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Continuity and inverse images of open and closed sets.

Inverse image

Letf: S—T be a function fromasetStoasetT.fY is
a subset of T,the inverse image of Y under f, denoted by f
1(Y) is defined to be the largest subset S which f maps into
Y.
f1(Y)={x: xes, f(x) e Y}

Result:
Let A and B be subsets of T. then

AcB=f1(A) SF1(B)

Proof:
Let xef1(A)
=f(x)€ A by defn of f1(A)
=f(xX)eB as AcB
=xef1(B)
- FHA) =f1(B)



Theorem:
Letf: S—T be a function from Sto T.
If XS and YcT then we have
(@) X =fXY) = f(X)cY
(b) Y=1f(X) = Xcfi(Y)
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(a)
Given X = f1(Y)

Letyef(X)
=y=f(x) for some xeX
=y=f(x) for some xef(Y)
=yeY by definition of f1(Y)
SfX) Y
X=f1(Y) =f(X)cvy



Given Y= f(X)
Let xeX

=f(x) e f(X)

=f(X)eY since Y=f(X)

=xefi(Y)

Therefore Xcfi(Y)
Hence Y=f(X) =xcfi(y)
Thus
f(fF1(Y)) <Y and X< f1(f(X))

Theorem:

Let f : S —T be a function from one metric space (S,ds)
to another metric space (T,dr) then f is continuous on S iff
for every open set Y in T, the inverse image f1(Y) is open
is S.

Proof:
fis continuous < inverse image of every open set is
open under f
= let f be continuous on S.
LetY be openinT.
Claim:
f1(Y)is openin S
Let pefi(Y)
To prove



p is an interior point of f1(Y)

Let f(p)=y
As f(p)ey and Y is open, f(p) is an interior point of Y.
There exists an € >0 such that Br(y,¢ )cY ...(1)

Since f is continuous at p,there is an §>0 such that
f(Bs(p,s)=Br(y,¢) ..(2)

Bs(p,s) =f1(f(Bs(p, 5))
cfi(Br(y,# ) using (2)
cfi(Y) using (1)
= p is an interior point of f(Y)
= f1(Y) is open in (as p is arbitrary)

Now,

=

Let inverse image of every open set be open
To prove f is continuous
LetpeS
Then f(p)eT
Let f(p) =y
For every¢ >0, the ball Br(y,* )T
.. BY hypothesis
f1(B1(y,¢ )is open in S.
and pef?! (Br(y,%))
.".there exist §>0 such that
Bs(p, 5) = (Br(y, ¢))
= f(Bs(P,s) <f(f1(Br(y,¢))
<Br(y,#)
=f is continuous at p. (since p is arbitrary)
=f is continuous on S



Hence the proof.

Theorem:

Letf: S—T be a function from one metric space (S,ds) to
another metric space (T,dt). Then fis continuous on S iff
for every closed set Y in T, the inverse image f! (Y) is
closed in S.
Proof:

Note that, f3(T-Y) = S - f1(Y)
fis continuous < inverse image of every closed setis
closed.

— | et f be continuous

To prove inverse image of every closed set is closed.
LetY be closedinT
Claim: f1(Y) be closedin S.

Yisclosedin T =T-YisopeninT
=f1(T-Y) isopenin$S
=S -f}(Y)isopenin$S
= f1(Y)is closed in S.
=>inverse image of every closed set is closed.

— Let the inverse image of every closed set closed.



Claim: fis continuous
It is enough to prove that inverse image of every open
setis open.
LetY be openinT
Then T-Y is closedin T

= f1(T-Y) isclosed in S  (by hypothesis)
=S -f1(Y)isopenin S
= f is continuous

Remark:
The image of an open set under a continuous mapping
IS not necessarily open.
Counter example:
Consider the function f : R—R
Define by f(X) =1 Vx<R

Ris openin R.
Its image set f(R)={1}
{1} is not open in R because 1 is not an interior point of R.

