Unit I

Continuity and inverse images of open and closed sets.
Inverse image
Let $f: S \rightarrow T$ be a function from a set S to a set T.If Y is a subset of T,the inverse image of Y under f, denoted by f ${ }^{1}(\mathrm{Y})$ is defined to be the largest subset S which f maps into Y.
$f^{-1}(Y)=\{x: x \in S, f(x) \in Y\}$

Result:
Let A and B be subsets of T. then

$$
A \subset B \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)
$$

Proof:
Let $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~A})$
$\Rightarrow f(x) \in A$ by defn of $f^{-1}(A)$
$\Rightarrow f(x) \in B$ as $A \subseteq B$
$\Rightarrow x \in f^{-1}(B)$
$\therefore f^{-1}(A) \subseteq f^{-1}(B)$

Theorem:
Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from S to T .
If $X \subseteq S$ and $Y \subseteq T$ then we have
(a) $X=f^{-1}(Y) \Rightarrow f(X) \subseteq Y$
(b) $Y=f(X) \Rightarrow X \subseteq f^{-1}(Y)$

(a)

Given $X=f^{-1}(Y)$
Let $\mathrm{y} \in \mathrm{f}(\mathrm{X})$
$\Rightarrow \mathrm{y}=\mathrm{f}(\mathrm{x})$ for some $\mathrm{x} \in \mathrm{X}$
$\Rightarrow \mathrm{y}=\mathrm{f}(\mathrm{x})$ for some $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{Y})$
$\Rightarrow y \in Y$ by definition of $f^{-1}(Y)$
$\therefore f(X) \subseteq Y$

$$
X=f^{-1}(Y) \Rightarrow f(X) \subseteq Y
$$

Given $Y=f(X)$
Let $x \in X$

$$
\begin{aligned}
& \Rightarrow f(x) \in f(X) \\
& \Rightarrow f(x) \in Y \text { since } Y=f(X) \\
& \Rightarrow x \in f^{-1}(Y)
\end{aligned}
$$

Therefore $X \subseteq f^{-1}(Y)$
Hence $Y=f(X) \Rightarrow X \subseteq f^{-1}(y)$
Thus

$$
f\left(f^{-1}(Y)\right) \subseteq Y \text { and } X \subseteq f^{-1}(f(X))
$$

Theorem:

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space $\left(\mathrm{S}, \mathrm{d}_{\mathrm{s}}\right)$ to another metric space ($\mathrm{T}, \mathrm{d}_{\mathrm{T}}$) then f is continuous on S iff for every open set Y in T, the inverse image $f^{-1}(Y)$ is open is S.

Proof:

f is continuous \Leftrightarrow inverse image of every open set is open under f
\Rightarrow let f be continuous on S.
Let Y be open in T .

Claim:

$f^{-1}(Y)$ is open in S
Let $\mathrm{p} \in \mathrm{f}^{-1}(\mathrm{Y})$
To prove
p is an interior point of $f^{-1}(Y)$
Let $f(p)=y$
As $f(p) \in Y$ and Y is open, $f(p)$ is an interior point of Y.
There exists an ${ }^{\varepsilon}>0$ such that $\mathrm{B}_{\mathrm{T}}\left(\mathrm{y},{ }^{\varepsilon}\right) \subseteq \mathrm{Y}$
Since f is continuous at p ,there is an $\delta>0$ such that

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{~B}_{\mathrm{s}}(\mathrm{p}, \delta) \subseteq \mathrm{B}_{\mathrm{T}}(\mathrm{y}, \varepsilon)\right. \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{s}}(\mathrm{p}, \delta) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}\left(\mathrm{~B}_{\mathrm{s}}(\mathrm{p}, \delta)\right)\right. \\
& \subseteq \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{T}}(\mathrm{y}, \varepsilon)\right. \text { using (2) } \\
& \subseteq \mathrm{f}^{-1}(\mathrm{Y}) \text { using (1) } \\
& \Rightarrow \mathrm{p} \text { is an interior point of } \mathrm{f}^{-1}(\mathrm{Y}) \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{Y}) \text { is open in (as } \mathrm{p} \text { is arbitrary) }
\end{aligned}
$$

