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- oo, e o Integer Programming

“God made the integers, rest is the work of man”

7:1. INTRODUCTION

A linear programming problem in which all or some of the decision variables are constrained to
assume non-negative integer values is called an Integer Programming Problem. This type of
problem is of particular importance in business and industry, where quite often, the fractional
solutions are unrealistic because the units are not divisible. For example, it is absurd to speak of 2.3
men working on a project or 8.7 machines in a workshop. The integer solution to a problem can,
however, be obtained by rounding off the optimum values of the variables to the nearest integer
values. But, it is generally inaccurate to obtain an integer solution by rounding off in this manner, for
there is no guarantee that the deviation from the ‘exact’ integer solution will not be too large to retain
the feasibility.

The linear programming problem with the additional requirements that the variables can take on
only, integer values may have the following mathematical form
Maximize or Minimize z = ¢, x; + ¢,x, + ... + ¢,x, subject to the constraints :

anxy + apxy + ... + ayx, = b, i=12 ...,m
and x; 2 0, =12 ..,n
where x; are integer valued for j = 1, 2, ..., p(p < n). )

‘7—% PURE AND MIXED INTEGER PROGRAMMING PROBLEMS

An integer programming problem in which all variables are required to be integers is called a pure,
or all-integer programming problem. For example, the LPP

Minimize z = 9x; + 10x, subject to the constraints :
4x) + 3x, 24, x; <8, x, < 8;
where x; 2 0, x, 2 0 and are integers
is a pure integer linear programming problem, '

On the other hand, an integer linear programming problem in which only some of the variables
are required to be integers, is known as a mixed integer programming problem. For example, the LPP

Maximize z =.-3x; + x, + 3x; subject to the constraints : ‘
-x) + 2 +x3 54, 4 - 3x; S 2,
where x; 20, % 20, x3 20 and x; as well as xy are integers
is a mixed-integer linear programming problem. Note that x, is not required to be an integer.

_An integer programming problem in which all the variables must have integer values only zero or
Unity, is called the zero-one integer programming problem.
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7:3. GOMORY’S ALL-LP.P. METHOD

A systematic procedure for obtaining an optimum integer solun.olr; to arll _all-.mteger Programp,;
problem was first suggested by R.E. Gomory. His r'net-hod starts without taking into consideratiqy, the
integer requirements. If the solution so obtained is integral then the curren.t'solum‘)n is OPtimyp,
However if some of the basic variables are not integer valued the‘n an additional l!near CO"Straf,,'
called Gomory's constraint (fractional cut) is generated. Aft'er having geper_ategl a linear CO"Straimt
(cutting plane), it is added as the last row, of the optimum simplex ta.ble md:catfng that the Solutigy
is no longer feasible. The modified problem is then solved by using dual simplex methoq,
optimum integer solution is obtained if all the variables in the solution are integer valued, Otherwig,
another Gomory constraint is added and the procedure is repeated. The optimum integer solutjon wil
be reached eventually after necessary new constraints have been added to drive away all the Superioy
non-integer solutions.

7:4. CONSTRUCTION OF GOMORY’S CONSTRAINTS

To illustrate construction of a Gomory’s constraint, let us consider a linear programming problem for
which an optimum non-integer basic feasible solution has been attained as displayed in the simplex
table below :

¥B Xp Y1 Y2 Y3 Ya
Y2 Y10 Y Y12 Y13 Y14
y3 Y20 Y21 Y22 Y23 Y24
< Y00 Yo1 Yo2 Yo3 Yoa

Clearly, the optimum basic feasible solution is given by
Xg = [xp, x3] = [y10, ¥20]: max. z = yg.
Since xz is a non-integer solution, we assume, for the sake of exposition only, that y is
fractional.
Now, the constraint equation
Yio =YX + yiax + Yi3Xx3 + yiaxg
reduces to

D
Y10 = Y11 X + Xp + Y4 X4 (

Because x, and x, are basic variables, we must have B = I, = (y2 y3). This implies that y; = I and
yi3 = 0.

