59 ROLLE’S THEOREM

It is geometrically evident that a sufficiently “smooth’ curve Vf!thh Crosses the
x-axis at both endpoints of an interval [a, b] must have a ‘‘turning point” some.
where between a and b. The precise statement of this fact is known'as Rolle’s
theorem.

Theorem 5.10 (Rolle). Assume f has a derivative (finite or infinite) at (:’ach point of
an open interval (a, b), and assume that f is cortinuous at both endpoints a and b,
If f(a) = f(b) there is at least one interior poini ¢ al which f'(c) = 0.

Proof. We assume f* is never 0 in (a, b) and obtain a contradiction. Since f s
continuous on a compact set, it attains its maximum M and its minimum m some-
where in [a, b]. Neither extreme value is attained at an interior point (otherwise
f'" would vanish there) so both are attained at the endpoints. Since f(a) = f(b),
then m = M, and hence f is constant on [a, b]. This contradicts the assumption

that f” is never 0 on (a, b). Therefore f'(c) = 0 for some ¢ in (a, b).

5.10 THE MEAN-VALUE THEOREM FOR DERIVATIVES

Theorem 5.11 (Mean-Value Theorem). Assume that f has a derivative (finite ot

infinite) at each point of an open interval (a, b), and assume-also that f is continuous
at both endpoints a and b. Then there is a point c in{a, b) such that

Jb) = fla) = ()b — a).

Geometrically, this states that a sufficiently smooth curve joining two points
A and B has a tangent line with the same slope as the chord 4B. We will deduce

Theorem 5.11 from a more general version which involves two functions fand g in
a symmetric fashion.

Theorem 5.12 (Generalized Mean-Value Theorem). et S and g be two functions
each having a.a’erwanve (finite or infinite) at each point of an open interval (a, b)
and each continuous at the endpoints a and b. Assume also that there is né inte;ior

point x at which both f'(x) and g'(x) are infinite. T interi '
. : ifinite. Then for some interior pcint ¢ we

S ©Lgb) — g(@)] = g f(b) — f(a)].

NOTE. When g(x) = x, this gives Theorem 5.11.

Proof. Let h(x) =f(x)[g(b) — gla)] — g(x _ , ‘ o
, both f"(x) and g’(x) are finite, and h’](x) ig(inii[;ﬂ(tg)if exf;gt)l]y. o;l;:e'} h’(x) is ﬁr'ute lsf
infinite. .(The h_ypothesis excludes the.case of both f'(x) and ’0 i ({C) org ({f)l

Also, I is continuous at the endpoints, and h(@) = h(b) — ?((x) t;)emg mﬁm'tz.)
By Rolle’s theorem we have /(c) = 0 for some interior point aa)g( ) — g/l ).
assertion. » and this proves the



NOTE. The reader should interpret Theorem 5.12

curve in the xy-plane described by the parametr
a<t<h

geometrically by referring to.the
ic equations x = g(1), y = f(?),

There is also an extension which does not require continuity at the endpoints.

Theorem 5.13. Let f and g be two Junctions, each having a derivative (finite or
infinite) at each point of (a, b). At the endpoints assume that the limits f(a+),
gla+), f(b—) and g(b-) exist as Sinite values. Assume further that there is no

interior point X at which both f'(x) and g'(x) are infinite. Then for some interior
point ¢ we have : i

f©@lgb—) — gla+)] = g(OLf(b-) — fla+)]
Proof. Define new functions F and G on [aq, b] as follows:
F(x) = )'(x) and G(x) = g(x) if x € (a, b);
Fla) = fla+), C(a) = gla+), F(b) = f(b—), G®b) = gb—).

Then F and G are continuous on [a, b] and we can apply Theorem 5.12 to F and
G to obtain the desired conclusion.

The next result is an immediate consequence of the Mean-Value Theorem.