(i) The image of a closed set under a continuous mapping
need not be closed.
Consider the example
f: R—(-11/2,11/2) defined by f(x) = tantx
Then the image of a closed set is not closed in (-11/2,11/2)



Continuous functions on compact sets:

Definition of covering:-

A collection F of sets is said to be covering of a
given set S if

S SUper A
The collection F is said to cover S.
If F is a collection of open sets then F is called an open
covering of S.

Definition: Compact Set

A set Sin R"is said to be compact iff every open
covering of S contains a finite subcover.

Theorem:

Letf: S — T be a function from one metric space (S,ds)
to another metric space (T,dy). If f is continuous on a
compact subset X of S, then the image f(X) is a compact
subset of T. In particular, f(X) is closed and bounded in T.

Proof:
Given Xc S is compact and f is continuous
Claim: f(X) iscompact in T
Let F be an open covering of f(X)
(ie) f((X)cUacF A
Since each Aisopen in T and fis continuous on S, each f
1(A) is open in S. These sets f1(A) form an open covering
of X.
For,
f(X)cUacr A implies
1 (f(X)) < FH UacrA) = Uacr F1A)
This implies X < Uacr F1(A) as Xcf1 (f(X))
Since X is compact, a finite number of open sets of {f-
LA/ACF)} will cover X
(ie) X < fHA)UF(A)U...UFL(Ap)



= fX)c f(F1(A)Uf(A)U...uf1(Ap))
= f(FY(A)Uf(FL(A)U)...... U f(fF1(Ap))
= f(X) is closed and bounded, by theorem
“If S is subset of R", the following statements are
equivalent.
(1) S is compact.
(2) Sis closed and bounded
(3) Every infinite subset of S has an accumulation
point in S”.

Hence the proof.

Bounded set :

A set XcR" is a bounded set if there exists ae R"

and r > 0, such that X< B(a,r).

Bounded function :

A function f: S — R"is called bounded on S if
there is a positive number M such that
[IfX)|| < M V xeS.

Result:

Letf:S — R" then fis bounded on S iff f(S) isa
bounded set of R".

Proof:

—

Letf: S — R" be bounded on S.
Then 3 M > 0 such that
[If)]] <M ¥V xes

Claim: f(S) is a bounded subset in R™
Since  ||[f((X)||<M, ¥V xesg
f(S) < B(0,M) where B(0,M) is an open
ball with centre at origin and radius M.
l.e f(S) is a bounded subset in R"



Let f(S) be a bounded subset of R"
Then 3 aeR"and r > 0 such that
f(S) < B(a,r
Let xes
[1FOAN]= [1T(x)-O|
= |[f(x)-a+a-0]|
<[If¢a-al[+all
<(r+|all)
= Ml
This is true for every xe s,
= fis bounded on S.

Theorem:

Let f : S — R" be a function from a metric space S to
the euclidean space R". If f is continuous on a compact
set X of S then f is bounded on X.

Proof:

Let f be a continuous function on the compact subset X
of S.
Then by theorem

‘Let f : S — T be a function from one metric

space (S,ds) to another metric space (T,dy). If f is
continuous on a compact subset X of S, then the image
f(X) is a compact subset of T. In particular, f(X) is closed
and bounded in T”

f(X) is compact in R" and f(X) is bounded in R"
= fis bounded on X, by the previous result

Result:

If fis a real valued function bounded on X, then f(X) is
a bounded subset of R and so it has int f(X) and sup f(X)
and

Int f(X) < f(X) < sup f(X), xe X



Theorem:

Let f : S — R be a real valued function from a metric
space S to the euclidean space R. Assume f is continuous
on a compact subset X of S. Then there exists a point
(p,q) in X such that f(p) = int f(X) ,and f(q) = sup f(X)

Proof:
Since f is a continuous function on the compact subset
S, f(X) is compact in R.
Also f(X) is closed and bounded in R
Since f(X) is bounded, m < f(xX) < M with xe X
where m=inf f(X) and M=sup f(X).
=every open ball with m as centre intersects f(X)
= m is an adherent point of f(x)
= m=f(p) for some pex
Similarly,
=every open ball with M a centre will also intersect
f(X)
..M is also an adherent point of f(X)
M e f(X) as f(X) is closed.
Let M=f(g) for some qe X

Thus f(p)= inf f(X) and f(q) = sup f(X).

