
Unit II 

  

Definition : Uniform continuity 

  Let f : S→T be a function from on metric space (S, ds) to 

another (T, dT). Then ‘f’ is said to be uniformly continuous on a 

subset A of S if the following condition holds.  

 “For every ∈>0 there exists a 𝛿 >0 (depending only on ∈) such that 

if x ∈ A and p∈ A then,  ds(f(x), f(p)) < ∈ whenever ds(x, p)< 𝛿”.  

Note :  

  Continuity is defined at a point where as uniform continuity is 

defined on a set.  

  Hence we say continuity of a function is a  local property 

where as uniform continuity of a function is a global property.  

Examples: 

Consider f : (0,1] →R defined by 

f(x) = 1/x 

The function f is continuous on A = (0,1] but the function is not 

uniformly continuous  

Let ϵ = 0. Let 0< δ <1 

Take x= δ and p= δ/11 

then |x-p| = |δ - δ/11| 

= δ10 /11 < δ 



And | f(x) – f(p)| = | 1/x – 1/p| 

  = | 1/δ– 11/δ| 

  = 1/δ | -10 | 

  = 10/δ > 10 

Hence for these two points we always have | f(x) – f(p) | > 10 

Hence f is not uniformly continuous. 

Consider f : (0,1] → R defined by  

f(x) = x² 

f is uniformly continuous on A(0,1]  

| f(x) – f(p) | = | x² - p²|  

           = | (x-p) (x+p) | 

           < | x+p | | x-p | 

  < 2 | x-p | as x,p ∈ (0,1] 

If x+p < δ  then f(x) – f(p) < 2δ. 

Hence if 𝜀 is given take δ = 𝜀 / 2, so that |x-p| < δ 

 | f(x) - f(p) | < ∈ 

Thus f is uniformly continuous on A. 

 

Note : 

 

If the above function is defined on R, instead of (0,1]  then F 

is not uniformly continuous on R. 

 



Note: 

 

Uniform continuity on A ⇒ continuity on A 

 

Uniform continuity and compact sets 

 

Theorem: (Heine) 

 

Let f : S→T be a function from one metric space (S, dS) to 

another (T, dT). Let A be a compact subset of S and assume 

that f is continuous on A. Then f is uniformly continuous on A.  

 

Proof: 

 

Let ϵ > 0 be given. Then each point ‘a’ in A such that 

 

dT (f(x), f(a)) < 𝜀/2 whenever x∈BS (a,r) ∩ A --------------(1) 

 

consider the collection of open balls Bs (a, r/2 ) each with 

radius r/2. These balls cover A and since A is compact, a 

finite number of these also cover A. 

 

                           ∴ A ⊆ ⋃ 𝐵𝑠(𝑎𝑘,
𝑟𝑘

2
 𝑚

𝑘=1 ) ------(2) 

 

In any ball of twice the radius B ( ak, rk ) by (1) we have. 

 

dT(f(x), f(ak)) < 𝜀/2 whenever x∈Bs (ak , rk) ∩ A ----------(3) 

Let δ = min {r1/2, r2/2,.................……rm/2} 

Let x, p∈A ∃ ds(x,p) < δ ------------------------(4) 



Then  ∃ a ball B(ak, rk/2) containing x from (2)  

using (3) we have, 

dT (f(x), f(ak)) < 𝜀/ 2 ----------------------------(5) 

by the triangle inequality we have, 

dS (p,ak) ≤ dS (p,x) + dS (x, ak)  

                       < δ + rk/2 

                       = rk/2 + rk/2 (defn of δ) 

                       = rk 

⇒ p∈BS(ak , rk) ∩ A 

⇒ dT (f(p), f(ak)) ≤ 𝜀/2 by (3) 

Once again by triangle inequality, 

dT (f(x), f(p)) ≤ dT ( f(x), f(ak)) + dT (f(ak), f(p)) 

                            < 𝜀 /2 + 𝜀 /2 

                             = 𝜀        [using (3) and (2)]  

     Hence the proof.  

Fixed point theorem for contractions:  

Definition:    Fixed point      

Let (s,d) be a metric space be a function into itself. A point p 

in S is called a fixed point of r, If F(p) = p. 

 

Definition: Contraction mapping 

The function f: S→S is called a contract of S. If there is a 

positive number α<1 [called a contraction constant] 

Such that, d[f(x), f(y)] ≤ α d(x,y)  for all x,y in S 

 

Result:       

       A contraction mapping of any metric space S is 

uniformly continuous on S. 



Suppose f: S→S is contraction mapping then ∃ 0<α<1  such 

that   d [ f(x), f(y) ] ≤ d (x,y) 

thus give 𝜀>0,  ∃ δ = 𝜀 /α  such that     

d (x,y) <  δ ⇒ d (f(x), f(y)) ≤ α. d (x,y) ⇒< α . 𝜀 /α 

  

                                                            = 𝜀   for every (x,y) in S 

 

⇒ f is uniformly continuous on S. 

 

Theorem: 

Fixed point theorem: 

A contraction of a complete metric space S, is a unique fixed 

point p. 

Proof: 

 

First let us prove that a contraction f : S→S  a complete 

metric space S has almost a fixed point. 

Let p and p' be a two fixed points. 

 

Then d[ f(p), f(p')] ≤ α d (p,p')  since f is a contraction. 

⇒ d (p,p') ≤ α d (p,p') 

⇒ d (p,p') = 0 

              p = p' 

Hence the contraction f can be atmost one fixed point. 

  

A contraction has exactly one fixed point. Take any point x in 

S and consider sequence x, f(x), f(f(x)), f(f(f(x))),  

   

Let   p0 = x 

        p1 = f(p0) 



        p2 = f(f(x)) = f(p1) 

        . 

        . 

        . 

        . 

        . 

        pn+1 = f(pn)                  n= 0, 1, 2, 3,……….             ----(1) 

Then {pn} is a sequence. 

 

To prove {pn} converges to fixed point of f. 

First let us prove {pn} is a Cauchy sequence. 