Theorem 5.14. Assume f has a derivative (finite or infinite) at each point of an open
interval (a, b) and that f is continuous at the endpoints a and b.

a) If f' takes only positive values ( finite or infinite) in (a, b), then f is strictly
increasing on [a, b].

b) If ' takes only negative values (finite or infinite) in (a, b), then [ is strictly
decreasing on [a, b].

€} If " is zero everywhere in (a, b) then f is constant on [a, b].

Proof. Choose x < y and apply the Mean-Value Theorem to the subinterval
[x, ¥] of [a, b] to obtain

S = f(x) = fi(eXy —x)  where ce (x, y).
All the statements of the theorem follow at once from this equation.

By applying Theorem 5.14 (c) to the difference / — g we obtain:

Corollary 5.15. If f and g are continuous on [a, b] and have equal finite derivatives
n (a, b), then f — g is constant on [a, b].

511 INTERMEDIATE-VALUE THEOREM FOR DERIVATIVES

" Theorem 4.33 we proved that a function f which is continuous on a compact
terval | 4 b] assumes every value between its maximum and its minimum on



a) and f(b). A simj
the interval. In particular, f assumes every value bctw.ct;l:i{ <(:s) S/ ilar
result will now be proved for functions which are deriv

P sume that f is g
Theorem 5.16 (Intermediate-value theorem for deriva! g e ;;:ite or infinite)atea
fined on a compact interval [a, b) and that fhas a ({erwﬁwmaﬁve& £1(@) and ()
interior point. Assume also that f has finite one-sided det

. t ’
the endpoints, with f(a) # J. (b). Then, if cis @ real number between f(a) anj

; nteri ] ch that ['(x) = ¢
fL(b), there exists at least one interior poinl x SU I

Proof. Define a new function g as follows:

(x) = M ifx # a, g(a) = fi(a)

g x — a | |
Then ¢ is continuous on the closed interval [a, b]. By the lntermedlz’lte—valuz
theorem for continuous functions, ¢ takes on every value between f+(a)han
[f(b) — f(@])/(b — a) in the interior (a, b). By the Mean-Value Th’eorem, we have
g(x) = f'(k) for some k in (a, x) whenever x € (a, b). Tberef_ore f' takes on.evlelry
value between £ (a) and [f(b) — f(@]/(b — a) in the interior (a, b). A similar
argument applied to the function h, defined by

W) = f_(i)_‘_—i(”) ifx £ b, hb) = f.(b),
x J—
shows that f” takes on every value between [ f(b) — f(@)]/(b — a) and f(b) in the
interior (g, b). Combining these results, we see that f* takes on every value between
f1(a) and £’ (b) in the interior (a, b), and this proves the theorem.

NOTE. Theorem 5.16 is still valid if orie or both of the one-sided derivatives
fi(a), f(b), is infinite. The proof in this case can be given by considering the
auxiliary function g defined by the equation g(x) = f(x) — cx, if x € [a, b}
Details are left to the reader.

The intermediate-value theorem shows that a derivative cannot change sign

in an interval without taking the value 0. Therefore, we have the followind
strengthening of Theorem 5.14(a) and (b).

Theorem 5.17. Assume f has a derivative (finite or infinite) on (a, b) and is O

tinuous at the endpoints a and b. If f'(x) # O for all x in (a, b) then [ is strictl)
monotonic on [a, b]. ’

The .mterme?dlate-value theorem also shows that monotonic derivatives are
necessarily continuous.

Theorem 5.18. Assume [’ exists and is monotonic on q
[ is continuous on (a, b).

n open interval (a, b). TM"

Proof. We assume f” has a discontinuity at some
contradiction. Choose a closed subinterval [«
interior. Since f” is monotonic on [,

point ¢ in (a, b) and arrive at.a
; ﬁ] of (a, b) which contains ¢ in ¥
B] the discontinuity at ¢ must be a jum



e
ik
R

G

giscontinuity (by Theorem 4‘51)‘_ Hence f omits some value between f'(2) and
I contradicting the intermediate-va|ye theorem.