Now, since y,, 2 0, the fractional part of y,, must also be non-negative. We split over each of ther
yy in (1) into an integral part I,;, and a non-negative fractional part*, f, p forj =01 2,3, 4. A
this decomposition, (1) may be written as
ho+ fio= U+ fidx +x + (hy + fig) x
fio = fuuxy = fiaxg = 3 + Iyxy + Dgxg - Iy

. L vy
A comparison between (1) and (2) suggests that if we add an additional constraint in S“Chiﬁt;ger
that the LH.S. of (2) is an integer, then we shal] be forcing the non-integer y,o towards an

. ] y cisely
(and hence the corresponding non-integer solution towards an integer one). This is what we przssible
want. The desired Gomory's constraint is fio = fu % = flax 4 S 0. To see the truth, let it be P S

. X
to have fio = fiy%1 ~ fiaxs = h, where h >0 is an integer. Then fio = h + fu % + fus
. __5/8 can

)

or

*If a y); is negative, even then a non-negative fractional part of it may be separated, For example,
be written as — 1 +3/8 thereby giving 3/8 as a fractional part (non-negative) of it.

A
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Jbviously greater than one. This contradicts the fact that 0 < f,; < 1 for j = 0, 1, 2, 3, 4. Thus, the
ﬁactional cut 18
foxi + fiaxa 2 frg or ~fux - fiaxa S -fio

or -fax = fiaxg + G = ~fo
where G, is a slack variable in the above first Gomory constraint or fractional cut.

Tt!is additioqal constra}int is to be included in the given L.P.P. in order to move further towards
obtaining an optimum all-integer solution. After the addition of this constraint, the optimum simplex
table looks like as given below :

7 Xp Yi y2 Y3 Y4 G

Y1 Y10 Y 2 i3 Yia 0

Y2 Y20 Y21 Y2 Y23 Y24 0

- G, -fio -fi 0 0 ~fia 1
< Yoo Yol Y02 Y03 Yo4 Yos

the dual simplex method is to

his solution, the above referred
d so long as

Since —fj, is negative, the optimum solution is infeasible and thus
be applied for obtaining an optimum feasible solution. After obtaining t
procedure is applied for constructing second fractional cut. The process is to be continue

an all-integer solution has not been obtained.

7:5. FRACTIONAL CUT METHOD—ALL INTEGER LPP

An iterative procedure for the solution of an all integer linear programming problem by Gomory’s
fractional cut method (or cutting plane method) may be summarized in the following steps :

Step 1. Express the given linear programming problem into its standard form and determine an
optimum solution by using simplex method ignoring the integer value restriction.

Step 2. Test the integrality of the optimum solution.
(a) If the optimum solution admits all-integer values, an optimum basic feasible solution 1s

attained.
(b) If the optimu
Step 3. Choose the largest fractional value

Step 4. Express each of the negative fracti
table as the sum of a negative integer and a non
Step 5. Generate the Gomorian constraint (fractional cut) in the form

Gy = ~fio + fuxi + faxa + ot f S

m solution does not include all-integer values, then move on to next step.
of the basic variables. Let it be fi.

ons, if any, in the kth row of the optimum simplex
-negative fraction.

where 0 < fi; < 1 and 0<fip<l
Step 6. Add the Gomorian constraint generated in step 5 at the bottom of the optimum simplex

table. Use dual simplex method to find an improved optimum solution.
Step 7. Go to step 2 and repeat the procedure until an optimum basic feasible all-integer solution

is obtained.
\AMPLE PROBLEM

%01. Find the optimum integer solution to the following L.P.P. !
S— ‘Maximize z =% *+ 4x, subject to the constrainis :

2x) + 45y € 7, Sxy + 3xp S 15; xp x2 20 and are integers.
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Solution. i basic feasible solution ;
Step 1. Introducing slack variables s, 2 0 and s, 2 0, an initial basic feasible solution ig 8 =7

and s, = 15. Using simplex method an optimum non-integer solution is obtained and is gjvep in the
following simplex table :
Initial Iteration. Non-integer Optimum Solution.