 

d (pn+1, pn) = d {f(pn), f(pn-1)} 

                     ≤α d (pn,pn-1)     -------------------------------(2) 

Now d(pn,pn+1)  ≤ α d (pn-1, pn-2) using (1) 

d (pn-1, pn-2) ≤ α d (pn-2, pn-3)  

            by repeatedly using (2) we have,  

            d (pn, pn+1) ≤ αn d (p0 , p1) 

                               = c αn    (where c=d (p0, p1) 

Now, let m>n 

d (pm, pn) ≤ d (pn, pn+1) + d (pn+1, pn+2) +…+d (pm-1, pm)  

by triangle inequality, 

= ∑    𝑚−1
𝑘=𝑛 d (pk, pk+1) 

≤   ∑    𝑚−1
𝑘=𝑛  α k 

= c  ∑    𝑚−1
𝑘=𝑛  α k 



= c ( αn + αn+1 + αn+2 +…+ αn-1) 

= c  αn ( 1+ α + α2 +………………….+ αm-n ) 

= c αn  ( 1- αm+n) / 1-α 

< c αn / 1-α 

→0 as αn →0 (when n→∞)  

⟹ {pn} is a Cauchy sequence. 

But S is a complete metric space. So that sequence {pn} 

converges in S. 

              Let {pn} → p 

Now by continuity of f 

             f (p) = f ( lim
𝑛→∞

pn) 

                      = lim
𝑛→∞

f(pn) 

                      = lim
𝑛→∞

pn+1 = p 

Thus f(p) = p and so p is a fixed point of f.  

Hence the proof.       

Discontinuous of real valued functions:          

Right hand limit of F: 

Let f be defined on an interval (a,b). Assume c ∈ [a,b]. If f(x) →A, 

as x→c through values greater than c then, A is the right hand 

limit of f at c. 

Notation: 



lim
𝑥→𝑐

f(x) = A 

The right hand limit A is also denoted by f (c+). In the 𝜀, 𝛿 

definition of right hand limit. 

For over, 𝜀 > 0, there is a δ >0 such that  

|f(x) – f(c+)| < 𝜀 whenever c < x < c+ δ < b 

Note: 

For the above case, f need not be defined at point c itself. 

Continuous from the right:    

If f is defined at c and if f(c+) = f(c), we say that f is continuous 

from the right at c. 

Left hand limit of f: 

Let f be defined on an interval (a,b). 

Assume c ∈ (a, b] 

If f(x) → A as x→ c through the values less than c, then A is the 

left hand limit of f at c and lim
𝑥→𝑐

f(x) = A 

The left hand limit A is denoted by f (c-)  

the 𝜀, 𝛿 definition of left hand limit of f. 

For 𝜀>0, ∃ 𝛿>0, ∋ | f(x) – f (c-) | < 𝜀  whenever a<c- 𝛿<x<c 

Continuous from the left: 

If f is defined at c and if f(c-) = f(c), we say f is continuous from the 

left at c. 



Note: 

If a<c<b then f is continuous at c if and only if  

           f(c) = f(c+)=f(c-)  

Example: 

Let f : R→R be defined by 

f (x) = {
1  𝑖𝑓 𝑥 < 0
2  𝑖𝑓 𝑥 ≥ 0

 

Then f is not continuous 

 

f is not continuous at 0 because 

f(0) = 2,       f (0+) = 2,        f(0-) = 1 

but f is continuous  from the right 

since f(0) = f(0+) 

Discontinuity of f: 

If f is not continuous at c, then c is  discontinuous at c. In this case 

one of the following conditions is satisfied. 

(a) Either f(c+) or f(c-) does not exist   



(b) Both f(c+) and f (c-) exist but have different values   

        [ irremovable discontinuity ] 

(c) Both f(c+) and f (c-) exist and f(c+) = f(c-) ≠ f(c)     

        [ Removable discontinuity ]            

In case (c),the point c is a removable discontinuity, since the 

discontinuity could be removed by redefining f at c to have f (c+) = 

f (c-). 

In case (a) and (b), we call c is a irremovable discontinuity because 

the discontinuity cannot be removed by redefining at c. 

Definition: 

Let f be defined on a closed interval [a, b].  f(c+) and f(c-) both exist 

at some interior point c, then 

(a) f(c) – f(c-) is called the left hand jump of f at c. 

(b) f (c+) – f(c) is called the right hand jump of f at c. 

(c) f (c+) – f(c-) is called the jump of f at c.     

If any one of these three numbers is non-zero, then c is called jump 

discontinuity of f. 

In the previous example 

Left hand jump of f at 0 is, 

f(0) – f(0-) = 2-1 =1 

Right hand jump of f(0+) – f(0) = 2-2 = 0           

 Jump f (0+) – f(0-) = 2-1 =1 

 

 



Jump at end-points of an interval: 

Let f be defined on (a, b). Then for the end points only one sided 

jumps are considered. 

At a, the right hand jump at a, f (a+) – f (a) 

At b the left  hand jump at b, f(b) – f(b-) 

Example: 

(i) Let f : ℝ → ℝ by  

f (x) = x/ |x| , if x≠0 

f (0) = A 

(i.e)   f(x) = {
1 𝑖𝑓 𝑥 > 0

−1 𝑖𝑓 𝑥 < 0
                                                                                   

                    f (0) = A                                           

 

 

Then f (0) = A;   f(0+) = 1 and  f(0-) = -1 

Jump of f at  0 = f (0+) – f (0-) 

                            = 1 – (-1) 

                             = 2 ≠ 0 



∴ f has jump discontinuity  at 0  

Left hand jump of f at 0= f(0) – f(0-)  

                                            = A – (-1) 

                                           = A+1 

Right hand jump of f at 0 = f (0+) – f (0) 

                                                 = 1-A   

Example:  

Removable discontinuity 

Let  f : R→R be defined by                                                                                                    

f (x) = {
1 𝑖𝑓 𝑥 ≠ 0
0 𝑖𝑓 𝑥 = 0

 

 

 

 

Here, f(0) = 0, f(0+) = 1 , f(0-) = 1         

f has removable jump discontinuity at 0, 

f can be made continuous  by redefining f at  0 as f(0) = 1 



(i.e)  f (x) =1 , for all x. 

(iii)  Irremovable discontinuity : 

Example: 

 

f : R→R be defined by  

f(x) = 1/x , x≠0 

f(0) = A 

f (0+) = +∞ 

f (0-) = -∞ 

(i.e) f (0+) and f (0-) do not exist. 

∴ f has irremovable discontinuity at 0. 

(iv)  f : R→R 

f (x) = {
sin 

1

𝑥
  𝑖𝑓 𝑥 ≠ 0  

𝐴       𝑖𝑓 𝑥 = 0
 

 



 

f has irremovable discontinuity at 0. 

neither f(0+) nor f(0-) exists. 