Theorem :Let f: S—T be a function from one metric
space(S, ds) to another metric space(T,dt). Assume that f
is one-to-one on S,so that the inverse function “f™* “ exists.
If S is compact and if f is continuous on S, then 1 is
continuous on f(S).

Proof :

Given fis a continuous function on the compact

space S. To prove, f™: f(S)—S is continuous



We have, to prove that inverse image of every closed set
in S is closed in f(S), it is enough is prove that for every
closed set X in S, the image f(X )is closed in f(S).

Since X is closed and S is compact.

By theorem,

“Every closed subset of a compact space is compact.”
X is compact.
= f(X) is compact. By theorem,
“continuous image of a compact set is compact.”

= f(X) is closed by theorem,”

compact subset of a metric space is closed

and bounded”.

Topological Mappings (Homeomorphisms)

Letf: S —T be a function from one metric
space(S,ds) to another metric space (T,dt). Assume that f
is one-to-one on S, so that the inverse function f1 exist. If



fis continuous on S and if ! is continuous on f(S) then f is
called a topological mapping or a homeomorphism.

In this case the metric spaces (S,ds) and (T,dy) are
said to be homeomorphic.

Note:
1. f is a homeomorphism then f!is also a
homeomorphism.
2. A homeomorphism maps open subsets of S onto
open subsets of f(S) and

3. It maps closed subsets of S onto closed subsets of
f(S)

Topological property:
Definition:

A property of a set that remains invariant under every
topological mapping is called a topological property.
Example:

The properties of being open, closed and
compact are topological properties.

Definition: Isometry

A function f: S—T which is one to one on S and which
preserves the metric is called an isometry.



(ie) If S is a isometry then,
ds(x,y) = dr (f(x),f(y)) forevery x,yes

If there is an isometry from (S,ds)—(f(S),dr) the two metric
spaces are called isometric.

Sign preserving property of continuous functions:

Theorem:

Let f be defined on an interval S in R. Assume that f is
continuous at a point ¢ in S and that f(c)#0. Then there
exist a one ball B(c,s) such that f(x) has the same sign as
f(c) in B(c,s)NnS.

Proof:
Since f is continuous at the point c there exist and ¢ >0
for the given >0 such that

f(c)-¢ <f(x) <f(c)+¢ xeB(c,5)nS.
1)



It's given that ce s,
f(c)#0 Suppose f(c)> 0
Then take ¢ =1f(c)/2 in (1)

= f(c) - f(c)/2 < f(x) < f(c) + f(c) /2

= 121f(c) <f(x)< 3/2f(c) x €B(c,5)NS

= f(x) >0 for every
xeB(c,s)NS
Suppose f(c)
<0

&€ =-f(cy2in
)
= f(c)+f(cy2 < f(c) < f(c) - f(cy2 1 xeB(c,5)NS
= 32f(c) < f(x) < f(c)2



Let f(c) = -m where m is positive
Then -32 m <f(x)<-m2 V xeB(c,s)nS
=f(x) <0 VxeB(c,s)NS

Hence the proof.

Bolzano’s theorem:

Let f be a real valued and continuous function on an
interval [a,b] in R and suppose that f(a)and f(b) have
opposite signs (i,e) f(a)f(b)<O then there is atleast one
point ¢ in open interval (a,b) such that f(c) =0

Proof:

Given that f(a) and f(b) have opposite signs.