Let inverse image of every open set be open
To prove f is continuous
Let $p \in S$
Then $f(p) \in T$
Let $f(p)=y$
For every ${ }^{\varepsilon}>0$, the ball $\mathrm{B}_{\top}\left(\mathrm{y},{ }^{\varepsilon}\right) \subseteq \mathrm{T}$
\therefore By hypothesis $\mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{T}}\left(\mathrm{y},{ }^{\varepsilon}\right)\right.$ is open in S .
and $p \in f^{-1}\left(B_{\top}\left(y,{ }^{\varepsilon}\right)\right)$
\therefore there exist $\delta>0$ such that
$\mathrm{B}_{\mathrm{s}}(\mathrm{p}, \delta) \subseteq \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{T}}\left(\mathrm{y},{ }^{\varepsilon}\right)\right)$
$\therefore \mathrm{f}\left(\mathrm{B}_{\mathrm{S}}(\mathrm{P}, \delta) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{T}}\left(\mathrm{y},{ }^{\varepsilon}\right)\right)\right.\right.$
$\subseteq \mathrm{B}_{\mathrm{T}}\left(\mathrm{y},{ }^{\varepsilon}\right)$
$\Rightarrow f$ is continuous at p. (since p is arbitrary)
$\Rightarrow f$ is continuous on S

Hence the proof.

Theorem:
Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space $\left(\mathrm{S}, \mathrm{d}_{\mathrm{s}}\right)$ to another metric space $\left(\mathrm{T}, \mathrm{d}_{\mathrm{T}}\right)$. Then f is continuous on S iff for every closed set Y in T, the inverse image $f^{-1}(Y)$ is closed in S.
Proof:
Note that, $f^{-1}(T-Y)=S-f^{-1}(Y)$
f is continuous \Leftrightarrow inverse image of every closed set is closed.
$\Longrightarrow_{\text {Let } f \text { be continuous }}$
To prove inverse image of every closed set is closed.
Let Y be closed in T
Claim: $f^{-1}(Y)$ be closed in S.
Y is closed in $T \Rightarrow T-Y$ is open in T
$\Rightarrow f^{-1}(T-Y)$ is open in S
$\Rightarrow S-f^{-1}(Y)$ is open in S
$\Rightarrow f^{-1}(Y)$ is closed in S.
\Rightarrow inverse image of every closed set is closed.
$\Longleftarrow_{\text {Let the inverse image of every closed set closed. }}$

Claim: f is continuous
It is enough to prove that inverse image of every open set is open.
Let Y be open in T
Then T-Y is closed in T
$\Rightarrow f^{-1}(T-Y)$ is closed in S (by hypothesis)
$\Rightarrow S-f^{-1}(Y)$ is open in S
$\Rightarrow \mathrm{f}$ is continuous

Remark:

The image of an open set under a continuous mapping is not necessarily open.

Counter example:

Consider the function $f: R \rightarrow R$
Define by $f(x)=1 \forall x \in R$

R is open in R. Its image set $f(R)=\{1\}$
$\{1\}$ is not open in R because 1 is not an interior point of R.
(ii) The image of a closed set under a continuous mapping need not be closed.

Consider the example

$$
f: R \rightarrow(-\Pi / 2, \Pi / 2) \text { defined by } f(x)=\tan ^{-1} x
$$

Then the image of a closed set is not closed in $(-\Pi / 2, \Pi / 2)$

Continuous functions on compact sets:

Definition of covering:-
A collection F of sets is said to be covering of a given set S if

$$
S \subseteq U_{A \in F} A
$$

The collection F is said to cover S.
If F is a collection of open sets then F is called an open covering of S.