(v)  f: R→R defined by 

       f (x) = {
x sin 

1

𝑥
  𝑖𝑓 𝑥 ≠ 0  

1       𝑖𝑓 𝑥 = 0
 

 

f  has a removable jump discontinuity at 0. 

 f(0) = 1, f (0+) = 0, f (0-) = 0     

 

 



MONOTONIC FUNCTIONS  

Definition: Monotonic increasing (or non decreasing) 

Let f be a real valued function defined on a subset S of ℝ . Then  f 

is said to be increasing on S if for every pair of points x and y in S   

                               x < y ⇒ f(x) ≤ f(y) 

 If x < y ⇒ f(x) < f(y), then f is said to be strictly increasing on S. 

Definition: Monotonic decreasing (or non increasing) 

Let f be a real valued function defined on a subset S of ℝ. Then f is 

said to be decreasing (or non increasing) on S,if for every pair of 

points x and y in S 

                     x < y ⇒ f(x) ≥ f(y) 

If x<y ⇒ f(x) > f(y), then f is said to be strictly decreasing on S.  

Definition: Monotonic functions 

A function is called monotonic on S if it is increasing on S or 

decreasing on S. 

Result: 

If f is an increasing function then -f is an decreasing function. 

Proof: 

Let f be increasing on S. 

Then x<y ⇒ f(x) ≤ f(y)             ∀ x, y ∈ S 

                ⇒ −f(x) ≥ − f(y)             ∀ x, y ∈ S 

Thus x<y ⇒ (-f) (x) ≥ (-f) (y)       ∀ x, y ∈ S      



(i.e)        -f is a decreasing function on S. 

 

Examples: 

                                 Let f : ℝ → ℝ  be defined by  

                                         f (x) = 3x 

then f is increasing on ℝ. 

 

 

-2 < -1 

f (-2) = -6 

f (-1) = -3 

-6 < -3 

 

 

 

 

Consider,  

g : ℝ → ℝ defined by  

g(x) = 1/x 

g is a decreasing 

function on R. 



Theorem:  

If f is increasing on [a, b], then f (c+) and f (c-) both exist for each 

c in (a, b) and we have  

                           f (c-) ≤  f (c) ≤  f (c+) 

At the end points we have  

                        f(a) ≤  f(a+) and f(b-) ≤  f(b) 

Proof : 

Let A = { f(x): a<x<c} 

Since f is increasing A is bounded above by f(c). 

∴ A has a supremum. 

Let ∝ = sup A. 

Then ∝ ≤ f(c)           (1) 

To prove f(c) exists and f(c-) = ∝ 

To prove for every 𝜀>0, there is a 𝛿>0, such that 

                           c – 𝛿 < x < c ⇒  | f(x) - ∝ | < 𝜀 

Since 𝛼 =supA, by “Approximation Property” of supremum which 

satisfy  

   “ If S is a non-empty set of real numbers with 𝑏 = sup 𝑆, then for      

every 𝑎 < 𝑏 there is some 𝑥 in S such that  

                                       𝑎 < 𝑥 ≤ 𝑏 

We have 𝑓(𝑥₁) in A such that  



                        𝛼 − 𝜀 <  𝑓(𝑥₁) ≤ 𝛼     where 𝑥₁ <  𝑐 

Since 𝑓 is increasing for every 𝑥 in (𝑥1 , 𝑐) we have, 

                 𝑥₁ < 𝑥, 𝑠𝑜  𝑓(𝑥₁)  ≤ 𝑓(𝑥) 

               ⇒𝛼 − 𝜀 <  𝑓(𝑥₁) ≤ 𝛼        𝑜𝑛  𝑥 ∈ 𝐴 

        ⇒|𝑓(𝑥) − 𝛼| < 𝜀 

          𝑥₁ < 𝑥 < 𝑐 ⇒ |𝑓(𝑥) − 𝛼| < 𝜀 

Thus   𝑐 − 𝛿 < 𝑥 < 𝑐 ⇒ |𝑓(𝑥) − 𝛼| < 𝜀 

Hence 𝑓(𝑐-) exists and 𝑓(𝑐-)= 𝛼 where 𝛿 = 𝑐 

Similarly, there exists  𝐵 = {𝑓(𝑥): 𝑐 < 𝑥 < 𝑏} and for every 𝜀 > 0, 

there is a 𝛿 >0 such that  

                     𝑐 < 𝑥 < 𝑐+ 𝛿 ⇒ |𝑓(𝑥) − 𝛽| < 𝜀  

         (i.e)      𝑓(𝑐+) exists and 𝑓(𝑐+)= 𝛽 

At the end points,  

                    If 𝑐 = 𝑎   𝑡ℎ𝑒𝑛 𝑓(𝑎−) does not exists and 

                             𝑓(𝑎) ≤ 𝑓(𝑎+) 

             If 𝑐 = 𝑏   𝑡ℎ𝑒𝑛 𝑓(𝑏+)does not exist for 𝑓 𝑜𝑛 [𝑎, 𝑏] and 

                            𝑓(𝑏−) ≤ 𝑓(𝑏) 

                          Hence the proof  

Note: 

       Monotonic function on compact intervals always have right and 

left hand limits. 



Theorem: 

       Let 𝑓 be strictly increasing on a set S in ℝ.  Then 𝑓-1 exists and 

is strictly increasing on 𝑓(𝑆). 

Proof:  

         Let 𝑓 be strictly increasing on S. then  

                            𝑥 < 𝑦 ⇒ 𝑓(𝑥) < 𝑓(𝑦) 

(i.e)  different elements have different images  

                ⇒ 𝑓 is 1-1 on S  

               ⇒𝑓-1 exists on 𝑓(𝑆)  

  Claim:     𝑓-1 :𝑓(𝑆) → 𝑆  is strictly increasing  

                  Let  𝑦₁ < 𝑦₂ , where 𝑦₁𝑦₂ ∈ 𝑓(𝑆) 

               Then  𝑦₁ = 𝑓(𝑥₁)    and  𝑦₂ = 𝑓(𝑥₂) 

                     Since  𝑓 𝑖𝑠 1 − 1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑥1 , 𝑥₂ ∈ 𝑆 

              𝑥₁ =  𝑓-1 (𝑦₁)  &   𝑥₂ = 𝑓-1 (𝑦₂) 

           Suppose   𝑓-1 (𝑦₁) >  𝑓-1 (𝑦₂) 

                          ⇒𝑥₁ >  𝑥₂ 

              ⇒ 𝑓( 𝑥₁) > 𝑓(𝑥₂) 

              ⇒𝑦₁ > 𝑦₂ 

         which is contradiction as 𝑦₁ < 𝑦₂ 

                  ∴𝑓-1 (𝑦₁) <  𝑓-1 (𝑦₂) 



                        𝑦₁ < 𝑦₂    ⇒      𝑓-1 (𝑦₁) <  𝑓-1 (𝑦₂)    ∀ 𝑦1 , 𝑦₂ ∈ 𝑓(𝑆) 

         Hence 𝑓-1 is strictly increasing on 𝑓(𝑆) 

Theorem: 

         Let 𝑓 be strictly increasing and continuous on a compact 

interval [𝑎, 𝑏].  Then 𝑓-1 is continuous and strictly increasing on the 

interval [𝑓(𝑎), 𝑓(𝑏)]. 