Assume that f(a)>0 and f(b)<O
Let A ={x: xe[a,b], f(x)=0}

Then Ais non-empty. Since f(a)>0, acA
Also A is bounded
above by b. Therefore
A has a supremum.
Letc=sup A
Now a<c< b
To prove, f(c) =0

If f(c) # 0 then by the sign preserving property of real
valued continuous function there is a 1-ball B(c,s) in
which f has the same sign as f(c). If f(c) >0 there are



points x>c at which f(x) > 0, contradicting the definition of
C.

If f(c)<0, then c -5/2 is an upper bound for A again
contradicting the definition of c. Hence f(c) =0.

Theorem:

Assume f is real valued and continuous on a compact
interval S in R. Suppose there are two points a < 3in S
such that f(a) # f(B) then f takes every value between f(a)
and f(B) in the interval (a,f3).

Proof:

Let a and 3 be such that f(a) # f(B).
Let k be a number between f(a) and f(3)
Define: g: a,]—R
9(x) = f(x)-k
then
g(a) = f(a)-k
a(B) = f(B)-k



then g(a) and g(B) have opposite sides
as f(a)<k<f(B) (or) f(B)<k<f(a)

By Bolzano’s theorem, there exists ¢ < (a,3)such that

g(c) =0
(ie) f(c)-k=0
= f(c) = k

— for every k in between f(a) and f() there exists a
ce(a,B) 3 f(c) = k (k is arbitrary)
—f takes every value between f(a) and f(3).

Remark:

The continuous image of a compact interval S
under a real valued function is another compact interval
[inf f(S),supf(S)].

Proof:

By intermediate value theorem, the function f: S—R
defined on a compact interval takes every value between
f(a) and f(b) if S = [a, b]. This together with the theorem
“‘Let f: S—R be a real valued function from a metric space
S to Euclidean space R.

Assume that fis continuous on a compact subset of S.
Then there exists points p and q in x such that,f(p) = inf
f(X) and f(q) = sup f(X)” we have, f(S) = [ inf f(S), sup f(S)].

Connectedness

Definition:

A metric space S is called disconnected, if S = AuUB
where A and B are disjoint non-empty open sets in S. S is
connected if it is not disconnected.



Note:

A subset X of a metric space S is called connected if
when regarded as a metric subspace of S, it is a
connected metric space.

Examples:

1. Consider the metric space S = R-{0} with usual
Euclidean metric.

R'{O} - ( 'OO’O)U(O’OO)
Therefore R-{0} is disconnected.
2. Every open interval is connected.
Consider, T ={0,1} with the discrete metric

dix, y)={1 ifx=y, Oif x=y}
then T becomes the discrete metric space. The

possible subsets of T are ?,{0},{1},{0,1}. We
know
B(a, r) = {x: d(x, a)<r}
B (0,12) = {0}, and B(1,12) = {1}

Consider {0}. This is an open set of T.

Similarly, ¢,{1},{0,1} are also open

Thus every subset of T is open.

= Every subset of T is closed.

3. The set Q of rational numbers regarded as a metric
subspace of Euclidean space is disconnected for Q
= AUB where,



A consists of all rationals < v2 and B consists of all
rationals >V2. Also every bal in Q s
disconnected.

4. Every metric space S contains non-empty
connected subsets. In fact that for each p in S, the
set {p} is connected.

Definition:

A real valued function f which is continuous on a
metric space S is said to be two valued on fif f(S) < {0,1}

In other words a two valued function is a continuous
function whose only possible values are 0 and 1.

Note:

We usually consider the set T = {0, 1} with discrete
metric space T, where every subset is both open and
closed inT.

Theorem:

A metric space S is connected if and only if every two
valued function on S is constant.

Proof:



Assume S is connected . Let f be two valued on S.

Claim: fis constant

Let f1({0}) = A and f1({1}) = B be the inverse of the
subsets {0} and {1}. {0} and {1} are the open subsets of
the discrete metric space {0,1}. Since f is continuous,
both A and B are open in S.

Also ANB = @

Hence S = AUB where A and B are disjoint and open.