<8 Ys Xp b4 Y2 Y3 Y4

4 ¥ 714 12 1 1/4 0

0 Ya 39/4 712 0 -3/4 1
2(=7) 1 0 ! 0o

Step 2. Since the optimum solution is not integer valued, we consider only the fractional parts of

1 3 = 39(_ 3
Xg = z(\;—'l"'z)and Xgy = -4—(-—9+z)

4 4
arbitrarily select any one of these. Let us choose f,.
Step 4. In the second row, since y,; = —3/4, we write y,; = — 1 + 1/4.
Step 5. Let G, be the first Gomorian slack. Then, we write

Step 3. Maximum { f, f, } = maximum {3’ %} =3 ie., both f; and f, are equal. So,

3,1 .
Gi=-fo+faxi +faxy + f3xy + fraxg = =5 + 3% + 0xy + 303 + 0xg

Step 6. Adding this additional constraint in the optimum simplex table, we have
First Iteration. Drop G, and introduce y,.

Cp YB Xp i Y2 Y3 Ya G,
4 A ) 7/4 12 1 1/4 0 0
0 Y4 39/4 R 0 -3/4 1 0
0 G, -3/4 &) 0 ~1/4 0 1
z2(=7) 1 0 1 0 0
As Xp, = -3/4 only is negative, this basic variable leaves the basis. Further, since
(z; - c) ' ' .
max. {“;L Yaj < 0} = max. {# #} = -2, y, enters the basis, i.e., x, becomes basic variable
Y3 -1/72 -1/4 1

in place of G,. i
Second Iteration. Non-integer Optimum Solution.

maximum { f5, £} = maximum {
o, = 1/2 and write y,3 = -6 + 1/2,

»

‘s Y8 Xp Y1 Y2 Y3 Ya G
4 y2 L 0 1 0 0 .
j 0 Ya 9/2 0 0 -512 1 7
z(=11/2) 0 0 112 0 2 -
Since, the optimum solution is still non-integral, we introduce the second Gomorian constraint
i =2(= 1 k
e NOW, Xn—z( 4+2) and ngzg(zl +%)
| 1
| 3

» : Se
} 3 % i-e., both f, and f; are equal. So, let us choo

G2 = —foo *+ Jud1 + f2 %2 + fas¥a % fradg = =5 + Ox) + Ouxy + 2% 0%
Adding this additional constraint in the second iterative table, we have
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Third Iteration. Drop G, and introduce y,.

cp Ya Xp Yi 12) Y3 Ya G G,
4 Y2 1 0 1 0 6 o #—T“—_ F—MO
0 Ya 92 0 0 -512 1 7 0
1 Vi 312 1 0 12 0 -2 0
0 G, 172 0 0 0 0 1
2 12 0 0 12 o 2 0
Final Iteration. Optimum Solution in Integers. -
cp S Xp Y1 y2 2 Ya G, G2
4 Y2 1 0 1 0 0 1 0
0 Ya 7 0 0 0 1 7 5
1 Y1 1 1 0 0 0 -2 1
0 ¥3 1 0 0 I 0 0 =2
z 5 0 0 0 0 2 !

The table shows that an optimum basic feasible integer solution has been obtained. Hence, the

optimum solution is _
x, =1, x, =1and maximum z = 5.
/702. Solve the following integer linear programming problem using the cutting-plane algorithm :
- Maximize z = 3x; + X + 3%3 subject to the constraints :
—x; + 2 +x35 4, dx; — 3x3 £ 2, X —3x +2x3< 3,
X} X2 and x; all are non-negative integers.
Solution. Introducing slack variables 5, 2 0, 5, 2 0 and s; = 0 in the respective constraints, an
initial basic feasible solution is &, = 4,5, =2 and 53 = 3. Using, now, simplex method an optimum

non-integer solution is obtained as given in the followinig simplex table :

Initial Iteration. Non-integer Optimum Solution.

cp YB Xp Y Y2 ¥3 Ya Ys Yo
3 ¥3 10/3 0 0 1 4/9 19 4.
Y2 3 0 1 0 13 13 13
3 Y1 16/3 1 0 0 19 9 10/9
z (=87/3) 0 0 0 2 3 5

. _16(_ 1 : .
Since, Xg = %(:3 + —;- and Xg3 = 7(—-5 + 5), we choose maximum { f, 3 } = { i.e.. both

f, and f; are equal. So, let us choose f; = 3

Let G, be the first Gomorian slack. Then, we write
Gy, = -fio + fux + frax + fis %3 + fiasy + fiss2 + fiss
1 L4 1 4
= -3 % 0x) + Oy + 0x3 + 581 + g% + 3%