Proof:  

                   By previous theorem, “𝑓 is strictly increasing on [𝑎, 𝑏]. 

𝑓-1 exists and is strictly increasing on [𝑓(𝑎), 𝑓(𝑏)]. 

By theorem, 

             Let 𝑓 ∶ 𝑆 → 𝑇 be a function from one metric space (𝑆, 𝑑s) is 

another (T,dT).  Let 𝑓 be 1-1.  If S is compact and 𝑓 is continuous 

on S.  Then 𝑓-1 is continuous on 𝑓(𝑆).  We have  

                  𝑓 is continuous on [𝑎, 𝑏] ⇒  𝑓-1 is continuous on 

[𝑓(𝑎), 𝑓(𝑏)]. 

                                    Hence the proof  

 

DIFFERENTIATION 

Definition:  Difference of Quotient  

        Let 𝑓 be defined on an open interval(𝑎, 𝑏).  Then for two 

distinct points 𝑥 and 𝑐 in (𝑎, 𝑏) we can form the quotient  

                                      
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 



This is called Difference Quotient  

Definition:   Derivative of 𝒇  (Differentiability of 𝒇 ) 

     Let 𝑓 be defined on an open interval (𝑎, 𝑏) and let 𝑐 ∈ (𝑎, 𝑏) then 

𝑓 is said to be differentiable at 𝑐  whenever the limit  

                                   lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
    exists 

The limit, denoted by 𝑓′(𝑐), is called the derivative of 𝑓 and 𝑐 

                               𝑓′(𝑐) = lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 

Successive of Derivatives  

       𝑓′ is called the first derivative of  𝑓. The second derivative of  𝑓 

is  𝑓′′ at 𝑐 and is defined by  

                              𝑓′′(𝑐) = lim
𝑥→𝑐

𝑓′(𝑥) −𝑓′(𝑐)

𝑥−𝑐
 

The successive derivatives of 𝑓 are defined similarly and the nth 

derivative is denoted by  𝑓(n) 

Notation: 

               𝑓′(𝑐) =
𝑑𝑦

𝑑𝑥
|x=c = 𝐷𝑓(𝑐) = 𝑦′(𝑐)  all denote the first  

derivative of 𝑦 = 𝑓(𝑥) at 𝑐 

Theorem:  

        If 𝑓 is defined on (𝑎, 𝑏) and differentiable at a point c in  (𝑎, 𝑏), 

then there is a function 𝑓* (depending on 𝑓 and on 𝑐) which is 

continuous at c and which satisfies the equation  

                          𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓 ∗(𝑥)        ……(1) 



for all 𝑥 is  (𝑎, 𝑏), with 𝑓 ∗(𝑐) = 𝑓′(𝑐).  Conversely, if there is a 

function 𝑓 ∗, continuous at 𝑐, which satisfies (1), then 𝑓 is 

differentiable at c and   𝑓′(𝑐) =   𝑓 ∗(𝑐)  

Proof: 

           Let 𝑓 be differentiable at c .  Define 𝑓 ∗ on  (𝑎, 𝑏) by  

                                        𝑓 ∗(𝑥) = {
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
      𝑖𝑓 𝑥 ≠ 𝑐  

𝑓′(𝑐)        𝑖𝑓   𝑥 = 𝑐
    

This satisfies the equation  

                                        𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓 ∗(𝑥)  and  

                                                   𝑓∗(𝑥) = 𝑓′(𝑐)   

Now to prove 𝑓 ∗ is continuous at c  

(i.e)  To prove:   As  𝑥 → 𝑐  , 𝑓 ∗(𝑥) = 𝑓′(𝑐) 

                           As  𝑥 → 𝑐  , 𝑓 ∗(𝑥) = lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
= 𝑓′(𝑐)  

                                                                               = 𝑓 ∗(𝑐) 

Thus  𝑓 ∗(𝑥) →  𝑓 ∗(𝑐) 

       ⇒𝑓 ∗  is continuous at c. 

Conversely,  

            Let there exist a function 𝑓 ∗ on (𝑎, 𝑏) continuous at c and 

which satisfies                                

𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓∗(𝑥)             ……………..(1) 

To prove,  𝑓 is differentiable at c and  



                                            𝑓′(𝑐) = 𝑓 ∗(𝑐) 

  Divide (1) throughout by 𝑥 − 𝑐 

                                             
𝑓(𝑥) −𝑓(𝑐)

𝑥−𝑐
= 𝑓 ∗(𝑐) 

Taking limit on both sides  

                                        lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 = lim

𝑥→𝑐
𝑓 ∗(𝑐)            

                                                             = 𝑓 ∗(𝑐) … … … … … (2)     

As 𝑓 ∗  is continuous at c, 𝑓 ′(𝑐)  exist.   LHS of (2) exist. (i.e) 𝑓 is 

differentiable at c.  And  

                                  𝑓′(𝑐) = lim
𝑥→𝑐

𝑓(𝑥) −𝑓(𝑐)

𝑥−𝑐
           

                                          ⇒      𝑓 ′(𝑐) = 𝑓 ∗(𝑐)   𝑏𝑦( 2)      

                                   Hence proved 

     

Theorem:  

       If 𝑓 is differentiable at c then 𝑓 is continuous at c.  

Proof: 

        Let 𝑓 be differentiable at c.  Then the by previous theorem,  

there exist a function 𝑓 ∗ continuous at c and it satisfies  

                          𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓 ∗(𝑥)… … … … … . (1) 

  As 𝑥 → 𝑐,   (1) ⇒ 𝑓(𝑥) − 𝑓(𝑐) → 0 

                         ⇒   𝑓(𝑥) → 𝑓(𝑐)   



Thus    𝑥 → 𝑐 ⇒  𝑓(𝑥) → 𝑓(𝑐) 

 That is, 𝑓 is continuous at 𝑐. 

                                  

                                Algebra of Derivatives 

Theorem:  

          Assume 𝑓 𝑎𝑛𝑑 𝑔 are defined on (𝑎, 𝑏) and differentiable at c.  