Definition: Compact Set

A set S in R^{n} is said to be compact iff every open covering of S contains a finite subcover.

Theorem:

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space $\left(\mathrm{S}, \mathrm{d}_{\mathrm{s}}\right)$ to another metric space ($\mathrm{T}, \mathrm{d}_{\mathrm{T}}$). If f is continuous on a compact subset X of S, then the image $f(X)$ is a compact subset of T. In particular, $f(X)$ is closed and bounded in T.

Proof:

Given $X \subseteq S$ is compact and f is continuous
Claim: $f(X)$ is compact in T
Let F be an open covering of $f(X)$
(ie) $f(X) \subseteq U_{A \in F} A$
Since each A is open in T and f is continuous on S, each f ${ }^{1}(A)$ is open in S. These sets $f^{-1}(A)$ form an open covering of X.
For,

$$
\begin{aligned}
& f(X) \subseteq U_{A_{\epsilon} F} A \text { implies } \\
& f^{-1}(f(X)) \subseteq f^{-1}\left(U_{A_{\epsilon} F} A\right)=U_{A_{\epsilon} F} f^{-1}(A)
\end{aligned}
$$

This implies $X \subseteq U_{A \in F} f^{-1}(A)$ as $X \subseteq f^{-1}(f(X))$
Since X is compact, a finite number of open sets of \{ $\{-$ $\left.\left.{ }^{1}(A) / A \subset F\right)\right\}$ will cover X
(ie) $\quad X \subseteq f^{-1}\left(A_{1}\right) \cup f^{-1}\left(A_{2}\right) \cup \ldots \cup f^{-1}\left(A_{P}\right)$

$$
\begin{aligned}
& \Rightarrow f(X) \subseteq f\left(f^{-1}\left(A_{1}\right) \cup f^{-1}\left(A_{2}\right) \cup \ldots \cup f^{-1}\left(A_{P}\right)\right) \\
&=f\left(f^{-1}\left(A_{1}\right) \cup f\left(f^{-1}\left(A_{2}\right) \cup\right) \ldots \ldots \cup f\left(f^{-1}\left(A_{P}\right)\right)\right. \\
& \Rightarrow f(X) \text { is closed and bounded, } \quad \text { by theorem }
\end{aligned}
$$

"If S is subset of R^{n}, the following statements are equivalent.
(1) S is compact.
(2) S is closed and bounded
(3) Every infinite subset of S has an accumulation point in S".

Hence the proof.

Bounded set :

A set $X \subseteq R^{n}$ is a bounded set if there exists $a \in R^{n}$ and $r>0$, such that $X \subseteq B(a, r)$.

Bounded function :

A function $f: S \rightarrow R^{n}$ is called bounded on S if there is a positive number M such that

$$
\|f(x)\| \leq M \forall x \in S .
$$

Result:

Let $f: S \rightarrow R^{n}$, then f is bounded on S iff $f(S)$ is a bounded set of R^{n}.

Proof:

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{R}^{\mathrm{n}}$ be bounded on S .
Then $\exists \mathrm{M}>0$ such that

$$
\|f(x)\| \leq M \quad \forall x \in S
$$

Claim: $f(S)$ is a bounded subset in R^{n}.
Since $\quad\|f(x)\| \leq M, \forall x \in S$
$f(S) \subset B(0, M)$ where $B(0, M)$ is an open
ball with centre at origin and radius M .
i.e $f(S)$ is a bounded subset in R^{n}

Let $f(S)$ be a bounded subset of R^{n}
Then $\exists a \in R^{n}$ and $r>0$ such that

$$
f(S) \subseteq B(a, r)
$$

Let $x \in S$

$$
\begin{aligned}
\|f(x)\| & \|\|f(x)-0\| \\
& =\|f(x)-a+a-0\| \\
& \leq\|f(x)-a\|+\|a\| \\
& <(r+\|a\|) \\
& =M_{1}
\end{aligned}
$$

This is true for every $x \in S$.
$\Rightarrow f$ is bounded on S.