By the addition of this constraint in the above optimum simplex table, we get
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First Iteration. Drop G, and introduce ¥;. e
% m _nm owm W B oG
T3y, B+ ) 0 0 0 o P ?
1 v 3 0 | 0 13 173 13 0
Y2 :
1 1/9 7/9 10/9 0
3 Y1 (5 + 1/3) 1 0
0 G, 173 0 0 _FO,,_,__A ol 4D 1
T B
7 N N S US— > S0

. 3 5
: A = =12
Since, Xp; \__5) only is negative, G, leaves the basis. Further, max { =5 1/8 _4/9} =g

Therefore, y, enters the basis, thereby, giving ya4 (-——%) as the leading element.

Cp A :] Xg Y Y2 ¥3 Y4 Ys Yé G,
3 ¥ 3 0 0 1 0 0 0 1
1 ¥, 2+3/4 0 1 0 0 1/4 0 34
3 Y 5+1/4 1 0 0 0 3/4 i 1/4
0 V4 3/4 0 0 0 1 1/4 1 -9/4
z(= 5572) 0 0 0 0 512 3 92
Here, max. {% %} = %. This suggests that the second fractional cut (Gomorian constraint) will be :
3,1 3
G2=—Z+zs|+ZGl

By adding this constraint in the optimum simplex table, we have
Second Iteration. Drop G, and introduce G,.

cp Y8 Xp Yi Y2 ¥3 Y4 Ys Y6 G, Gy

3 Y3 3 0 o = 1 0 0 0 L 0

1 ¥ 11/4 0 1 0 0 1/4 0 3/4 0

3 i 21/4 1 0 0 0 3/4 1 1/4 0

0 Y4 3/4 0 0 0 1 1/4 1 -9/4 0

0 G, -3/4 0 0 0 0 —1/4 o G 1
z(=55/2) O 0 0 0 512 3 92 0

Since ys; (—--—) is the leading element, the next iterative simplex table is:

Final Iteration. Optimum Solution in Integers,

g ¥B Xg Y y2 ¥ Y4 ¥s Y6 G, G

3 vs 2 0 0 1 0 -1 0 o 4

1 ¥s 2 0 1 0 0 0 0 0 1

3 ¥i 5 1 0 0 0 213 19 0 13

0 Ya 3 0 0 0 1 1 I 0 -3

0 G, 1 0 0 0 0 3 0 -
2 (=23 0 0 0 0 1 3 0 6/,,

This table shows that an optnmum basic feasible integer solution has been reached. Henc®:
optimum integer valued solution is :

x, =5 x =2 and x; = 2, with maximum z = 23.

L
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703. A company manufactures three products P, P, and P; which yield per unit profit of Rs. 200,

400 and Rs. 300 respectively. Each of these products is processed on three different machines. The
"me required on each machine per unit of the product is given below :

- Product Time required (hours per unit)
Machine 1 Machine 2 Machine 3 o
Py 30 20 0
P, 40 10 30
P 20 20 20
Time available (hours) 600 400 800

How many products of each type should be produced to maximise profit ?
Fractional units of product are not permissible.
Solution. Let x,, x, and x, be the number of units of products Py, P, and P; respectively. Then,
the appropriate mathematical formulation of the given problem is :
Maximize z = 200x; + 400x, + 300x; subject to the constraints:

30x; + 40x; + 20x3 < 600 (Time constraint on M)
20x; + 10xy + 20x3 < 400 (Time constraint on M)
10x; + 30xy + 20x3 < 800 (Time constraint on M3)

20, x, 20, x3 >0 and are integers.
Introducing the slack varlables s, 20,5, 20and s; 20 in the respective constraints and then
using simplex method, a non-integer optimum solution is displayed below :
Initial Iteration. Non-integer Optimum Solution.

