Unit I

Definition : Uniform continuity

Let f : S—T be a function from on metric space (S, ds) to
another (T, dy). Then f is said to be uniformly continuous on a
subset A of S if the following condition holds.

“For every €>0 there exists a § >0 (depending only on €) such that

if x € A and pe A then, ds(f(x), f(p)) <€ whenever ds(x, p)< §”.
Note :

Continuity is defined at a point where as uniform continuity is
defined on a set.

Hence we say continuity of a function is a local property
where as uniform continuity of a function is a global property.

Examples:
Consider f: (0,1] —R defined by
f(x) = 1/x

The function fis continuous on A = (0,1] but the function is not
uniformly continuous

Lete=0. Let0<6<1

Take x= § and p= 6/11

then |x-p| = |6 - 6/11]
=610/11< 6



And | f(x) — f(p)| = | 1/x — 1/p|
= | 1/6— 11/§|
=1/8|-10 |
=10/6 > 10
Hence for these two points we always have | f(x) — f(p) | > 10
Hence fis not uniformly continuous.
Consider f: (0,1] — R defined by
f(x) = x?
fis uniformly continuous on A(0,1]
| 1) = () [ = | %% - p?|
= | (x-p) (x*+p) |
<|x+p ||xp|
<2|x-p]|asxp € (0,1]
If x+p < & then f(x) — f(p) < 26.

Hence if € is giventake 6 = ¢/ 2, so that |x-p| < 6

=[f(x) -f(p) | <€
Thus fis uniformly continuous on A.

Note :

If the above function is defined on R, instead of (0,1] then F
is not uniformly continuous on R.



Note:

Uniform continuity on A = continuity on A

Uniform continuity and compact sets

Theorem: (Heine)

Let f : S—T be a function from one metric space (S, ds) to
another (T, dr). Let A be a compact subset of S and assume
that f is continuous on A. Then fis uniformly continuous on A.
Proof:

Let € > 0 be given. Then each point ‘a’ in A such that

dr (f(x), f(a)) < e/2 whenever xeBs (a,r) N A -------------- (1)
consider the collection of open balls Bs (a, r/2 ) each with

radius r/2. These balls cover A and since A is compact, a
finite number of these also cover A.

A S ULy Bs(ag, <) ——(2)
In any ball of twice the radius B ( ax, r« ) by (1) we have.
dr(f(x), f(ak)) < €/2 whenever xeBs (ax, k) N A ---------- (3)

Let § =min {ri/2, r2/2,.....cccceeeennea. ... rm/2}
Let X, pEA 3 ds(X,p) < § —-----=-m-mmmmmmmmmeeee (4)



Then 3 a ball B(ak, r/2) containing x from (2)
using (3) we have,
dr (f(x), f(ax)) < &/ 2 -==----==--mmmmmmm - (5)
by the triangle inequality we have,
ds (p,ax) < ds (p,x) + ds (X, ax)
<&+n/2
= rnd2 + /2 (defn of d)
= Ik
= peBs(ax, rc) N A
= dr (f(p), f(ak)) < €/2 by (3)
Once again by triangle inequality,
dr (f(x), f(p)) < dr (f(x), f(aw)) + dr (f(ax), f(p))
<egl2+¢€/2
=€ [using (3) and (2)]
Hence the proof.

Fixed point theorem for contractions:

Definition: Fixed point
Let (s,d) be a metric space be a function into itself. A point p
in S is called a fixed point of r, If F(p) = p.

Definition: Contraction mapping

The function f: S—S is called a contract of S. If there is a
positive number a<1 [called a contraction constant]

Such that, d[f(x), f(y)] < ad(x,y) forall x,y in S

Result:
A contraction mapping of any metric space S is
uniformly continuous on S.