Then 𝑓 + 𝑔, 𝑓 − 𝑔 𝑎𝑛𝑑 𝑓. 𝑔 are also differentiable at c.  This is also 

true of 𝑓 ⁄ 𝑔 if 𝑔(𝑐) ≠ 0.  the derivatives at c are given by the 

following formula. 

(i) (𝑓 ± 𝑔)′(𝑐) = 𝑓′(𝑐) ± 𝑔′(𝑐) 

(ii) (𝑓. 𝑔)′(𝑐) = 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐) 

(iii) (
𝑓

𝑔⁄ ) ′(𝑐) =
𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

𝑔(𝑐)2  provided  𝑔(𝑐) ≠ 0 

Proof: 

(i) (𝑓 + 𝑔)′(𝑐) = lim
𝑥→𝑐

(𝑓+𝑔)(𝑥) −(𝑓+𝑔)(𝑐)

𝑥 −𝑐
 

                             = lim
𝑥→𝑐

(𝑓(𝑥)+𝑔(𝑥))−(𝑓(𝑐)+𝑔(𝑐))

𝑥−𝑐
 

                                  = lim
𝑥→𝑐

[
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
+

𝑔(𝑥)−𝑔(𝑐)

𝑥−𝑐
] 

                                  = lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
+ lim

𝑥→𝑐

𝑔(𝑥)−𝑔(𝑐)

𝑥−𝑐
 

                                   = 𝑓′(𝑐) + 𝑔′(𝑐) 

Thus if 𝑓 𝑎𝑛𝑑 𝑔 are differentiable at c, then (𝑓 + 𝑔) is differentiable 

at c and 

                             (𝑓 + 𝑔)′(𝑐) = 𝑓′(𝑐) + 𝑔′(𝑐) 



Similarly,       (𝑓 − 𝑔) is differentiable at c and  

                             (𝑓 − 𝑔)′(𝑐) = 𝑓′(𝑐) − 𝑔′(𝑐) 

(ii) Since 𝑓 is differentiable at c, by theorem, we have  

          𝑓 ∗ is  continuous  (i.e) lim
𝑥→𝑐

𝑓 ′(𝑥) = 𝑓*(c) 

satisfying 𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓∗(𝑐)    ∀ 𝑥 𝑖𝑛 (𝑎, 𝑏) … . . (2) 

       And    𝑓 ∗(𝑐) = 𝑓 ′(𝑐) … … … … … … . (3) 

Since 𝑔 is differentiable at c, there exists a function 𝑔∗  continuous 

at c  

              (i.e) [lim
𝑥→𝑐

𝑔∗(𝑐) = 𝑔′(𝑐)] … … … … … . (4) 

   satisfying 𝑔(𝑥) − 𝑔(𝑐) = (𝑥 − 𝑐)𝑔∗(𝑥)   ∀  𝑥 ∈ (𝑎, 𝑏) … … … … (5)  

and  

                              𝑔∗(𝑐) = 𝑔′(𝑐) … … … … … (6) 

  𝑓(𝑥)𝑔(𝑥) = (𝑓(𝑐) + (𝑥 − 𝑐)𝑓∗(𝑐))(𝑔(𝑐) + (𝑥 − 𝑐)𝑔∗(𝑥)) 

                     = 𝑓(𝑐)𝑔(𝑐) + (𝑥 − 𝑐)𝑓(𝑐)𝑔∗(𝑥) + (𝑥 −

𝑐)𝑔(𝑐)𝑓∗(𝑐) + (𝑥 − 𝑐)2𝑔∗(𝑥)𝑓 ∗(𝑐) 

 𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑐)𝑔(𝑐) = (𝑥 − 𝑐)[𝑓(𝑐)𝑔∗(𝑥) + 𝑔(𝑐)𝑓 ∗(𝑐)] +

                                                                                (𝑥 −  𝑐)2𝑓 ∗(𝑥)𝑔∗(𝑥) 

      lim
𝑥→𝑐

𝑓(𝑥)𝑔(𝑥)−𝑓(𝑐)𝑔(𝑐)

𝑥−𝑐
= lim

𝑥→𝑐
𝑓(𝑐) 𝑔∗(𝑥) + lim

𝑥→𝑐
𝑔(𝑐)𝑓∗ (𝑥) +

                                                                               lim
𝑥→𝑐

𝑔∗  (𝑐)𝑓∗ (𝑥) 

                                    = 𝑓(𝑐) lim
𝑥→𝑐

𝑔∗ (𝑥) + 𝑔(𝑐) lim
𝑥→𝑐

𝑔∗ (𝑥) + 0 

                                    = 𝑓(𝑐)𝑔∗(𝑐) + 𝑔(𝑐)𝑓∗(𝑐)  𝑏𝑦 (1) 𝑎𝑛𝑑 (4) 



                                     = 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐)  𝑏𝑦( 3) 𝑎𝑛𝑑 (6)  

         lim
𝑥→𝑐

(𝑓𝑔) (𝑥)−(𝑓𝑔)(𝑐)

𝑥−𝑐
= 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓 ′(𝑐)  … … … … … . (7) 

      Since the R.H.S of (7) exists, the limit on L.H.S also exists  

                        ∴ 𝑓𝑔 is differentiable and  

                      (𝑓𝑔)′(𝑐) = 𝑓(𝑐)𝑔′(𝑐) + 𝑔(𝑐)𝑓′(𝑐) 

(iii)        
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑐)

𝑔(𝑐)
=

𝑔(𝑐)𝑓(𝑥)−𝑓(𝑐)𝑔(𝑥)

𝑔(𝑥)𝑔(𝑐)
 

                                     =
𝑔(𝑐)[𝑓(𝑐)+(𝑥−𝑐)𝑓∗(𝑥)]−𝑓(𝑐)[𝑔(𝑐)+(𝑥−𝑐)𝑔∗(𝑥)]

[𝑔(𝑐)+(𝑥−𝑐)𝑔∗(𝑥)]𝑔(𝑐)
 

                                    =
𝑔(𝑐)𝑓(𝑐)+(𝑥−𝑐)𝑔(𝑐)𝑓∗(𝑥)−𝑓(𝑐)𝑔(𝑐)−(𝑥−𝑐)𝑓(𝑐)𝑔∗(𝑥)

(𝑔(𝑐))
2

+(𝑥−𝑐)𝑔(𝑐)𝑔∗(𝑥)
 

                                    =
(𝑥−𝑐)[𝑔(𝑐)𝑓∗(𝑥)−𝑓(𝑐)𝑔∗(𝑥)]