Theorem:

Let $f: S \rightarrow R^{n}$ be a function from a metric space S to the euclidean space R^{n}. If f is continuous on a compact set X of S then f is bounded on X.

Proof:

Let f be a continuous function on the compact subset X of S.
Then by theorem
"Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space $\left(S, d_{s}\right)$ to another metric space $\left(T, d_{T}\right)$. If f is continuous on a compact subset X of S, then the image $f(X)$ is a compact subset of T. In particular, $f(X)$ is closed and bounded in T"
$f(X)$ is compact in R^{n} and $f(X)$ is bounded in R^{n}
$\Rightarrow \mathrm{f}$ is bounded on X , by the previous result

Result:

If f is a real valued function bounded on X, then $f(X)$ is a bounded subset of R and so it has int $f(X)$ and $\sup f(X)$ and

$$
\operatorname{lnt} f(X) \leq f(X) \leq \sup f(X), x \in X
$$

Theorem:

Let $f: S \rightarrow R$ be a real valued function from a metric space S to the euclidean space R. Assume f is continuous on a compact subset X of S. Then there exists a point (p, q) in X such that $f(p)=\operatorname{int} f(X)$,and $f(q)=\sup f(X)$

Proof:

Since f is a continuous function on the compact subset $\mathrm{S}, \mathrm{f}(\mathrm{X})$ is compact in R .

Also $f(X)$ is closed and bounded in R
Since $f(X)$ is bounded, $m \leq f(x) \leq M$ with $x \in X$ where $m=i n f(X)$ and $M=$ sup $f(X)$.
\Rightarrow every open ball with m as centre intersects $\mathrm{f}(\mathrm{X})$
$\Rightarrow \mathrm{m}$ is an adherent point of $\mathrm{f}(\mathrm{x})$
$\Rightarrow \mathrm{m}=\mathrm{f}(\mathrm{p})$ for some $\mathrm{p} \in \mathrm{X}$
Similarly,
\Rightarrow every open ball with M a centre will also intersect f(X)
$\therefore \mathrm{M}$ is also an adherent point of $\mathrm{f}(\mathrm{X})$
$M \in f(X)$ as $f(X)$ is closed.
Let $\mathrm{M}=\mathrm{f}(\mathrm{q})$ for some $\mathrm{q} \in \mathrm{X}$
Thus $f(p)=\inf f(X)$ and $f(q)=\sup f(X)$.

Theorem :Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space (S, ds) to another metric space(T, dT). Assume that f is one-to-one on S , so that the inverse function " $\mathrm{f}-1$ " exists. If S is compact and if f is continuous on S, then f^{-1} is continuous on $f(S)$.

Proof :

Given f is a continuous function on the compact
space S. To prove, $f^{-1}: f(S) \rightarrow S$ is continuous

We have, to prove that inverse image of every closed set in S is closed in $f(S)$, it is enough is prove that for every closed set X in S, the image $f(X)$ is closed in $f(S)$.

Since X is closed and S is compact.

By theorem,
"Every closed subset of a compact space is compact."
X is compact.
$\Rightarrow f(X)$ is compact. By theorem,
"continuous image of a compact set is compact."

$$
\Rightarrow f(X) \text { is closed by theorem," }
$$

compact subset of a metric space is closed and bounded".

Topological Mappings (Homeomorphisms)

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a function from one metric space(S, ds) to another metric space ($\mathrm{T}, \mathrm{d}_{\mathrm{T}}$). Assume that f is one-to-one on S, so that the inverse function f^{-1} exist. If
f is continuous on S and if f^{-1} is continuous on $f(S)$ then f is called a topological mapping or a homeomorphism.

In this case the metric spaces (S,ds) and ($\mathrm{T}, \mathrm{d}_{\mathrm{T}}$) are said to be homeomorphic.