< ¥s Xp Y1 Y2 Y3 Y4 Ys Yo
400 ¥2 20/3 173 1 0 1/3 -173 0
300 Y3 50/3 5/6 0 1 -1/6 2/3 0
0 Y6 80/3 -5/3 0 0 =2/3 -1/3 1
z{(= 23,000/3) 550/3 0 0 250/3 20073 0

Here, x5 = 239 =6+ —’ Xp, = 530 16 % and Xp, = % = 26 + -23- Thus, all the three

+
fractional parts are same, ie., fi = f, =f3 = % So, let us choose f, = % for the construction of

Gomorian constraint. Therefore, from the above table, second row is written as :

2 5
l6+5 —6-x|+x3—

1 2
3 s1+3s2

or (16+%)=(0+%)x1+x3+(\_1+_56.)Sl+(0+§)s2‘
Let G, be the first Gomorian slack Then, the corresponding cut or Gomorian constraint is :
=Gy - xl—-%sl —%sz

On the addition of this constralnt in the optimum simplex table (given above), we get

‘s YB Xp Y y2 Y3 Y4 ¥s Yo G,

400 ¥2 20/3 173 1 0 173 -1/3 0 0

300 Y3 5013 5/6 0 1 -1/6 213 0 0
0 Yo 80/3 ~5/3 0 0 -2/3 -13 1 0
0 G, -2/3 -5/6 0 0 -ste CUD 0 1

z(= 2000/3) 550/3 0 0 25073 200/3 0 0
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Since, xp (: ~%) is only negative, G, leaves the current basig F“"her
A 4 K y
i -_ 2
: 35073  250/3 29!143} - his indicate that ys enter the basis and y,, ( =_2 ) bec
maximum { gl 5 100. T N 73 Omeg
, the leading element. The next iterative simplex table is :
Final lteration. Optimum Solution in Integers. o
B S TR /S 7SS S Ry
_460‘ “yz B 7 3/4 1 0 3/4 0 0 -1n
300 ¥a 16 0 0 1 -1 0 0 1
0 Yo 27 -5/12 0 0 -1/4 0 1 -1h
0 ¥s 1 5/4 0 0 5/4 1 0 3n
z (=7600) 100 0 0 0 0 0 100
Hence, the all integer optimum solution is X =0,x =7, x; = 16 with maximum ; = 7,600, ie,
the company should manufacture 7 units of product P, and 16 units of product P; only to get the
maximum profit of Rs. 7,600.

AOBLEMS

704. Find the optimum solution to the ILP.P.:

Maximize z = x| — 2x, subject to the constraints
4x; + 2x, < 15, x;, x, > 0 and are integers.
705. Solve the following LP.P. :
| Maximize z = 3x, subject to the constraints

X + 2,7, —-x + X <2, x20, x, 20 and are integers. [Annamalai M.B.A. (Nov.) 2009]
706. Find the optimal solution to the following integer programming problem :
Maximize z = x; - X, subject to the constraints :
X+ 2% <4, 6x) + 2x,

707. Solve the following LP.P, :
Maximize z = 2,

<9 x,x20; x; and x, are integers.

+ 3x, subject to the constraints :

=3+ Ty < 14, Tx, - 3x, < 14; x;, x, > 0 and are integers.

' [Meerut M.Sc. (Math.) 19%i
708. Describe any method of solving an integer Programming problem. Use it to solve the problem :
+ 2x; subject to the constraints
5x; + 3x, < 8, X+ 2, < 4, X
709. Solve the following PP, :

Maximize z = 2x,

X Non-negative integers.

| Minimize ; = 9% + 10x, subject to the constraints :
x,S9.x258,4x,+3x2240
)§ )

i 710. Solve the following LP.p, :

Maximize ; =

i ¥ % 2 0 and are integers,

11x; + 4x; subject to the constraints :
TR 54, 55 4 2 < 16, 2,

~ % S 4, x and x, are non-negative integers.
711. Find the optimum integer solution to the

following all-I.p.P,

2x; subject to the constraints :
Yo <T, a5, 2,57, x,

| Maximize 7 = x|+

X2 2 0 and are integers.
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712. An exporter of ready-made garments makes two t i ;
: . 51 § ypes of shirts : X and Y. He makes a rofit of Rs. 10
aﬂ'dtsRS"r 40 per shirt on X and Y shirts respectively. He has two tailors, A and B, at his disposa{) to stitch these
shirts.