Suppose f: S—S is contraction mapping then 3 0<a<1 such
that d[f(x), f(y)] <d (x,y)

thus give £>0, 36 = ¢ /a such that

d(xy)< 6=d(f(x), f(y)) <a.d(xy)=><a.c/a

=¢ forevery (Xy)inS
= fis uniformly continuous on S.

Theorem:
Fixed point theorem:
A contraction of a complete metric space S, is a unique fixed
point p.
Proof:

First let us prove that a contraction f : S—S a complete
metric space S has almost a fixed point.
Let p and p' be a two fixed points.

Then d[ f(p), f(p')] < ad (p,p') since fis a contraction.
=d (p,p) <ad (p,p)
=d (p,p) =0
p=p
Hence the contraction f can be atmost one fixed point.

A contraction has exactly one fixed point. Take any point X in
S and consider sequence X, f(x), f(f(x)), f(f(f(x))),

Let po=X
p1 = f(po)



p2 = 1(f(x)) = f(p1)

Pr1 = f(Pn) n=0,1,2,3,.......... (1)

Then {pn} is a sequence.

To prove {pn} converges to fixed point of f.
First let us prove {pn} is a Cauchy sequence.

d (Pn+1, pn) =d {f(pn), f(Pn-2)}
<a d (Pn,pn-1)
Now d(pn,pn+1) < a d (pn-1, pn-2) using (1)

d (pn-l, pn-Z) <ad (pn-2, pn-3)
by repeatedly using (2) we have,

d (Pn, pn+1) < " d (Po, P1)
=ca" (where c=d (po, p1)

Now, let m>n
d (Pm, Pn) < d (Pn, Pn+1) + d (Pn+1, Pr+2) +...+d (Pm-1, Pm)

by triangle inequality,
=Yren d (P, Pret)

k=n

< yml ak

“o Nt ot



=c(a+ o™+ a2 E o+ o)
=c a"(1+a+a®+..oiiiiinnn. + am")
=ca" (1-a™/1-a
<ca"/1l-a

—0 as a" —0 (when n—)

= {pn} is a Cauchy sequence.

But S is a complete metric space. So that sequence {pn}
converges in S.

Let {pn} —P
Now by continuity of f
f(p) =f (lim py)

= lim f(pn)

n— 0o
= lim ppyq =P
n—oo
Thus f(p) = p and so p is a fixed point of f.

Hence the proof.

Discontinuous of real valued functions:

Right hand limit of F:

Let f be defined on an interval (a,b). Assume c € [a,b]. If f(x) —A,
as x—c¢ through values greater than c then, A is the right hand

limit of f at c.

Notation:



lim f(x) = A

X—>C

The right hand limit A is also denoted by f (c+). Inthe ¢, §
definition of right hand limit.

For over, € > 0, there is a § >0 such that

[f(X) — f(c+)| < e whenever c<x<c+8<Db

Note:

For the above case, f need not be defined at point c itself.

Continuous from the right:

If f is defined at c and if f(c+) = f(c), we say that fis continuous
from the right at c.

Left hand limit of f:

Let f be defined on an interval (a,b).
Assume c € (a, b]
If f(xX) — A as x— c through the values less than c, then A is the

left hand limit of f at ¢ and lim f(x) = A

X—C

The left hand limit A is denoted by f (c-)
the &, 6 definition of left hand limit of f.
For €>0, 3 §>0, 2| f(x) — f (c-) | < € whenever a<c- §<x<c

Continuous from the left:

If fis defined at c and if f(c-) = f(c), we say f is continuous from the
left at c.



Note:

If a<c<b then fis continuous at c if and only if
f(c) = f(c+)=f(c-)

Example:

Let f : R—>R be defined by

_(1ifx<0
f(x)'{z if x>0

Then fis not continuous

f is not continuous at O because
f(0) = 2, f (0+) =2, f(0-) =1
but fis continuous from the right
since f(0) = f(0+)

Discontinuity of f:

If f is not continuous at c, then c is discontinuous at c. In this case
one of the following conditions is satisfied.