512 TAYLOR'S FORMULA WITH REMAINDER

s noted earlier, if /15 diﬂferentiable at c, then f'is approximately a linear function
near c. That is, the equation

J&) = fle) + f)x - o),

is approximately correct “_’hen X — cis small. Taylor’s theorem tells us that, more
generally, f can be approximated by a polynomial of degree n — 1 if fhas a deriva-
tive of order #. Moreover, Taylor’s theorem gives a useful expression for the error
made by this approximation.

Theorem 5.19 (Taylor). Let f be a function having finite nth derivative £™ every-
where in an open interval (a, b) and assume that SV s continuous on the closed
interval [a, b]. Assume that c € [a, b]. Then, Jor every x in [a, b], x # c, there
exists a point x, interior to the interval Joining x and ¢ such that

— ), )
169 = @) + 2L - g L) (e
k=1 k! n!
Taylor’s theorem will be obtained as a consequence of a more general result
that is a direct extension of the generalized Mean-Value Theorem.

Theorem 5.20. Let f and g be two functions having finite nth derivatives f™ and
9™ in an open interval (a, b) and continuous (n — 1)st derivatives in the closed
interval [a, b]. Assume that c € [a, b]. Then, for every x in [a, 8], x # c, there
€Xisis a point x, interior to the interval joining x and ¢ such that

n-1 ol W
[CRpRAC . o | o) = s 909 - 3, 5 - oy

k=0 k

MOTE. For the special case in which g(x) = (x — ¢), we have g*(¢) = 0 for
U<k <n—1and g™(x) = n!. This theorem then reduces to Taylor’s theorem.
Proof. For simplicity, assume that ¢ < b and that x > c. Keep x fixed and define
"W functions F and G as follows:

n—1

(k) "
F(t) = f(1) + ,Z;f—;—?)(x -

n—1 (k) :
G(t) = g(1) + k; gkft).(x — 1),

Zor Cach ¢ jp, [c x]. Then F and G are continuous on the closed interval [c, x]
"0 have finite derivatives in the open interval (¢, x). Therefore, Theorem 5.12 is



applicable and we can write

F'(x))[G(x) — G(c)] = G'(x,)[F(x) — F(c)],  where x, € (¢, X).

This reduces to the equation

F'(x)[g(x) — G(&)] = G'(x)[/(x) — FO), (a)

since G(x) = g(x) and F(x) = f(x). If, now, we compute the derivative of the sum
defining F (1), keeping in mind that each term of the sum is a product, we find that
all terms cancel but one, and we are left with

x ="
F'(t) = =———— f™(1).
(®) (n — 1)!
Similarly, we obtain

. ’ _ (_x = I)"—l (n)
G'(t) = (n-———__ D! g'"(1).

If we put ¢+ = x, and substitute into (a), we obtain the formula of the theorem.

5.13 DERIVATIVES OF VECTOR-VALUED FUNCTIONS

Let f+(a, b) —» R" be a vector-valued function defined on an open interval (a, b)

in R. Then f = (f,, ..., /f,) where each component f, is a real-valued function
defined on (a, ). We say that f is differentiable at a point ¢ in (a, b) if each com-
ponent f, is differentiable at ¢ and we define

f'(c) = (fi(e), ..., ().

In other words, the derivative f'(c) is obtained by differentiating each component
of f at c. In view of this definition, it is not surprising to find that many of the
theorems on differentiation are-also valid for vector-valued functions. For example,
if f and g are vector-valued functions differentiable at ¢ and if A is a real-valued

function differentiable at c, then the sum f + g, the product Af, and the dot product
f - g are differentiable at ¢ and we have

(f + 8)(c) = f'(c) + g'(0),
(Af)'(c) = 2(Of(c) + A)f(0),
(f-g)'(c) = f'(c)-g(c) + f(c)-g'(c).

