
5.9 ROLLE'S THEOREM 

It is geometrically evident that a sufficiently "smooth" curve which crosses the 

X-axis at both endpoints of an interval [a, b] must have a "turning point" some. 

where between a and b. The precise statement of this fact is known as Rolle's 

theorem. 

Theorem 5.10 (Rolle). Assume f has a derivative (inite or infinite) at each point of 

an open interval (a, b), and assume that f is continuous at both endpoints a andb. 

JJa) = J6) there is at least one interior poini c at which f"(c) = 0. 

Proof. We assume f' is never 0 in (a, b) and obtain a contradiction. Since fis 

continuous on a compact set, it attains its maximum M and its minimum m some. 

where in [a, b]. Neither extreme value is attained at an interior point (otherwise 

fwould vanish there) so both are attained at the endpoints. Since fla)= S6), 
then m = M, and hence f is constant on a, b]. This contradicts the assumption 

that is never 0 on (a, b). Therefore f(c) = 0 for some c in (a, b). 

5.10 THE MEAN-VALUE THEOREM FOR DERIVATIVES 

Theorem 5.11 (Mean-Value Theorem). Assume that f has a derivative (finite or 

infinite) at each point of an open interval (a, b), and assume also that f is continuous 
at both endpoints a and b. Then there is a point c in (4, b) such that 

Sb)- flo) = f'(Mb - a). 

Geometrically, this states that a sufficiently smooth curve joining two points 
A and B has a tangent line with the same slope as the chord AB. We will deduce 
Theorem 5.11 from a more general version which involves two functionsf and g in 
a symmetric fashion. 

Theorem 5.12 (Generalized Mean-Value Theorem). Let f and g be two functions each having a derivative (finite or infinite) at each point of an open interval (a, b) 
and each continuous at the endpoints a and b. Assume also that there is no interior 
point x at which both f"(x) and g.(x) are infinite. Then for some interior pcint c we 

have 

f'cob) - gla)] = g'()[S6) -Sa)]. 
NOTE. When g(x) = x, this gives Theorem 5.11. 

Proof. Let h{x) = f\x)[gtb) - ga)] - g{x)S6) - Sla)]. Then h (x) is finiteil 
both f'(x) and g'(x) are finite, and H(x) is infinite if exactly one of f'(x) or g'(x) 1s 
infinite. (The hypothesis excludes the case of both f'(x) and g'(x) being infinite.) 
Also, h is continuous at the endpoints, and h{a) = h{b) = fla)g(b) - gla)ftb). Ry Rolle's theorem we have h'{c) = 0 for some interior point, and this proves the 
assertion. 



NOTE. The reader should interpret Theorem 5.12 geometrically by referring to. the curve in the xy-plane described by the parametric equationsx = g{t), y =J(),. 
astsb. 

There is also an extension which does not require continuity at the endpoints. 
Theorem 5.13. Let f and g be two functions, each having a derivative (finite or 

infinite) at each point of (a, b). At the endpoints assume that the limits fla+), gla+), fb-) and g(b-) exist as finite values. Assume further that there is no 
interior point x at which both f'(x) and g'(x) are infinite. Then for some interior 
point c we have 

f'OLob-) - gla+)] = g'()[Sb-) - Sla+)]. 
Proof. Define new functions F and G on [a, b] as follows: 

Fx)= x) and G) = g{x) if xe (a, b); 

Fla) = fla+), C(a) = g(a+), Fb) = f{b-). Gb) = gtb-). 
Then F and G are continuous on [a, b] and we can apply Theorem 5.12 to Fand 
G to obtain the desired conclusion. 

The next result is an immediate consequence of the Mean-Value Theorem. 

Theorem 5.14. Assume f has a derivative (finite or infinite) at each point of an open 
interval (a, b) and that f is continuous at the endpoints a and b. 

a) f takes only positive values (finite or infinite) in (a, b), then f is strictly 
increasing on La, b]. 

b)Sf' takes only negative values (finite or infinite) in (a, b), then f is strictly
decreasing on [a, b]. 
f is zero everywhere in (a, b) then fis constant on [a, b]. 

Proof. Choose x<y and apply the Mean-Value Theorem to the subinterval 
,] of [a, b] to obtain 

SO) - fx) = fl)(y - x) where c (x, y). 
All the statements of the theorem follow at once from this equation. 

By applying Theorem 5.14 (c) to the differencef- g we obtain: 

Corollary 5.15. 1ff and g are continuous on [a, b] and have equal finite derivatives 
(a, b), then f - g is constant on La, b]. 

INTERMEDIATE-VALUE THEOREM FOR DERIVATIVES 

n Theorem 4.33 we proved that a function f which is continuous on a compact In Theorem 
rval a, b] assumes every value between its maximum and its minimum on interval 



the interval. In particular, fassumes every value between S(a) and j(6). A similar 

result will now be proved for functions which are derivatives. 

Theorem 5.16 (Intermediate-value theorem for derivatives). Assume that f is de. 

fined on a compact interval [a, b] and that f has a derivative (finite or infinite) at each 

interior point. Assume also that f has fnite one-sided derivatives J4 (a) and f(b)a 

the endpoints, with f:(a) # f-(6). Then, ifc is a real number befween J:@) and 

S-(6), there exists at least one interior point x such that f'(x) = C. 

Proof. Define a new function g as follows: 

9(x)=)-fa) if x # a, g(a) = f+(a). 

