this line indicates that first job is under process while second job is idle. Similarly, moving vertically along this line indicates that the second job is under process while first job is idle. The diagonal movement along this line shows that both the jobs are under process simultaneously.

Since, simultaneous processing of both the jobs on a machine is not possible, therefore diagonal movement is not allowed. In other words, diagonal movement through rectangles areas is not allowed.

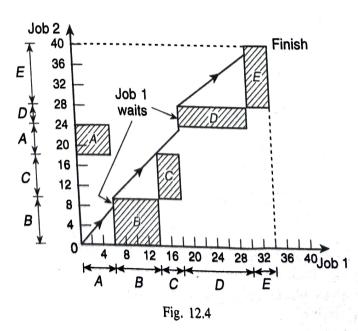
Step 5. An optimal path is one that minimizes the idle time for both the jobs. Thus, we must choose the path on which diagonal movement is maximum as shown in Fig. 12.3.

For the elapsed total time, we shall add the idle time for either of the two jobs to the processing time of that job. Now, since the idle time for the chosen path is 5 hours for job 1 and 2 hours for j_{0b} 2, the total elapsed time is obtained as follows :

Processing time of job 1 + idle time for job 1

= 17 + (2 + 3) = 22 hours.

Processing time of job 2 + idle time for job 2


= 20 + 2 = 22 hours.

1222. Using graphical method, calculate the minimum time needed to process job 1 and 2 on five machines A, B, C, D and E, i.e., for each machine find the job which should be done first. Also calculate the total time needed to complete both jobs.

					Machines		
	Sequence	:	А	В	С	D	Ε
Job 1	Sequence Time (hours)	:	6	8	4	12	4
		:	В	С	Α	D	Ε
JOD 2	{ Sequence Time (hours)	:	10	8	6	4	12

Solution. Draw two axes at right angle to each other where X-axis represents the processing time of job 1 on different machines while job 2 remains idle, and Y- axis represents the processing time of job 2 on different machines while job 1 remains idle.

Mark the processing times for both the jobs 1 and 2 on X-axis and Y-axis respectively according to the given order of machines as shown in Fig. 12.4. For example, machine A takes 6 hours for job 1 as well as for job 2. Construct the rectangle for machine A as shown Fig. 12.4. Similarly, construct other rectangles for machines B, C, D and E.

Draw a line starting from origin to the point marked 'finished' by moving horizontally, vertically and diagonally along a line which makes an angle of 45° with the horizontal axis. A horizontal move represents processing of job 1 while job 2 remains idle; a vertical move represents processing of job 2 while job 1 remains idle. The diagonal movement (*i.e.*, a 45° line) shows that both the jobs are under process simultaneously. Since simultaneous processing of both the jobs on a machine is not possible, therefore diagonal movement is not allowed.

An optimal path is one that minimizes idle time for both job 1 and 2. This means, this path should coincide with 45° line to the maximum extent. Thus, we must choose the path on which diagonal movement is maximum, as shown in Fig. 12.4. The total elapsed time is obtained by adding the idle time for either job to the processing time for that job.

The idle time for the chosen path is : Job 1 = 4 + 6 or 10 hours and Job 2 = 4 hours.

The total elapsed time is obtained as follows :

Processing time of Job 1 + Idle time of Job 1= 34 + (4 + 6) = 44 hours. Processing time of Job 2 + Idle time of Job 2

= 40 + (32 - 28) = 44 hours.

PROBLEMS

1223. A machine shop has four machines A, B, C and D. Two jobs must be processed through each of these machines. The time (in hours) taken on each of the machines and the necessary sequence of jobs through the shop are given below :

Job 1	{ Sequence	A	В	C	D
	Time	2	4	5	1
Job 2	Sequence	<i>D</i>	<i>B</i>	A	C
	Time	6	4	2	3

Use graphic method to obtain the total minimum elapsed time.