Note:

1. f is a homeomorphism then f^{-1} is also a homeomorphism.
2. A homeomorphism maps open subsets of S onto open subsets of $f(S)$ and
3. It maps closed subsets of S onto closed subsets of f(S)

Topological property:
Definition:
A property of a set that remains invariant under every topological mapping is called a topological property.

Example:
The properties of being open, closed and compact are topological properties.

Definition: Isometry
A function $f: S \rightarrow T$ which is one to one on S and which preserves the metric is called an isometry.

(ie) If S is a isometry then,

$$
d_{s}(x, y)=d_{T}(f(x), f(y)) \quad \text { for every } x, y \in S
$$

If there is an isometry from $(\mathrm{S}, \mathrm{ds}) \rightarrow\left(\mathrm{f}(\mathrm{S}), \mathrm{d}_{\mathrm{T}}\right)$ the two metric spaces are called isometric.

Sign preserving property of continuous functions:

Theorem:

Let f be defined on an interval S in R. Assume that f is continuous at a point c in S and that $f(c) \neq 0$. Then there exist a one ball $\mathrm{B}(\mathrm{c}, \delta)$ such that $\mathrm{f}(\mathrm{x})$ has the same sign as $\mathrm{f}(\mathrm{c})$ in $\mathrm{B}(\mathrm{c}, \delta) \cap \mathrm{S}$.

Proof:

Since f is continuous at the point C there exist and $\varepsilon>0$ for the given $\delta>0$ such that

$$
\begin{equation*}
\mathrm{f}(\mathrm{c})-\varepsilon<\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{c})+\varepsilon \quad \mathrm{x} \in \mathrm{~B}(\mathrm{c}, \delta) \cap \mathrm{S} . \tag{1}
\end{equation*}
$$

It's given that $\mathrm{c} \in \mathrm{S}$,
$\mathrm{f}(\mathrm{c}) \neq 0$ Suppose $\mathrm{f}(\mathrm{c})>0$
Then take ${ }^{\varepsilon}=\mathrm{f}(\mathrm{c}) / 2$ in (1)

$\Rightarrow \mathrm{f}(\mathrm{c})-\mathrm{f}(\mathrm{c}) / 2<\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{c})+\mathrm{f}(\mathrm{c}) / 2$
$\Rightarrow 1 / 2 \mathrm{f}(\mathrm{c})<\mathrm{f}(\mathrm{x})<3 / 2 \mathrm{f}(\mathrm{c}) \quad \mathrm{x} \in \mathrm{B}(\mathrm{c}, \delta) \cap \mathrm{S}$
$\Rightarrow \mathrm{f}(\mathrm{x})>0$ for every
$\mathrm{x} \in \mathrm{B}(\mathrm{c}, \delta) \cap \mathrm{S}$
Suppose f(c)
<0
$\varepsilon=-\mathrm{f}(\mathrm{c}) 2$ in

$$
\begin{align*}
& \Rightarrow \mathrm{f}(\mathrm{c})+\mathrm{f}(\mathrm{c}) 2<\mathrm{f}(\mathrm{c})<\mathrm{f}(\mathrm{c})-\mathrm{f}(\mathrm{c}) 2 \quad \mathrm{x} \in \mathrm{~B}(\mathrm{c}, \delta) \cap \mathrm{S} \tag{1}\\
& \Rightarrow 3 / 2 \mathrm{f}(\mathrm{c})<\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{c}) 2
\end{align*}
$$

Let $f(c)=-m$ where m is positive
Then $-3 / 2 \mathrm{~m}<\mathrm{f}(\mathrm{x})<-\mathrm{m} / 2 \quad \forall \mathrm{x} \in \mathrm{B}(\mathrm{c}, \delta) \cap \mathrm{S}$
$\Rightarrow \mathrm{f}(\mathrm{x})<0 \quad \forall \mathrm{x} \in \mathrm{B}(\mathrm{c}, \delta) \cap \mathrm{S}$
Hence the proof.