(@) Either f(c+) or f(c-) does not exist



(b) Both f(c+) and f (c-) exist but have different values
[ irremovable discontinuity ]

(c) Both f(c+) and f (c-) exist and f(c+) = f(c-) # f(c)
[ Removable discontinuity ]

In case (c),the point ¢ is a removable discontinuity, since the
discontinuity could be removed by redefining f at c to have f (c+) =

f (c-).

In case (a) and (b), we call c is a irremovable discontinuity because
the discontinuity cannot be removed by redefining at c.

Definition:

Let f be defined on a closed interval [a, b]. f(c+) and f(c-) both exist
at some interior point c, then

(@) f(c) — f(c-) is called the left hand jump of f at c.
(b) f (ct+) — f(c) is called the right hand jump of f at c.
(c) f (c+) —f(c-) is called the jump of f at c.

If any one of these three numbers is non-zero, then c is called jump
discontinuity of f.

In the previous example

Left hand jump of fatO is,

f(0) - f(0-)=2-1=1

Right hand jump of f(0+) —f(0) =2-2=0
Jump f (0+) — f(0-) = 2-1 =1



Jump at end-points of an interval:

Let f be defined on (a, b). Then for the end points only one sided
jumps are considered.

At a, the right hand jump at a, f (a+) — f (a)
At b the left hand jump at b, f(b) — f(b-)
Example:

() Letf:R— R by
f(x) =x/|x|, if x+0

f(0)=A
£(0)= A

Then f(0) = A; f(0+)=1and f(0-)=-1
Jump of fat 0 =f(0+) —f (0-)
=1-(-1)
=2+0



=~ f has jump discontinuity atO
Left hand jump of f at 0= f(0) — f(0-)
= A= (-1)
= A+l
Right hand jump of fat 0 =f (0+) —f (0)
=1-A
Example:

Removable discontinuity

Let f: R—R be defined by

_(1ifx=#0
f(X)_{Oifx=O

Here, f(0) =0, f(0+) =1 ,f(0-) =1
f has removable jump discontinuity at O,

f can be made continuous by redefining fat 0 as f(0) = 1



(i.,e) f(x) =1, for all x.

(iii) lrremovable discontinuity :

Example:

f: R—R be defined by
f(x) = 1/x , x*0
f(0) = A
f (0+) = +o
f(0-) = -o0
(i.e) f (O+) and f (0-) do not exist.
=~ f has irremovable discontinuity at O.
(iv) f: R—>R

A
f(x)z{smx ifx+0
A ifx=0



f has irremovable discontinuity at O.
neither f(0+) nor f(0-) exists.
(v) f: R—R defined by

.1
f(X):{xsmx if x#0
1 ifx=0

f has a removable jump discontinuity at O.

f0)=1, f(0+)=0,f(0-) =0



MONOTONIC FUNCTIONS

Definition: Monotonic increasing (or non decreasing)

Let f be a real valued function defined on a subset S of R . Then f
is said to be increasing on S if for every pair of points xand yin S

x <y = f(x) <f(y)
If x <y = f(x) <f(y), then fis said to be strictly increasing on S.
Definition: Monotonic decreasing (or non increasing)

Let f be a real valued function defined on a subset S of R. Then fis
said to be decreasing (or non increasing) on S,if for every pair of
points x and y in S

x <y = f(x) = f(y)
If x<y = f(x) > f(y), then f is said to be strictly decreasing on S.

Definition: Monotonic functions

A function is called monotonic on S if it is increasing on S or
decreasing on S.

Result:
If f is an increasing function then -f is an decreasing function.
Proof:
Let f be increasing on S.
Then x<y = f(x) < f(y) VX, YyES
= —f(x) = — f(y) VX, YES
Thus x<y = (-) (x) = (-) (y) VX,YES



(i.e) -f is a decreasing function on S.