= A=SandB=9¢ (or)B=Sand A=@as (Sis not
disconnected)

= fis constant on S.
conversely,

< To prove, if every two valued function on S is
constant, then S is connected.

Suppose S is disconnected.

Then S = AUB, where A and B are disjoint non-empty
open sets of S.

To prove there exists a two valued function on S, which is
not constant.



0if xeA
1 if xeB

Let f(x ):{
Since A and B are non-empty,f takes both values 0 and 1.
So fis not a constant. f is continuous on S because the
inverse image of every open subset of {0,1} is open in S.
Thus f is two valued but not a constant.

= « to the hypotheses

Hence S is connected

Hence the proof.

Continuous image of a connected setis connected
Theorem :

Let . S—>M be a function from a metric space S to
another metric space M. Let X be a connected subset of
S. If fis continuous on X, then f(X) is a connected subset
of M.

Proof :

Let g be a two valued function on f(X).



To prove : g is a constant.

Consider the composite function h: X—T defined
on X by h(x) = g(f(x)). Since, composition of two
continuous functions is continuous, h s
continuous. As h takes only the values 0 and 1 it
Is two valued, As X is connected and h is two
valued on X, by previous theorem, h IS a
constant.

— g is constant on f(X).

= f(X) is connected.

Hence the proof.

Result :

Every curve in R" is connected :

Since an interval XCR is connected its continuous image
f(X) is connected. If f is real valued the image f(X) is
another interval. If f has values in R" the image, f(X) is

called a curve in R" and itis connected.

Theorem : Intermediate value theorem :

Let f be real valued and continuous on a connected
subset of R". If f takes two different values in S, say a
and b, then for each real c between a and b there exists a

point X in S, such that f(x) = c.

Proof :

f(S) being the continuous image of a connected set is

connected.



As f(S) € R and itis connected and itis an interval. Since
f takes the values a and b in S, f(S) is an interval
containing a and b.

= All values in between a and b are taken by f
—for a<c<b there exists xe S such that f(x) = ¢

Hence the proof.
Components of a metric space

Theorem :

Let F be a collection of connected subsets of a metric
space S such that the intersection T = Ny A IS NON-
empty. Then their union U = U ¢rA IS cOnnected.

Proof

Given T = Nyer A wWhere F is a collection of connected
subsets of S. Since T is non-empty, let teT

=t e A forevery AcF —(1)

To prove, U is connected

Let f be a two valued function on U = Uaer A. It is
enough if we show that f is a constant, for S is connected
iff every two valued function on S is connected.

Let xeU be arbitrary.

= XeA forsome AiInF
= f(xX) =f(t) VXeA

Since A is connected and fis constant on A, by(1)V xe U,

f(x) = ()



=f Is constant on U.

Hence the proof.

Example :

Let A= (0, 1)
B = (12, 2)
C=(2 1)

ANBNC # ¢

AUBUC = (-2, 2) which is connected.

Component of X :

Every point x in a metric space S belongs to atleast
one connected subset of S, namely {x}. The union of all
the connected subsets which contain x is connected and

is called the component of S and is denoted by U(x).

Note :

U(X) is the maximal connected subset of S which contains
X.



Example :

In the above example
LetA=(0,1),B=(12,2),C=(-2,1)
Each of AB and C is connected consider the element 3/4.

34 eA 34eB,and 34 eC

The largest connected set containing 34 is AUBUC = (-2,
2) which is connected by above.

then,
Ua) = (-2, 2)
Theorem :

Every point of a metric space S belongs to a uniquely
determined component of S. in other words the
components of S form a collection of disjoint sets whose
union is S.

Proof :

Since every point x€S belongs to atleast one
connected subset called {x}, we can say that x belongs to
atleast one component of S.

Union of components of S is S.

Components are disjoint.



Suppose xeU1M1U, where Ui and Uz are two components of S.

—=U1UU> is a maximal connected set containing X
condratracting the fact that U; and U, are maximal
connected sets containing X.

sU;NU, = ¢

Hence the proof.