Bolzano's theorem:

Let f be a real valued and continuous function on an interval [a,b] in R and suppose that $f(a)$ and $f(b)$ have opposite signs (i,e) $f(a) f(b)<0$ then there is atleast one point c in open interval (a, b) such that

$$
f(c)=0
$$

Proof:

Given that $f(a)$ and $f(b)$ have opposite signs.
Assume that $\mathrm{f}(\mathrm{a})>0$ and $\mathrm{f}(\mathrm{b})<0$
Let $A=\{x: x \in[a, b], f(x) \geq 0\}$
Then A is non-empty. Since $f(a)>0, a \in A$
Also A is bounded
above by b. Therefore
A has a supremum.
Let $\mathrm{C}=\sup \mathrm{A}$
Now $\mathrm{a}<\mathrm{c}<\mathrm{b}$
To prove, $\mathrm{f}(\mathrm{c})=0$
If $f(c) \neq 0$ then by the sign preserving property of real valued continuous function there is a 1-ball $\mathrm{B}(\mathrm{c}, \delta)$ in which f has the same sign as $f(c)$. If $f(c)>0$ there are
points $x>c$ at which $f(x)>0$, contradicting the definition of C.

If $\mathrm{f}(\mathrm{c})<0$, then $\mathrm{c}-\delta / 2$ is an upper bound for A again contradicting the definition of c. Hence $f(c)=0$.

Theorem:

Assume f is real valued and continuous on a compact interval S in R. Suppose there are two points $\alpha<\beta$ in S such that $f(\alpha) \neq f(\beta)$ then f takes every value between $f(\alpha)$ and $f(\beta)$ in the interval (α, β).

Proof:

Let α and β be such that $f(\alpha) \neq f(\beta)$.
Let k be a number between $f(\alpha)$ and $f(\beta)$
Define: $g: \alpha, \beta] \rightarrow R$

$$
g(x)=f(x)-k
$$

then

$$
\begin{aligned}
& g(\alpha)=f(\alpha)-k \\
& g(\beta)=f(\beta)-k
\end{aligned}
$$

then $g(\alpha)$ and $g(\beta)$ have opposite sides

$$
\text { as } f(\alpha)<k<f(\beta) \text { (or) } f(\beta)<k<f(\alpha)
$$

By Bolzano's theorem, there exists $c \in(\alpha, \beta)$ such that

$$
\begin{aligned}
& g(c)=0 \\
(i, e) & f(c)-k=0 \\
\Rightarrow & f(c)=k \\
\Rightarrow & \text { for every } k \text { in between } f(\alpha) \text { and } f(\beta) \text { there exists a } \\
& c \in(\alpha, \beta) \ni f(c)=k(k \text { is arbitrary }) \\
\Rightarrow & f \text { takes every value between } f(\alpha) \text { and } f(\beta) .
\end{aligned}
$$

Remark:

The continuous image of a compact interval S under a real valued function is another compact interval [inf f(S),supf(S)].
Proof:
By intermediate value theorem, the function $f: S \rightarrow R$ defined on a compact interval takes every value between $f(a)$ and $f(b)$ if $S=[a, b]$. This together with the theorem "Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{R}$ be a real valued function from a metric space S to Euclidean space R.
Assume that f is continuous on a compact subset of S.
Then there exists points p and q in x such that, $f(p)=$ inf $f(X)$ and $f(q)=\sup f(X)$ " we have, $f(S)=[\inf f(S)$, sup $f(S)]$.

Connectedness

Definition:

A metric space S is called disconnected, if $S=A \cup B$ where A and B are disjoint non-empty open sets in $S . S$ is connected if it is not disconnected.

Note:

A subset X of a metric space S is called connected if when regarded as a metric subspace of S, it is a connected metric space.