Examples:

Letf: R — R be defined by
f (x) = 3x

then f is increasing on R.

2<-1
f(-2) =-6
f(-1) =-3
6<-3

Consider,
g : R — R defined by
g(x) = 1/x

g is a decreasing
function on R.




Theorem:

If f is increasing on [a, b], then f (c+) and f (c-) both exist for each
c in (a, b) and we have

f(c-)< f(c)< f(c+H)

At the end points we have
f(a) < f(a+) and f(b-) < f(b)

Proof :
Let A ={f(X): a<x<c}
Since f is increasing A is bounded above by f(c).
~ A has a supremum.
Let o« =sup A.
Then « < f(c) (1)
To prove f(c) exists and f(c-) = «
To prove for every >0, there is a §>0, such that

C—6<x<c> |f(x)-x|<e¢

Since a =supA, by “Approximation Property” of supremum which
satisfy

“If S is a non-empty set of real numbers with b = sup S, then for
every a < b there is some x in S such that

a<x<b

We have f(x;) in A such that



a—e< f(x1)<a wherex; <c
Since f is increasing for every x in (x4, c) we have,
X1 < x, so f(x1) < f(x)
=a—¢e< f(x1)) 2« on x €A
=|f(x)—al<e¢
x1<x<c>|fx)—a|l<e
Thus c—d6<x<c=|f(x)—a|<s¢
Hence f(c.) exists and f(c.)= a where § = ¢

Similarly, there exists B = {f(x):c < x < b} and for every € > 0,
there is a § >0 such that

c<x<co=>|fx)-PBl<c¢
(i.,e)  f(c+) existsand f(c+)=p
At the end points,
If c = a then f(a—) does not exists and
f(a) = f(a+t)
If c = b then f(b+)does not exist for f on [a, b] and
f(b—) = f(b)
Hence the proof
Note:

Monotonic function on compact intervals always have right and
left hand limits.



Theorem:

Let f be strictly increasing on aset S in R. Then f! exists and
is strictly increasing on f(S).

Proof:
Let f be strictly increasing on S. then
x<y=fx)<f)
(i.e) different elements have different images
= fisl-1onS
=f-1 exists on f(S)
Claim: f1:f(S)— S is strictly increasing
Let yi1 <y, ,where y,y, € f(S)
Then y; = f(x;) and y, = f(x;)
Since fis1—1, for some x',x, €S
x1=fr) & x2=f1(02)
Suppose [ (y1) > ™ (¥2)
=X1 > Xy
= f(x1) > f(x2)
=Y1>Y2

which is contradiction as y; < y,

S ) < 7 (2)



y1<yz = fr)< frQ) VyhLy:€f(S)
Hence f!is strictly increasing on f(S)
Theorem:

Let f be strictly increasing and continuous on a compact
interval [a, b]. Then f1is continuous and strictly increasing on the

interval [f (a), f(b)].

Proof:

By previous theorem, “f is strictly increasing on [a, b].
flexists and is strictly increasing on [f (a), f(b)].

By theorem,

Let f : S = T be a function from one metric space (S,ds) is
another (T,dt). Let f be 1-1. If S is compact and f is continuous
on S. Then f1is continuous on f(S). We have

f is continuous on [a,b] = f* is continuous on

[f (@), £ (B)].

Hence the proof

DIFFERENTIATION
Definition: Difference of Quotient

Let f be defined on an open interval(a,b). Then for two
distinct points x and c in (a, b) we can form the quotient

fFx)—f(c)

X—C



This is called Difference Quotient
Definition: Derivative of f (Differentiability of f)

Let f be defined on an open interval (a,b) and let ¢ € (a, b) then
f is said to be differentiable at ¢ whenever the limit

llm f(X)—f(C)

xX—C X—C

exists

The limit, denoted by f'(c), is called the derivative of f and c

xX—C X—C
Successive of Derivatives

f'is called the first derivative of f. The second derivative of f
is f'" at c and is defined by