(𝑔(𝑐))
2

+(𝑥−𝑐)𝑔(𝑐)𝑔∗(𝑥)
 

            lim
𝑥→𝑐

(
𝑓

𝑔⁄ )𝑥−(
𝑓

𝑔⁄ )𝑐

𝑥−𝑐
 = lim

𝑥→𝑐

𝑔(𝑐)𝑓∗(𝑥)−𝑓(𝑐)𝑔∗(𝑥)

(𝑔(𝑐))
2

+(𝑥−𝑐)𝑔(𝑐)𝑔∗ (𝑥)
        

            lim
𝑥→𝑐

(
𝑓

𝑔⁄ )𝑥−(
𝑓

𝑔⁄ )𝑐

𝑥−𝑐
 = lim

𝑥→𝑐

𝑔(𝑐)𝑓∗(𝑥)−𝑓(𝑐)𝑔∗(𝑥)

(𝑔(𝑐))
2

+(𝑥−𝑐)𝑔(𝑐)𝑔∗ (𝑥)
     

                                        =
lim
𝑥→𝑐

𝑔(𝑐)𝑓∗(𝑥)−𝑓(𝑐)𝑔∗(𝑥)

lim
𝑥→𝑐

[(𝑔(𝑐))
2

+(𝑥−𝑐)𝑔(𝑐)𝑔∗(𝑥)]
 

                                         =
𝑔(𝑐)𝑓∗(𝑐)−𝑓(𝑐)𝑔∗(𝑐)

𝑔(𝑐)2+0
 

                                         =
𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

𝑔(𝑐)2    … … … … … . . (8) 

                           ⇒(
𝑓

𝑔⁄ ) ′(𝑐) =
𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

𝑔 (𝑐)2  



 R.H.S of (8) exist  

               ∴ the limit on the L.H.S exists 

     (i.e)   the function (
𝑓

𝑔⁄ ) is differentiable and  

                                     (
𝑓

𝑔⁄ ) ′(𝑐) =
𝑔(𝑐)𝑓′(𝑐)−𝑓(𝑐)𝑔′(𝑐)

𝑔 (𝑐)2       if 𝑔(𝑐) ≠ 0 

 

Results: 

(i) Derivative of a constant function is zero. 

Let 𝑓 ∶ (𝑎, 𝑏) → ℝ.  Defined by 𝑓(𝑥) = 𝑚 (𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

                           lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 = lim

𝑥→𝑐

𝑚−𝑚

𝑥−𝑐
= 0 

                                       𝑓′(𝑥) = 0 

Since   𝑐 ∈ (𝑎, 𝑏) is arbitrary, 𝑓′(𝑥) = 0    ∀ 𝑥 ∈ (𝑎, 𝑏) 

(ii) Let 𝑓 ∶ (𝑎, 𝑏) → ℝ by defined by 𝑓(𝑥) = 𝑥 

                   Let 𝑐 ∈ (𝑎, 𝑏) be arbitrary  

                                 lim
𝑥→𝑐

𝑓(𝑥) −𝑓(𝑐)

𝑥−𝑐
 = lim

𝑥→𝑐

𝑥−𝑐

𝑥−𝑐
= 1 

                     ⇒ 𝑓′(𝑥) = 1    

                  Thus 𝑓(𝑥) = 𝑥 ⇒ 𝑓′(𝑥) = 1 

(iii)    Let 𝑓 ∶ (𝑎, 𝑏) → ℝ by defined by 𝑓(𝑥) = 𝑥2 

                                 𝑓(𝑥) = 𝑥2 

                                         = 𝑥. 𝑥 



                                        = 𝑓₁(𝑥) + 𝑓₂(𝑥) 

                                𝑓′(𝑥) = (𝑓₁𝑓₂)′𝑥 

                                        = 𝑓₁(𝑥)𝑓₂′(𝑥) + 𝑓₁′(𝑥)𝑓₂(𝑥) 

                                        = 𝑥. 1 + 𝑥. 1 

                                𝑓′(𝑥) = 2𝑥  

             Thus 𝑓(𝑥) = 𝑥2 ⇒ 𝑓′(𝑥) = 2𝑥 

 

(i) Let 𝑓 ∶ (𝑎, 𝑏) → ℝ by defined by 𝑓(𝑥) = 𝑥3 

                                  𝑓(𝑥) = 𝑥3 

                                          = 𝑥2 . 𝑥 

                                           = 𝑓₁(𝑥) + 𝑓₂(𝑥) 

                                   𝑓′(𝑥) = (𝑓₁𝑓₂)′𝑥 

                                           = 𝑓₁(𝑥)𝑓₂′(𝑥) + 𝑓₁′(𝑥)𝑓₂(𝑥) 

                                            = 𝑥2 . 1 + 2𝑥. 𝑥 = 3𝑥2 

        Thus 𝑓(𝑥) = 𝑥3 ⇒ 𝑓’(𝑥) = 3𝑥2 

Thus, we see that every polynomial has a derivative everywhere in 

ℝ  and every rational function has derivative wherever it is defined.  

                                     

                                         

 

 



     Chain Rule 

Theorem: 

          Let 𝑓 be defined on an open interval S, let g be defined on 

𝑓(𝑆) and consider the composite function 𝑔ₒ𝑓 defined on S by the 

equation  

                                     (𝑔ₒ𝑓)(𝑥) = 𝑔[𝑓(𝑥)] 

Assume there is a point c in S such that 𝑓(𝑐) is an interior point of 

𝑓(𝑆).  If 𝑓 is differentiable at c and if g is differentiable at 𝑓(𝑐) , then 

𝑔ₒ𝑓 is differentiable at c and we have  

                                    (𝑔ₒ𝑓)′(𝑐) = 𝑔′[𝑓(𝑐)]𝑓′(𝑐) 

Proof: 

        Since 𝑓 is differentiable at c, there exists a function 𝑓 

continuous at c                                            ………………(1) 

satisfying  𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)(𝑥)    ∀ 𝑥 ∈ 𝑆      … … … … . (2) 

       And                  𝑓 ∗(𝑐) = 𝑓′(𝑥)   ……………………….....(3) 

   Since g is differentiable at 𝑓(𝑐), there exists a function g* 

continuous at 𝑓(𝑐).   