ailors A and B can devote at the most 7 hours and 15 hou

> . . - . rs er
pe stitched by both the tailors. Tailor A and tailor B spend two hougs
X shirt, and four hours and three hours respectively in stitching a ¥ shirt
be stitched in order to maximise daily profits

day respectively. Both these shirts are to
and five hours respectively in stitching 2
. How many shirts of both the types should
? (A non-integer solution for this problem will not be accepted.)
[Delhi M.B.A. (Nov.) 1995, (PT) 2008]
713. A manufacturer of toys makes two types of toys, say A and B. Processing of these toys is done on two
machines X and Y. Toy A requires two hours on machine X and six hours on machine Y. Toy B requires four hours
on machine X and five hours on machine Y. There are 16 hours of time per day available on machine X and 30
houts on machine Y. The profit obtained on both the toys is same, that is Rs. 5 per toy. What should be the daily
production of each type of the two toys? (A non-integer solution for this problem will not be accepted.)

[Delhi M.B.A. (Nov.) 2008]

714. A company manufactures two products Py and P,, which require time on three different machines M1,

M, and M. Product P, requires 2 hours on machine M, and 1 hour on machine M,. Product P, requires 4 hours

on machine M, and 2 hours on machine M. There are 50 hours available on machine M), 16 hours on machine M3, and

20 hours on machine M3 per week. The per unit profit on products Py and P, are Rs. 30 and Rs. 50 respectively.
Determine the output mix that will maximize the total profit per week, when only integer solution is acceptable.

715. The ABC company requires an output of at least 200 units of a product per day and to accomplish this
target, it can buy machine A and B or both. Machine A costs Rs. 20,000 while machine B costs Rs. 15,000 and the
company has a budget of Rs. 2,00,000 for the same. Machines A and R will produce 24 and 20 units respectively
of this product per day. However, machine A will require a floor space of 12 square feet while machine B will
require 18 square feet and the company has a total floor space of 180 square feet only. Determine the minimum
number of machines that should be purchased. (A non-integer solution for this problem will not be accepted.)

[Delhi M.B.A. (Nov.) 2005]

716. Anna furniture firm manufactures tables (A) and chairs (B). The processing times are 3 hours and 4 hours
per unit for A on operations one and two respectively, while 4 hours and 5 hours per unit for B on operations one
and two respectively. The available time is 18 hours and 21 hours for operations one and two respectively. The
product A can be sold at Rs. 3 profit per unit and B at Rs. 8 profit per unit. Solve the'LPP. (A non-integer solution
for this problem will not be accepted.) [Madras M.B.A. 2000]

717. The ABC Electric Appliances Company produces two products : refrigerators and ranges. Production
takes place in two separate departments. Refrigerators are produced in department I and ranges in department IL
The company’s two products are produced and sold on a weekly basis. The weekly production cannot exceed 25
refrigerators in department I and 35 ranges in department II, because of the limited available facilities in these two
departments. The company regularly employs a total of 50 workers in the departments. A refrigerator requires two
man-weeks of labour, while a range requires one man-week of labour. A refrigerator contributes a profit of Rs. 300
and a range gives profit of Rs. 200. How many units of refrigerators and ranges should the company produce to
realize a maximum profit? (A non-integer solution for this problem will not be accepted.)

[Delhi M.B.A. (PT) Nov. 2003]
718. A company produces two products, each of which requires stamping, assembly and painting operations.
Total productive capacity by operation, if it were solely devoted to one product on the other is shown below:

Operasion Productive capacity (units/week)

__ Product A Product B
Stamping 50 75
Assembly 40 80
Painting 920 45

Pro-rata allocation of prodt}ctive 'caPacity is permissible so that combination of production of :ﬁéi&?ﬁw’&i&’
Demand for the two products 1§ unlimited. The profit on product A and B is Rs. 150 and Rs. 120 respectively'.