() = lim 219

xX—C X—C

The successive derivatives of f are defined similarly and the nt
derivative is denoted by f™

Notation:

f'(c)=d—y ¢ =Df(c)=1y'(c) all denote the first

dx *=
derivative of y = f(x) at c
Theorem:

If £ is defined on (a, b) and differentiable ata pointcin (a,b),
then there is a function f* (depending on f and on c¢) which is
continuous at ¢ and which satisfies the equation

fx)—fle)=—=-0o)f"(x) ... (1)



for all x is (a,b), with f*(c) = f'(c¢). Conversely, if there is a
function f*, continuous at ¢, which satisfies (1), then f is
differentiable atcand f'(c) = f*(¢)

Proof:

Let f be differentiable atc . Define f* on (a,b) by

o[ e
f'(c) if x=c

This satisfies the equation
f(x) = flc)=&-c)f"(x) and
f @) =f'(c)
Now to prove f*is continuous at c

(i.e) Toprove: As x—-c, f*(x)=f'(c)

As x> c, f(x)= lim L2~L© _ f'(©)
X—C

x—c
=f"(©)
Thus f*(x) - f*(c)
=f* is continuous atc.
Conversely,

Let there exist a function f* on (a, b) continuous at ¢ and
which satisfies

f)—fle)==-ao)f*(x) i, (1)

To prove, f is differentiable at c and



f'le) = f(c)
Divide (1) throughout by x — ¢

f(x)—f(c) — f*(c)

X—C

Taking limit on both sides

im 22O _ jim £ (0)
X—C

X—C X—C

= F4(C) v e e (2)

As f* is continuous at c, f'(c) exist. LHS of (2) exist. (i.e) f is
differentiable at c. And

f’(C) — llm f(X)—f(C)

X—C X—C

= fO=fc) by(2)

Hence proved

Theorem:
If f is differentiable at c then f is continuous at c.
Proof:
Let f be differentiable at c. Then the by previous theorem,
there exist a function f* continuous at c and it satisfies
fx) = fle)=—=c)f(x) e ere e e (D)
Asx-c, (D)=>f(x)—f(c)-0
= f() - f(o)



Thus x->c= f(x) - f(c)

That is, f is continuous at c.

Algebra of Derivatives
Theorem:

Assume f and g are defined on (a, b) and differentiable at c.
Then f 4+ g,f —g and f. g are also differentiable at c. This is also
true of f /g if g(c) # 0. the derivatives at ¢ are given by the
following formula.

) (Fxg9))=f"(c)xg'(c)
(i) (f.9) @ =Ff(c)g" @ +glc)f'(c)

(|||) (f/g) I(C) — g(C)f/(;)(;;Z(C)g’(C) pI’OVIded g(C) + 0

Proof:

. N e () -(F+9)(©)
) +9)(e)=lim

X—C

fF)+gx)-(f(c)+g(c))

= lim
xX—C X—C
— lim fF)-f(c) _I_g(x)—g(c")]
xX—=C X—C X—C
_ limf(x)—f(C) + lim gx)—g(c)
xX—cC xX—C xX—C xX—c
= f'(c)+ g'(c)

Thus if f and g are differentiable at c, then (f + g) is differentiable
at c and

(f+9)=f"(c)+g'(c)



Similarly, (f — g) is differentiable at ¢ and
(f —9)'(c) = f'(c)—g'(c)
(i) Since f is differentiable atc, by theorem, we have
f*is continuous (i.e) Liﬂf’(x) = f*(c)
satisfying f(x) — f(c) = (x = c)f*(c) Vxin(ab)....(2)
And  FC) = F'(C) e e (3)

Since g is differentiable at c, there exists a function g* continuous
atc

(i.e) [3161501 9 = GO e i (B)
satisfying gx) —g(c)=((x—-c)g*(x) V x€ (a,b) ............(5)
and
g )=g9() ... (6)

f)gx) = (fe)+ (x—)f*(©)(glc) + (x—c)g*(x))