1224. Use graphic method to find the minimum elapsed total time sequence of 2 jobs and 5 machines, when we are given the following information :

U				Machines		
	(-	٨	В	С	D	E
Job 1	Sequence Time (in hours)	2	3	4	6	2
	(lime (in nouis)	2	٨	D	Ε	В
Job 2	Sequence Time (in hours)	C	5	3	2	6
300 2	[Time (in hours)	4	(Maamut)	A Sc. (Math.) 200)(): Karnataka B.	E. (Mech.) 1994]

[Meerut M.Sc. (Math.) 2000; Karnauku D.E. (Meeru) 1994]

1225. Two jobs are to be processed on four machines a, b, c and d. The technological order for these jobs on machines is as follows :

105 15 45 10110		h	С	đ
Job 1 :	a	D	0	C
Job 2 :	d	b	ŭ	
	the following table	,		

Processing	times	are	given	in	the	following	Labic .
1.0000000000000000000000000000000000000			0				

	Mach	line	
Job	b	d	
	a b	7	3
1	4 6 7	5	8
2	4		

Find the optimal sequence of jobs on each of the machines.

OPERATIONS RESEA 1226. A machine shop has six machines A, B, C, D, E and F. Two jobs must be processed through the shop are through the shop are h_{10} through the shop are the shop are throu machines. The times on machines and the necessary sequence of the jobs through the shop

					- Onop are	- Ollor
Order	1	2	3	4	5 shop are	given bein ea
Job 1	A-20	C-10	D-10	B-30	F1 A -	,
Job II	A-10	C-30	<i>B</i> -15	D-10 minimize the total	E-25 F.15	6
Determine the	ontimum	sequence for the ic	ob in order to	minimize the total	time -13	F-16
	opundin	sequence for the je		total	unie necessary	to fin: E-20
						the interior
2445						. 1

12:7. MAINTENANCE CREW SCHEDULING

The problem of scheduling job in a factory can be extended to scheduling the factory maintened to sche The problem of scheduling job in a factory can be crew that a company have a set of different maintenance. The crew team is divided into two groups and the crew team is divided into two groups. crews in such a way so as to minimize them the crew team is divided into two groups A and in its plant that need preventive maintenance. The crew team is divided into two groups A and A in its plant that need preventive maintenance. The parts according to the needs. Then crew B_{resets} First, crew A takes the machine and replaces the parts according to the needs. Then crew B_{resets} First, crew A takes the machine and replaces the parts device times of both the groups on the difference in which the maintenance in difference in which the maintenance in difference in which the maintenance in the difference in machines are known, we can determine the optimal sequence in which the maintenance jobs be d

Like for sequencing problems given earlier, the rules when the service times are given in the form may be summarised as :

- (i) Choose the smallest of all values that appear in the two rows.
- (ii) If the value is in the first row then the machine corresponding to the value shall be servi
- (iii) If it is in the second row, then that machine will be serviced by crew A in the end.
- (iv) If there is a tie in the same row, either of the machines involved is selected and assigned first, or the last, place accordingly as the tie is in the first or the second row.
- (v) After making the assignment, cross out the machine involved.
- (vi) Repeat steps (i) to (v) until all the assignments are made.

SAMPLE PROBLEM

1227. The maintenance crew of a company is divided in two groups, C_1 and C_2 , which cares the maintenance of the machines. Crew C_1 is responsible for replacement of parts which are worm while Crew C_2 oils, and resets the machines back for operation. The times (in hours) required crews C_1 and C_2 on different machines which need working

Machine :	M_1	λA	neeu p	vorking on th	hem are as i	follows :	
Crew C_1 :	8	M_2	M_3	M_{Δ}	14		M
Crew C_2 :	5	0	10	11	M ₅	M ₆	A
	5	3	7		10	14	

In what order should the machines be handled by crew C_1 and C_2 so that the total time taken imised ? minimised ?

Solution. Treating the machines as seven items and crews as the service facilities, the optime unce can easily be obtained as sequence can easily be obtained as

For the total of	elapsed tir	M_7 ne, we ha	M_4 M_5 ve	M ₃ M ₆	M_1 M_2			
Crew C ₁ Crew C ₂	In Out In Out	M ₁ 0 4 4 11	M ₄ 4 15 15 27	M ₅ 15 25 27 35	M ₃ 25 35 35 42	M ₆ 35 49 49 55	<i>M</i> ₁ 49 57 57 62	M2 57 63 63 66