Determine the optimal product-mix. (A non-integer solution will not be accepted). [Delhi M.B.A. (Nov.) 2009]

719, The dietician at the local hospital is planning the breakfast menu for the maternity ward patients. She is

primarily concerned with Vitamin E and iron requirements in planning the breakfast. According to the State

Medical Association (SMA), new mothers must get at least 12 milligrams of Vitamin E and 24 milligrams of iron
from breakfast. The SMA handbook reports that a scoop of scrambled egg contains 2 milligrams of Vitamin E and
8 milligrams of iron. The SMA handbook recommends that new mothers should eat at least two scoops of cottage

cheese for their breakfast. The dietician considers this as one of the model constraints. The hospital accounting
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of scrambled egg also costs Rs. 2. The

fies all the requirements and minimizeg

thus necessitating an integer solwtion
[Delhi M.B.A. (HCA) 2009,

eese costs Rs. 2 and scoo;')
kfast menu that satis
by only full scoop.

department estimate that a scoop of cottage ch
dietician is attempting to determine the optimum brcxft
i total cost. The cook insists that he can serve foods

| Determine the optimum integer solution to the problem.

#

/

./ 7:6. FRACTIONAL CUT METHOD—MIXED INTEGER LPP
ike the pure integer qucfnr prog'ramming prob!em, all
the coefficients and constants should be integers. Only some of the decision variables are restricted to
integers, while the others may take integer or continuous values.

The iterative procedure for the solution of such problems is as follows : ‘ y |
Step 1. Determine an optimum solution to the given linear programming problem by using

simplex method ignoring the restriction of integer va}ue.
Step 2. Test the integrality of the optimum solution.

In mixed integer linear programming problem, |

(@ Ifall xg; 20 (G =1, 2, ..., m) and are integers, the current solution is an optimum one.
(b) If all x5, 20 (i = 1, 2, ..., m) but the integer restricted variables are not integers, go to the
next step.

Step 3. Choose the largest fraction value among the basic variables which are restricted to
integers. Let it be x5, (= fi,» say).
Step 4. Generate the Gomorian constraint in the form

Jio
z fijxj + ( iz fi% 2 feor

JE Ry Jro = 1
where, 0 < fi, <1 and R, ={j:f; >0}, R_={j:f;; <0}
- fko
.e., Gy ==fio + Z fux;+ Z fiix;,
i 1 ﬂo jeR+f“’x" (fko ~1 jeR_ﬁq j

where G, is known as the Gomorian slack variable and this constraint as the Gomory’s cut.

Step 5. Add the Gomorian constraint generated in step 4 at the bottom of the optimum simplex
table. Use dual simplex method to find an improved optimum solution.

Step 6. Go to step 2 and repeat the procedure until all x; 2 0 (i = 1, 2, ..., m) and all restricted
variables are integers.

4 \AMPLE PROBLEM

/ w._&n';., the following mixed integer programming problem :
Maximize z = 4x; + 6x, + 2x; subject to the constraints :
9x; - 4x3 £ 5 -x; + 6x; < 5, -X;+ X +x3<5
X, X x3 2 0; x; and x; are integers.
Solution. Introducing slack variables $y 20,5 2 0and s; 2 0; an initial basic feasible solution
iss; =5,5 =5and s; =5,

Ignoring the integer restrictions, the optimum solution of the given L.P.P. is displayed in the table

below :
Cp ¥B Xp \7 ¥a Y3 Ve v .
4 Y 512 1 0 0 W10 o
6 y2 5/4 0 1 0 hon e
2 Y3 25/4 | 0 0 X i ;
z(=30) 0 0 0 : :

==
\
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Since, x, and x, both are not integers and max. {f,. f;} = max. X H = 1 from the first row.
we have l 3 ! |
(2 + E) =x + 5 ten
Here, both s, and s, have positive coefficients, therefore the mixed fractional cut is :
G=2+is+ls
First Iteration. Drop G, and enter y,.

Cp Y8 Xp Yi y2 y3 Y4 ys Ye G
4 A4 512 1 0 0 3/10 1/5 0 0
6 Y2 S/4 0 1 0 1120 1/5 0 0
2 Y3 25/4 0 0 1 1/4 0 1 0
0 G 11 0 0 0 Gney -1 0 !
z (=30) 0 0 0 2 2 2 0
Here, since xp, <0, G, leaves the basis and since max. {:—3% TI275_ }= max. {”—;2 -10 } ie. ——2?0 ;

y, enters the basis.
Second Iteration. Improved Solution.