= f()g()+ (x = f ()g*(x) + (x —
c)g(e)f (e)+ (x —c)?g (x)f*(c)

f)gx) — flc)glc) = (x —DIf()g*(x) + gle)fF ()] +
(x— o)*f"(x) g~ (x)

= lim £ (c) g (x) + }Cigr(}g(c)f* (x) +
lim g* (c)f™ (x)

lim fFOg)-f(e)g(c)

xX—C X—C

= f()limg” (x) + g(c) lim g (x) + 0

= f(c)g*(c)+ g(c)f*(c) by (1) and (4)



= f(c)g'(c)+ glc)f'(c) by(3)and (6)

lim (f9) D)~ _ F)g @+ g()f'(©) v (7)

xX—C X—C

Since the R.H.S of (7) exists, the limit on L.H.S also exists

". fg is differentiable and

(f9)'(c) = f(c)g'(c) + g(e)f'(c)
f&x)  fc) _ g)fx)—f(c)g(x)
glx) g(c) g)g(c)

_ gOIf)+x=a)f* (]-f(©)gc)+(x—c)g*(x)]
[g(c)+(x—c)g*(x)]g(c)

(iii)

g(C)f(C)+(x g f*)-f(c)glc)-(x—c)f(c)g™(x)
(9(0)* +(x-c)g(c)g* (%)

_ (x=c)[g)f*(x)-f(c) g™ (x)]
(9(0)* +(x-c)g(c)g* (x)

(/ /g)x (f )¢ _ 1 9@F =100’ @
1m >
x—c (g(c)) +(x—-c)g(c)g* (x)

lim
XxX—C

><

lim(f/g)x (f/g) _ (i IS ()-F©)g" @)
xoc  xX— x-c (9(c))° +(x—c)g(c)g* (x)

_ limg@f (0)-f()g’ ()
lim[(9(0))*+(x=)g(€)g* ()]

_gf(e)-flc)g*(c)
B g(c)?+0

_ge)fr(e)=f(c)gr(c)
= (02 v wee e ee e -2 (8)

=>(f / ) () = 8 )=1(0)9'(©)

g(c)?



R.H.S of (8) exist

.". the limit on the L.H.S exists

(i.e) the function (f / g) is differentiable and

' (c)f1(c)-f(c)g!(c) -
(7/g) ey = LSOO it gy # 0

Results:
(i) Derivative of a constant function is zero.
Let f : (a,b) » R. Defined by f(x) = m (a constant)
hmw — lim 2" — o

xX—C xX—=c x—c X—¢C
f'(x) =0
Since c¢ € (a,b) is arbitrary, f'(x) =0 Vx € (a,b)
(i) Letf:(a,b) — R by defined by f(x) = x
Let c € (a, b) be arbitrary

hmM — limX< =1
xX—C xX—C x—>c X—cC

=f'x)=1
Thus f(x) =x= f'(x) =1
(i)  Letf :(a b) — R by defined by f(x) = x?
fx) = x?

=X.X



= f1(x) + f2(x)
f'G) = (f1f2)"x
= f1(0f2'(x) + f1' () f2(x)
=x.1+x.1
F10x) = 2x
Thus f(x) = x?= f'(x) = 2x

(i) Letf:(a,b) > R by defined by f(x) = x3
flx) =x3

= x2%.x

= f1(x) + f2(x)
f'(x) = (f1f2)'x
= f1()f2'(x) + f1' () f2(x)
= x%.1+ 2x.x = 3x*?
Thus f(x) = x3 = f’(x) = 3x?

Thus, we see that every polynomial has a derivative everywhere in
R and every rational function has derivative wherever it is defined.