Examples:

1. Consider the metric space $S=R-\{0\}$ with usual Euclidean metric.

$$
\begin{aligned}
& R-\{0\}=(-\infty, 0) \cup(0, \infty) \\
& \text { Therefore } R-\{0\} \text { is disconnected. }
\end{aligned}
$$

2. Every open interval is connected.

Consider, $\quad \mathrm{T}=\{0,1\}$ with the discrete metric $d(x, y)=\{1 \quad$ if $x \neq y, 0$ if $x=y\}$
then T becomes the discrete metric space. The possible subsets of T are ${ }^{\phi},\{0\},\{1\},\{0,1\}$. We know

$$
\begin{aligned}
B(a, r) & =\{x: d(x, a)<r\} \\
B(0,1 / 2) & =\{0\}, \text { and } B(1,1 / 2)=\{1\}
\end{aligned}
$$

Consider $\{0\}$. This is an open set of T .
Similarly, ${ }^{\phi},\{1\},\{0,1\}$ are also open
Thus every subset of T is open.
\Rightarrow Every subset of T is closed.
3. The set Q of rational numbers regarded as a metric subspace of Euclidean space is disconnected for Q $=A \cup B$ where,

A consists of all rationals $<\sqrt{ } 2$ and B consists of all rationals $>\sqrt{ } 2$. Also every ball in Q is disconnected.
4. Every metric space S contains non-empty connected subsets. In fact that for each p in S, the set $\{p\}$ is connected.

Definition:

A real valued function f which is continuous on a metric space S is said to be two valued on f if $f(S) \subseteq\{0,1\}$

In other words a two valued function is a continuous function whose only possible values are 0 and 1 .

Note:

We usually consider the set $\mathrm{T}=\{0,1\}$ with discrete metric space T , where every subset is both open and closed in T .

Theorem:

A metric space S is connected if and only if every two valued function on S is constant.

Proof:

Assume S is connected. Let f be two valued on S.

Claim: f is constant
Let $f^{-1}(\{0\})=A$ and $f^{-1}(\{1\})=B$ be the inverse of the subsets $\{0\}$ and $\{1\}$. $\{0\}$ and $\{1\}$ are the open subsets of the discrete metric space $\{0,1\}$. Since f is continuous, both A and B are open in S.

$$
\text { Also AnB = } \varnothing
$$

Hence $S=A \cup B$ where A and B are disjoint and open.
$\Rightarrow A=S$ and $B=\varnothing$ (or) $B=S$ and $A=\varnothing$ as (S is not disconnected)
$\Rightarrow \mathrm{f}$ is constant on S .
conversely,
\Leftarrow To prove, if every two valued function on S is constant, then S is connected.

Suppose S is disconnected.
Then $S=A \cup B$, where A and B are disjoint non-empty open sets of S.

To prove there exists a two valued function on S , which is not constant.

Let $f(x)=\left\{\begin{array}{cc}0 & \text { if } x \in A \\ 1 & \text { if } x \in B\end{array}\right.$
Since A and B are non-empty,f takes both values 0 and 1 .
So f is not a constant. f is continuous on S because the inverse image of every open subset of $\{0,1\}$ is open in S.

Thus f is two valued but not a constant.
$\Rightarrow \Leftarrow$ to the hypotheses
Hence S is connected
Hence the proof.

Continuous image of a connected set is connected

Theorem :

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{M}$ be a function from a metric space S to another metric space M. Let X be a connected subset of S. If f is continuous on X, then $f(X)$ is a connected subset of M .

Proof:

Let g be a two valued function on $f(X)$.

To prove : g is a constant.
Consider the composite function $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{T}$ defined on X by $h(x)=g(f(x))$. Since, composition of two continuous functions is continuous, h is continuous. As h takes only the values 0 and 1 it is two valued, As X is connected and h is two valued on X, by previous theorem, h is a constant.
$\Rightarrow g$ is constant on $f(X)$.
$\Rightarrow f(X)$ is connected.
Hence the proof.