s yB Xp ¥i y2 ¥3 \ Ys Yo G,
4 V1 2 1 0 0 0 0 0 1
6 Y2 7/6 0 1 0 0 1/6 0 1/6
2 Y3 35/6 0 0 1 0 -1/6 1 5/6
0 ¥4 5/3 0 0 0 | 2/3 0 -10/3
z(=80/3) 0 0 0 0 2/3 2 20/3
Since x, is still not an integer, we write from the third row of second iteration
(5+% =x3—-:,;s2+33+%G1
Here, since s, has negative coefficient, the mixed fractional cut is :
6= -3+ (¥ 3)
= —% + %sz + %Gl
Third Iteration. Drop G, and enter ys.
Cp YB Xp Y y2 Y3 Y4 Ys Yo G, G,
4 Y1 2 1 0 0 0 0 0 1 0
6 ¥2 716 0 1 0 0 1/6 0 16 0
2 y3 35/6 0 0 1 0 ~1/6 1 5/6 0
0 Ya 5/3 0 0 0 1 23 0o -103 0
0 G, 56 0 0 0 0 0 _sl6 1
z (=80/3) 0 0 0 0 2/3 2 20/3 0

Here, xps < O implies G, leaves the basis and since yss is the only negative in G,-row, ys enters
the basis.
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Final Iteration. Optimum Integer SO'“"S"_,-wwa»——-“y“ 6, 6
A ¥ Yo ¥s Yo ™
c Yo L A IO £ SN £ S
B — l 0 0 0 0 0 I 0
| 4 Vi . | 0 0 0 0 1/6 115
6 % ' ) ) ) 0 0 1 56 -1/5
2 AK] : 0 0 0 1 0 0 -10/3 4/5
8 ;: 1 0 0 0 o ! 0 : o5
——— ﬂ;WW*:(:E(;V)"MM—E o o0 0 0 2 20/3 4/5
(= 0o v

Awwsgi;t;;;btained above is optimum and satisfies the condition that x; and x; are integers. Hence,

the required solution is : ‘
x =2, x, = 1, x3 = 6, and maximum z = 26.

PROBLEMS

Solve the following mixed-integer programming problems, using Gomory’s cutting plane method :

721. Maximize z = x; + X, subject to the constraints :
3, + 25, <5, x<2; x,x 20 and x is an integer.
[Madras B.E. (Mech. & Prod.) 1990]

722. Minimize z = x; — 3x, subject to the constraints :

X +X <5 -2 +4x,<1l; x,x 20 and x, is an integer.
723. Maximize z = 7x; + 9x, subject to the constraints :

-x, +3x, <6, Tx; +x,<35; x,x 20 and x; is an integer.
724. Maximize z = 3x; + x, + 3x3 subject to the constraints :

X+ 2 +x35 4, 4 -3x3<2, x; —3x + 203 S 3;
x;20 (=1,2,3) with x; and x; as integers.

725. Maximize z = 1.5x) + 3x, + 4x; subject to the constraints :

‘;i 2.5x) + 2xy + 4xy < 12, 2xl +4x; -x3<7; x, X%, 320 and x; is an integer.//
7:7. BRANCH AND BOUND METHOD

The concept behind this method is to divide the entire feasi i i
easible solution space of LP problem into
?Smslsl:frufz;;ts dfgll:d sub-prc;‘blemsh and then search each of them for an optimal solution. This approach
> cases where there is large number of feasible soluti i those
becomes economically impractical or impossible. olutions and enumeration of
bou ,;Ic‘ll;cf:rni:zhd::.d. bound' methpd starts by imposing feasible and infeasible upper and/or lower
ot sadipidony t:)smn_vanables in each sub-problem. This helps in reducing the number of simplex
mediod Jtera ns u arrive at the optimal solution, because each sub-problem worse than the current
: is discarded and only the remaining sub-problems are examined. At a point where 10
| more sub-problems can be created, we will find an optimal solution,
[ The iterative procedure is summarized below : .
Step 1. Obtain an optimum solution of the
Step 2. Test the integrability of the optimu
(i) If the solution is in integers,
problem.

(%) If the solution is not in integers, go to next step.

,
i
i
a,;
1

given L.P.P. ignoring the integer restriction.
m solution obtained in step 1. There are two cases :
.the eurrent solution is optimum to the given integer programming

 _
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