Satisfying 𝑔(𝑦) − 𝑔(𝑓(𝑐)) = (𝑦 − 𝑓(𝑐))𝑔∗(𝑦)   … … … … … … . . (4) 

         And   𝑔∗𝑓(𝑐) = 𝑔′ (𝑓(𝑐))     … … … … … … … … … … … … … . (5) 

Choose 𝑥 in S such that 𝑓(𝑥) = 𝑦 

Then (5) becomes   

          𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑐)) = (𝑓(𝑥) − 𝑓(𝑐))𝑔∗𝑓(𝑥)  (𝑠𝑖𝑛𝑐𝑒 𝑦 = 𝑓(𝑥)) 



                                                    = (𝑥 − 𝑐)𝑓 ∗(𝑥)𝑔∗(𝑓(𝑥)) 

                               
 𝑔(𝑓(𝑥))−𝑔(𝑓(𝑐))

𝑥−𝑐
=  𝑓 ∗(𝑥)𝑔∗(𝑓(𝑥))  … … … … . (6) 

Since 𝑓 𝑎𝑛𝑑 𝑔 is continuous at c.  𝑔∗ₒ𝑓 is continuous at c  

As   𝑥 → 𝑐,     𝑔∗(𝑓(𝑥)) → 𝑔∗(𝑓(𝑐) = 𝑔′(𝑓(𝑐)) … … … … … … … . . (7) 

Taking limit on both sides on eqn 6 we have  

                  lim
𝑥→𝑐

 𝑔(𝑓(𝑥))−𝑔(𝑓(𝑐))

𝑥−𝑐
= lim

𝑥→𝑐
𝑓 ∗(𝑥)𝑔∗(𝑓(𝑥))  

                                               = 𝑓 ∗(𝑐)𝑔∗(𝑓(𝑐))  

                                                 𝑓′(𝑐)𝑔(𝑓′(𝑐)) 

Since R.H.S exist, the limit on L.H.S exist 

Thus        (𝑔ₒ𝑓) is differentiable at c and  

                                  (𝑔ₒ𝑓)′(𝑐) = 𝑔′[𝑓(𝑐)]𝑓′(𝑐) 

                 One sided derivatives and infinite derivatives  

Definition:    Right hand derivative and Left hand derivative  

       Let 𝑓 defined on a closed interval S and assume that 𝑓 is 

continuous at the point c in S.  Then 𝑓 is said to have a right hand 

derivative at 𝑐.  If the right hand limit       

lim
𝑥→𝑐+

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

exists as a finite value (or) if the limit is +∞ (𝑜𝑟) − ∞.  This limit will 

be denoted by 𝑓₊′(𝑐) 



                          𝑓₊′(𝑐) =   lim
𝑥→𝑐+

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 

   𝑓 is said to have the left hand derivative and  c is the left hand 

limit if  

                                         lim
𝑥→𝑐₋

𝑓(𝑥) −𝑓(𝑐)

𝑥−𝑐
 

exists as a finite value (or) if the limit is +∞ (𝑜𝑟) − ∞.  This limit will 

be denoted by 𝑓₋′(𝑐)            

                                𝑓₋′(𝑐) = lim
𝑥→𝑐₋

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 

Infinite derivatives: 

     If c is an interior point of S.  Then 

                      𝑓′(𝑐) = ∞ 𝑖𝑓   𝑓₊′(𝑐) = ∞ = 𝑓₋′(𝑐)  

Similarly,        𝑓′(𝑐) = −∞  𝑖𝑓 𝑓₊′(𝑐) = −∞ = 𝑓₋′(𝑐) 

Note: 

        Thus 𝑓 has a derivative (finite or infinite) at an interior point c. 

iff 

                               𝑓₊′(𝑐) =  𝑓₋′(𝑐) = 𝑓′(𝑐) 

 

 

 

 



 Functions with non-zero derivative 

Theorem: 

      Let 𝑓 be defined on a open interval (𝑎, 𝑏) and assume that for 

some c in (𝑎, 𝑏) we have𝑓 ′(𝑐) > 0  𝑜𝑟 𝑓 ′(𝑐) = +∞.  Then there is a 

one-ball 𝐵(𝑐) subset of (𝑎, 𝑏) in which 

                                    𝑓(𝑥) > 𝑓(𝑐)   𝑖𝑓    𝑥 > 𝑐 𝑎𝑛𝑑  

                                    𝑓(𝑥) < 𝑓(𝑐)     𝑖𝑓   𝑥 < 𝑐 

Proof: 

        Let 𝑓′(𝑐) be finite and positive.  Since 𝑓 is differentiable at c, 

there exist a function 𝑓 ∗ such that 

                                    𝑓 ∗ continuous at c  

satisfying             𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓∗ (𝑥)     ∀ 𝑥 𝑖𝑛 𝑆  → 1 

                             𝑓 ∗(𝑐) = 𝑓′(𝑐) > 0 

                               𝑓 ∗(𝑐) > 0 ⇒ 𝑓 ∗(𝑐) ≠ 0 

Thus 𝑓 ∗ is continuous at c and 𝑓 ∗(𝑐) ≠ 0 

  By sign preserving property  

               “ Let 𝑓 be defined on a interval S in ℝ.  Assume that 𝑓 is 

continuous at point c in S and that 𝑓 ∗ (𝑐) ≠ 0 then there exist a 

open ball 𝐵(𝑐, 𝛿) such that 𝑓(𝑥) has the same sign as 𝑓(𝑐) in 

𝐵(𝑐, 𝛿) ∩ 𝑆” 

         There exists an open ball 𝐵(𝑐) ⊆ (𝑎, 𝑏) 



such that 𝑓 ∗(𝑥) has the same sign as 𝑓 ∗(𝑐) for every 𝑥 𝑖𝑛 𝐵(𝑐) 

      Since         𝑓 ∗(𝑐) > 0 ⇒ 𝑓 ∗(𝑐) > 0       

                           
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
> 0 

              ⇒𝑓(𝑥) − 𝑓(𝑐) and 𝑥 − 𝑐  

               ⇒(𝑥 − 𝑐) > 0 ⇒ 𝑓(𝑥) − 𝑓(𝑐) > 0 and  

                       (𝑥 − 𝑐) < 0 ⇒ 𝑓(𝑥) − 𝑓(𝑐) < 0 

                      𝑥 < 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)  and  

                      𝑥 < 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)  

Suppose,   𝑓′(𝑐) = +∞ 

          Then lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
→ ∞ 

     (i.e) there is an one-ball 𝐵(𝑐).  Which 

                                    
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
> 1 > 0       𝑥 ≠ 𝑐 

By the same argument of this above 

                           𝑥 < 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)  and  

                      𝑥 > 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)  

Theorem: 