Result :

Every curve in R^{n} is connected :
Since an interval $X \subseteq R$ is connected its continuous image $f(X)$ is connected. If f is real valued the image $f(X)$ is another interval. If f has values in R^{n} the image, $f(X)$ is called a curve in R^{n} and it is connected.

Theorem : Intermediate value theorem :

Let f be real valued and continuous on a connected subset of R^{n}. If f takes two different values in S, say a and b, then for each real c between a and b there exists a point x in S, such that $f(x)=c$.

Proof :

$f(S)$ being the continuous image of a connected set is connected.

As $f(S) \subseteq R$ and it is connected and it is an interval. Since f takes the values a and b in $S, f(S)$ is an interval containing a and b.
\Rightarrow All values in between a and b are taken by f
\Rightarrow for $\mathrm{a}<\mathrm{c}<\mathrm{b}$ there exists $\mathrm{x} \in \mathrm{S}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{c}$
Hence the proof.

Components of a metric space

Theorem :

Let F be a collection of connected subsets of a metric space S such that the intersection $\mathrm{T}=\bigcap_{A \in F} A$ is nonempty. Then their union $\mathrm{U}=\mathrm{U}_{A \in F} A$ is connected.

Proof :

Given $\mathrm{T}=\bigcap_{A \in F} A$ where F is a collection of connected subsets of S. Since T is non-empty, let $t \in T$
$\Rightarrow t \in A \quad$ for every $A \in F$
To prove, U is connected
Let f be a two valued function on $U=U_{A \in F} A$. It is enough if we show that f is a constant, for S is connected iff every two valued function on S is connected.

Let $x \in U$ be arbitrary.
$\Rightarrow x \in A$ for some A in F
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{t}) \quad \forall \mathrm{x} \in \mathrm{A}$
Since A is connected and f is constant on $A, b y(1) \forall x \in U$,

$$
f(x)=f(t)
$$

$\Rightarrow f$ is constant on U.
Hence the proof.

Example :

Let $A=(0,1)$
$B=(1 / 2,2)$
$\mathrm{C}=(-2,1)$

$$
\mathrm{A} \cap \mathrm{~B} \cap \mathrm{C} \neq \phi
$$

$A \cup B \cup C=(-2,2)$ which is connected.

Component of X :

Every point x in a metric space S belongs to atleast one connected subset of S, namely $\{x\}$. The union of all the connected subsets which contain x is connected and is called the component of S and is denoted by $U(x)$.

Note:

$U(x)$ is the maximal connected subset of S which contains x .

Example :

In the above example
Let $A=(0,1), B=(1 / 2,2), C=(-2,1)$
Each of A, B and C is connected consider the element $3 / 4$.

$$
3 / 4 \in A, 3 / 4 \in B \text {, and } 3 / 4 \in C
$$

The largest connected set containing $3 / 4$ is $A \cup B \cup C=(-2$, 2) which is connected by above.
then,

$$
U(3 / 4)=(-2,2)
$$

Theorem :

Every point of a metric space S belongs to a uniquely determined component of S . in other words the components of S form a collection of disjoint sets whose union is S .

Proof :

Since every point $x \in S$ belongs to atleast one connected subset called $\{x\}$, we can say that x belongs to atleast one component of S.

Union of components of S is S.
Components are disjoint.

Suppose $x \in \mathrm{U}_{1} \cap \mathrm{U}_{2}$ where U_{1} and U_{2} are two components of S . $\Rightarrow \mathrm{U}_{1} \cup \mathrm{U}_{2}$ is a maximal connected set containing X condratracting the fact that U_{1} and U_{2} are maximal connected sets containing X .
$\Rightarrow \mathrm{U}_{1} \cap \mathrm{U}_{2}={ }^{\phi}$
Hence the proof.