Chain Rule
Theorem:

Let f be defined on an open interval S, let g be defined on
f(S) and consider the composite function g.f defined on S by the
equation

(gof ) (x) = glf ()]

Assume there is a point cin S such that f(c) is an interior point of
f(S). If fis differentiable at c and if g is differentiable at f(c) , then
gof is differentiable at c and we have

(gof)'(c) = g'lf (If'(c)
Proof:

Since f is differentiable at c, there exists a function f

continuous atc L (1)
satisfying f(x) —f(c)=(x—c)(x) VXxES .. (2)
And F)=f'(X) v, (3)

Since g is differentiable at f(c), there exists a function g*
continuous at f(c).

Satisfying g(») —g(f () = (y = f())g* D) v eevevv e e e (4)

And g F(©) = g (F(O)) oo e e e e (5)
Choose x in S such that f(x) =y

Then (5) becomes

g(fe) —g(f (@) = (f&) = £())g"f(x) (sincey = f(x))



=(x—-c)f*"()g*(f(x))

Since f and gis continuous atc. g*,f is continuous at c

As x-c, g(f@)) =g (=g (fc)) (7

Taking limit on both sides on egn 6 we have

lim g(f(x)):f(f(c)) =chlrréf*(x)g*(f(x))

xX—C ve

="()g*(f(e))
f'@©g(f' ()
Since R.H.S exist, the limit on L.H.S exist
Thus (gof) is differentiable at c and
(gof)'(c) = g'lf (]f'(c)
One sided derivatives and infinite derivatives
Definition: Right hand derivative and Left hand derivative

Let f defined on a closed interval S and assume that f is
continuous at the point cin S. Then f is said to have a right hand
derivative at c. If the right hand limit
_ f) = f(o)

lim

1
x—c+ X—C

exists as a finite value (or) if the limit is +oo (or) — oo. This limit will
be denoted by f.'(c)



f',(C) —  lim fO)—-f(c)
N — i S

x—->c+ X—C

f is said to have the left hand derivative and c is the left hand
limit if

lim f(x) —f(C)

X—C._ X—C

exists as a finite value (or) if the limit is +o (or) — co. This limit will
be denoted by f_'(c)

f I(C) — llm f(X)—f(C)

x—c.  X—C
Infinite derivatives:
If c is an interior point of S. Then
f'lc) =oif f.'(c) =0 =f"(c)

Similarly, f'(c) =—o0 if f,/(c) == = f_'(c)
Note:

Thus f has a derivative (finite or infinite) at an interior point c.
iff

£ = () =f'(©



Functions with non-zero derivative
Theorem:

Let f be defined on a open interval (a, b) and assume that for
some c in (a,b) we havef'(c) > 0 or f'(c) = +o. Then there is a
one-ball B(c) subset of (a, b) in which

fx)>f(c) if x>cand
fx)<flc) if x<c
Proof:

Let f'(c) be finite and positive. Since f is differentiable at c,
there exist a function f* such that

f* continuous atc
satisfying fxX)—fle)=x—-c)f*(x) VxinS -1
fc)=f'(c)>0
f(c)>0=>f*()#0
Thus f*is continuous atcand f*(c) # 0
By sign preserving property

“Let f be defined on ainterval S in R. Assume that f is
continuous at point ¢ in S and that f* (c¢) # 0 then there exist a
open ball B(c,6) such that f(x) has the same sign as f(c) in
B(c,6)nS”

There exists an open ball B(c) € (a, b)



such that f*(x) has the same sign as f*(c) for every x in B(c)
Since f'l)>0=f"(c)>0

f(.X')—f(C) > 0

=f(x) - f(c) and x — ¢
=(x—-c)>0 = f(x)—f(c)>0 and
(x—c)<0=flx)-f(c)<0
x<c=f(x)>f(c) and
x<c=flx) <f(c)
Suppose, f'(c) = 4+

Then 1im 22~ ©@ _,

xX—C X—C

(00)