        Let 𝑓 be defined on an open interval (𝑎, 𝑏) and assume that 

for some c in open interval (𝑎, 𝑏),with 𝑓′(𝑐) < 0 𝑜𝑟 𝑓(𝑐) =

−∞.  Then there is an one-ball 𝐵(𝑐) ⊆ (𝑎, 𝑏) in which  



                      𝑥 < 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)    𝑎𝑛𝑑   𝑥 > 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐) 

Proof: 

         Let 𝑓′(𝑐) be finite and 𝑓′(𝑐) < 0.  Since 𝑓 is differentiable at 

c,  there exist a function 𝑓 ∗ such that  

                       𝑓 ∗ is continuous at c  

satisfying 𝑓(𝑥) − 𝑓(𝑐) = (𝑥 − 𝑐)𝑓∗ (𝑥)      ∀ 𝑥 𝑖𝑛 𝑆 

                 𝑓 ∗(𝑐) = 𝑓′(𝑐) < 0 

                 𝑓 ∗(𝑐) < 0𝑖𝑚𝑝𝑙𝑖𝑒𝑠𝑓 ∗(𝑐) ≠ 0 

   Thus 𝑓 ∗ is continuous at c and 𝑓 ∗(𝑐) ≠ 0.  By the sign preserving 

property of continuous function there exist an open ball 𝐵(𝑐) ⊆

(𝑎, 𝑏) such that 𝑓 ∗(𝑥)  has the same sign as 𝑓 ∗(𝑐) for every 

𝑥 𝑖𝑛 𝐵(𝑐). 

     Since  𝑓 ∗(𝑐) < 0 ⇒ 𝑓 ∗(𝑥) < 0 

                           
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
< 0   

                𝑓(𝑥)  − 𝑓(𝑐) 𝑎𝑛𝑑 𝑥 − 𝑐  have opposite signs  

        Thus 𝑥 − 𝑐 > 0 ⇒ 𝑓(𝑥) − 𝑓(𝑐) < 0   𝑎𝑛𝑑  

                  𝑥 − 𝑐 < 0 ⇒ 𝑓(𝑥) − 𝑓(𝑐) > 0 

        (i.e)  𝑥 > 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)    𝑎𝑛𝑑  

                𝑥 < 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)           

                  𝑓′(𝑐) = −∞ there is a one ball in which  



                        
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
< 1 < 0 𝑓𝑜𝑟 𝑥 ≠ 𝑐 

         By the same argument above  

                  𝑥 > 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)   𝑎𝑛𝑑 𝑥 > 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐 )                 

 

Zero Derivatives and Local Extrema 

    Definition:  Local maximum and Local minimum  

      Let 𝑓 be a real valued function defined on a subset S of a metric 

space M.  Assume 𝑎 ∈ 𝑆.  Then 𝑓 is said to have a local maximum 

at a if there is a ball 𝐵(𝑎) such that  

                     𝑓(𝑥) ≤ 𝑓(𝑎)    ∀ 𝑥 𝑖𝑛 𝐵(𝑎) ∩ 𝑆 

      

If   𝑓(𝑥) ≥ 𝑓(𝑎)   ∀𝑥 𝑖𝑛 𝐵(𝑎) ∩ 𝑆,then 𝑓 is said to have a local 

minimum at a. 

Note: 

      A local maximum at a is the absolute maximum of 𝑓 on the 

subset 𝐵(𝑎) ∩ 𝑆.  If 𝑓 has an absolute maximum at ‘a’, then ‘a’ is 

also a local maximum.  However, 𝑓 can have local maxima at 

several points in S without having an absolute maximum on the 

whole set S. 

Example: 

      Consider 𝑓 ∶ ℝ → ℝ defined 𝑓(𝑥) = 𝑥3 



The function 𝑓 has neither absolute maximum nor absolute 

minimum in ℝ 

   Consider the interval 𝑆 = [1,2]   𝑖𝑛  𝑆.  The local minimum is 

𝑓(1) = 1.  The local maximum is 𝑓(2) = 8. 

Theorem: 

      Let 𝑓 be defined on an open interval (𝑎, 𝑏) and assume that 𝑓 

has a local maximum or local minimum at an interior point c of 

(𝑎, 𝑏). If 𝑓 has a derivative (finite or infinite) at c, then 𝑓′(𝑐) = 0 

Proof: 

       Let 𝑓′(𝑐) be +ve or +∞. 

    Then by theorem, “Let 𝑓 be defined on an open interval (𝑎, 𝑏) 

and assume that for some c in open interval (𝑎, 𝑏) we have      

𝑓′(𝑐) > 0  𝑜𝑟 𝑓′(𝑐) = +∞ then there exist a one ball  

                                     𝐵(𝑐) ⊆ (𝑎, 𝑏) in which 

                      𝑥 > 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)   𝑎𝑛𝑑  𝑥 < 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)"     

 

𝑓 cannot have a local maximum or local minimum at c .  If 𝑓(𝑐) <

0 𝑜𝑟 − ∞ then by theorem ,  

“Let 𝑓 be defined on an open interval (𝑎, 𝑏) and assume that for 

some c in open interval (𝑎, 𝑏) we have  𝑓′(𝑐) < 0  𝑜𝑟 𝑓′(𝑐) = −∞ 

then there exist a one ball 𝐵(𝑐) ⊆ (𝑎, 𝑏) in which 

                      𝑥 > 𝑐 ⇒ 𝑓(𝑥) < 𝑓(𝑐)   𝑎𝑛𝑑  𝑥 < 𝑐 ⇒ 𝑓(𝑥) > 𝑓(𝑐)"     



𝑓 cannot have a local maximum or local minimum at c.  But, by 

hypothesis, the derivative of 𝑓 at c exists  

                                           ∴ 𝑓′(𝑐) = 0 

                    Hence the proof 

Note: 

(i) Converse of the theorem is not true.  Consider 𝑓: ℝ → ℝ 

defined by  

                                          𝑓(𝑥) = 𝑥3 

                                          𝑓′(𝑥) = 3𝑥2 

  𝑓′(0) = 0 

But 𝑓 has neither local maximum nor local minimum at x=0 

(ii) In the statement of previous theorem 

                  Derivative of 𝑓 exist at c is important. For, consider 

𝑓: ℝ → ℝ defined 𝑏𝑦𝑓(𝑥) = |𝑥|.  This function attains it minima at 

zero.  But the function is not differentiable at 𝑥 = 0.  Note that this 

𝑓 is continuous at 𝑥 = 0 but not differentiable at 𝑥 = 0 

(iii) The fact that c is an interior point of (𝑎, 𝑏)𝑖𝑛 the statement of 

above theorem is important. 

 

 

 

 

  