T.he progfs.follow easily by considering components. There is also a chain rule for
differentiating composite functions which is proved in the same way. If fis vector-

valued and if u is real-valued. then the composite : .
: ’ posite function iven by g(x) =
f[u(x)] is vector-valued. The chain rule states that =& y &l

g'(c) = f'[u(c)]u'(0),

if the domain of f contains a neighborhood of u(c) and if u'(¢) and £ [u(c)] both
exist. '

I



The Mea_n-Value Theorem, as stated ip, Theorem 5.11, does not hold for vector-
valued functions. For example, if f(s) — (cos ¢, sin 1) for all real ¢, then

f2n) - £0) = o,

but f'(1) is never zero. In fact, |f'(r)] = | for all t. A modified version of the
Mean-Value Theorem for vector-valued functions is given in Chapter 12 (Theorem
12.8).

5.14 PARTIAL DERIVATIVES

Let S be an open set in Euclidean space R", and let f: S - R be a real-valued
function defined on S. If x = (X1,...,x,)and ¢ = (¢4, ..., ¢,) are two points
- of S having corresponding coordinates equal except for the kth, that is, if X; = ¢
fori # k and if x; # c,, then we can consider the limit

lim f(X) — f(C) .

Xk C)k xk . Ck

When this limit exists, it is called the partial derivative of f with respect to the kth
coordinate and is denoted by

pf@, Ao, L,
0x;

or by a similar expression. We shall adhere to the notation D, f(c).

This process produces » further functions D,\f, D,f, ..., D,f defined at those
points in S where the corresponding limits exist.

Partial differentiation is not really a new concept. We are merely treating
J(xi,..., x,) as a function of one variable at a time, holding the others fixed.
That is, if we introduce a function g defined by

g(x) = f(Cyy ooy Chmts Xks Chagr v v e s Cn),

then the partial derivative D, f(c) is exactly the same as the ordinary derivative
9'(c). This is usually described by saying that we differentiate £ with respect to
the kth varjable, holding the others fixed. |

In generalizing a concept from R! to R", we seek to preserve the importgnt
Properties in the one-dimensional case. For example, in the one-dimensional case,
the existence of the derivative at ¢ implies continuity at c. Therefore it seems
desirable to have a concept of derivative for functions of several variables which
will imp]y continuity. Partial derivatives do not do this. A function f’f n variables-
€an have partjal derivatives at a point with respect to each of the.vanab]es and yet
N0t be continuous at the point. We illustrate with the following example of a

function of two variables:

: x+ya jf.x=00ry=0,
fx,y) = 1, otherwise.



The partial derivatives D, f(0, 0) and D, f(0, 0) both exist. In fact,

le(O, U) = llmf(x’ 0) _f(O 0) X =

x—0 x —0 x—=0 X

and, similarly, D, f(0, 0) =

. On the other hand, it is clear that this functiop is
not continuous at (0, 0).

The existence of the partial derivatives with respect to each variable separatg|
implies continuity in each variable separately; but, as we have just seen, this dog
not necessarily imply continuity in all the variables simultaneously. The difficulyy
with partial derivatives is that by their very definition we are forced to consider
only one variable at a time. Partial derivatives give us the rate of change of
function in the direction of each coordinate axis. There isa more general conceptof
derivative which does not restrict our considerations to the special dirgctions of
the coordinate axes. This will be studied in detail in Chapter 12.

The purpose of this section is merely to introduce the notation for partial
derivatives, since we shall use them occasmnally before we reach Chapter 12.

If f has partial derivatives D, f, ..., D,f on an open set S, then we can also
consider their partial derivatives. These are called second-order partial derivatives.
We write D, , f for the partial derivative of D, f with respect to the rth variable.
Thus, _

Dr.kf= Dr(Dkf)

Higher-order partial derivatives are similarly defined. Other notations are

5 3
Dr,kf = f Dp,q,rf = a f

0x, 0x, 0x, dx, 0x,
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