(i.e) there is an one-ball B(c). Which

fFx)=1(c)

X—C

>1>0 X #C

By the same argument of this above
x<c= f(x) <f(c) and
x>c = f(x)> f(c)
Theorem:

Let f be defined on an open interval (a,b) and assume that
for some c in open interval (a,b),with f'(c) <0or f(c) =
—oo. Then there is an one-ball B(c) € (a, b) in which



x<c=>fx)>f() and x>c= f(x) < f(c)
Proof:

Let f'(c) be finite and f'(c) < 0. Since f is differentiable at
c, there exist a function f* such that

f*is continuous at c
satisfying f(x) — f(c) = (x—c)f* (x) VxinS
frle)=f(c)<0
f*(c) < Oimpliesf*(c) # 0

Thus f *is continuous at c and f*(c) # 0. By the sign preserving
property of continuous function there exist an open ball B(c) S
(a,b) such that f*(x) has the same sign as f*(c) for every
x in B(c).

Since f*(c)<0=>f*(x)<0

X—=C

f(x) — f(c) and x — ¢ have opposite signs
Thus x —c > 0= f(x) — f(c) <0 and
x—c<0=f(x)—f(c) >0
(i.e) x>c=f(x) < f(c) and
x<c=f(x)>f(c)

f'(c) = —oo there is a one ball in which



fFx)—f(c)

X—C

<1<O0forx+c

By the same argument above

x>c=>fx)<f(c) andx>c= f(x)> f(c)

Zero Derivatives and Local Extrema
Definition: Local maximum and Local minimum

Let f be a real valued function defined on a subset S of a metric
space M. Assume a € S. Then f is said to have a local maximum
at a if there is a ball B(a) such that

fx)<f(a) VxinB(a)n$s

If f(x)=f(a) Vxin B(a)nSthen f is said to have a local
minimum at a.

Note:

A local maximum at a is the absolute maximum of f on the
subset B(a) nS. If f has an absolute maximum at ‘a’, then ‘a’ is
also a local maximum. However, f can have local maxima at
several points in S without having an absolute maximum on the
whole set S.

Example:

Consider f : R - R defined f(x) = x3



The function f has neither absolute maximum nor absolute
minimum in R

Consider the interval S =1[1,2] in S. The local minimum is
f(1) = 1. The local maximum is f(2) = 8.

Theorem:

Let f be defined on an open interval (a,b) and assume that f
has a local maximum or local minimum at an interior point c of
(a,b). If f has a derivative (finite or infinite) at c, then f'(c) = 0

Proof:
Let f'(c) be +ve or +m.

Then by theorem, “Let f be defined on an open interval (a, b)
and assume that for some c in open interval (a, b) we have

f'(c) >0 or f'(c) =+ then there exist a one ball
B(c) € (a,b) in which

x>c=>f(x)>f() and x<c= f(x) < f(c)"

f cannot have a local maximum or local minimum atc. If f(c) <
0 or — oo then by theorem

“Let f be defined on an open interval (a,b) and assume that for
some c in open interval (a,b) we have ['(c¢) <0 orf'(c) = —
then there exist a one ball B(c¢) € (a, b) in which

x>c=>fx)<f(c) and x<c= f(x) > f(c)"



f cannot have a local maximum or local minimum at c. But, by
hypothesis, the derivative of f at c exists

f’(c) =0
Hence the proof

Note:

() Converse of the theorem is not true. Consider f:R - R

defined by
fx) =x3
f'(x) = 3x?
f'@0)=0

But f has neither local maximum nor local minimum at x=0
(i)  In the statement of previous theorem

Derivative of f exist at ¢ is important. For, consider
f:R - R defined byf(x) = |x|. This function attains it minima at
zero. But the function is not differentiable at x = 0. Note that this
f is continuous at x = 0 but not differentiable at x = 0

(i) The factthat c is an interior point of (a, b)in the statement of
above theorem is important.