X- a 

Then g is continuous on the closed interval [a, b]. By the intermediate-value 

theorem for continuous functions, g takes on every value between f4(a) and 

Sb) - S(a)]/(b - a) in the interior (a, b). By the Mean-Value Theorem, we have 

g(x) = f(k) for some k in (a, x) whenever x e (4, b). Therefore f' takes on every 

value between f (a) and [Sb) - S)]/(b - a) in the interior (a, b). A similar 

argument applied to the function h, defined by 

hx)=J(x)-f6) 

x- b 
if x# b, h(b) = f-(b), 

shows thatf' takes on every value between f(b) -Sla)]/{b- a) andf-(6) in the 

interior (a, b). Combining these results, we see thatf' takes on every value between 

I+@) and f-(6) in the interior (a, b), and this proves the theorem. 

NOTE. Theorem 5.16 is still valid if one or both of the one-sided derivatives 
f(a), f(6), is infinite. The proof in this case can be given by considering the 
auxiliary function g defined by the equation g(x) = f(x) - cx, if xe la, b} 

Details are left to the reader. 
The intermediate-value theorem shows that a derivative cannot change sign 

in an interval without taking the value 0. Therefore, we have the followin 
strengthening of Theorem 5.14(a) and (b). 

Theorem S.17. Assume f has a derivative ( finite or infinite) on (a, b) and is con tinuous at the endpoints a and b. Iff'lx) # 0 for all x in (a, b) then f is siricuy 
monotonic on |a, b]. 

The intermediate-value theorem also shows that monotonic derivatives a re 

necessarily continuous. 

Theorem. 5.18. Assumme f exists and is monotonic on an open interval (a, b). fis continuous on (a, b). 

Proof. We assumef' has a discontinuity at some point c in (a, b) and arrive a contradiction. Choose a closed subinterval |a, B] of (a, b) which contains c in 
interior. Since f' is monotonic on la, P] the discontinuity at c must be a ju 



discontinuity (by Theorem 4.51). Hence f' omits some value between f'(a) and 
r(), contradicting the intermediate-value theorem. 

12 TAYLOR'S FORMULA WITH REMAINDER 

Anated earlier, if f is differentiable at c, then fis approximately a linear function 
near c. That is, the equation 

Sx) = f¢) + f'©% -), 
is approximately correct when X - cis small. Taylor's theorem tells us that, more 
generally, f can be approximated by a polynomial of degree n - 1 iffhas a deriva- 

tive of order n. Moreover, Taylor's theorem gives a useful expression for the error 
made by this approximation. 

Theorem 5.19 (Taylor). Let f be a function having finite nth derivative fn) every- 
where in an open interval (a, b) and assume that fa-) is continuous on the closed 
interval [a, b]. Assume that ce [4, b]. Then, for every x in [a, b], x # c, there 
exists a point xj interior to the interval joining x and c such that 

S) = ) + - o + (x - e. 
n! 

Taylor's theorem will be obtained as a consequence of a more general result 
that is a direct extension of the generalized Mean-Value Theorem. 

Theorem 5.20. Let f and g be two functions having finite nth derivatives f) and 
9 in an open interval (a, b) and continuous (n - )st derivatives in the closed 
interval [a, b]. Assume that c e [a, b]. Then, for every x in La, b], * # c, there 
exists a point x, interior to the interval joining x and c such that 

- e 
=O k! 

EFor the special case in which glx) = (x - <y, we have gh(c) = 0 for 

S Sn - l and g(x) = n!. This theorem then reduces to Taylor's theorem. 
For simplicity, assume that c < b and that x > c. Keep x fixed and define 
hew functions F and G as follows: 

FC) = St) + 
- i*, 

G)= g) + - i. 

for each t in fe, x]. Then and h n le, x]. Then F and G are continuous on the closed interval [c, x] 
e derivatives in the open interval (c, X). Therefore, Theorem 5.12 is 



applicable and we can write 

F'x[Gx) - G)] = G(*,){Flx) - F ] where x, E (¢, x). 

This reduces to the equation 

F(x)[gx) - G(¢)] = G(*)[S) - F¢)], (a) 

since G(x) = g(x) and F(x) = fx). If, now, we compute the derivative of the sum 

defining F(1), keeping in mind that each term of the sum is a product, we find that 

all terms cancel but one, and we are left with 

ft) (n - 1)! 
F't) = 

Similarly, we obtain 
C() _(x- 1)"-1 

G't)(n -1) 
If we put t = x^ and substitute into (a), we obtain the formula of the theorem. 

5.13 DERIVATIVES OF VECTOR-VALUED FUNCTIONS 

Let f:(a, b) » R" be a vector-valued function defined on an open interval (a, b) 

in R in R. Then f = (Ji,.. S where each component f is a real-valued function 
defined on (a, b). We say that f is differentiable at a point c in (a, b) if each com- 

ponent s is differentiable at c and we define 

f'(¢) = (Si),... .SKc) 
In other words, the derivative f'(c) is obtained by differentiating each component 
of f at c. In view of this definition, it is not surprising to find that many of the 

theorems on differentiation are also valid for vector-valued functions. For example, 
if f and g are vector-valued functions differentiable at c and if 2 is a real-vaBued 
function differentiable at c, then the sumf + g, the product if, and the dot product 

f'g are differentiable at c and we have 

(f +g)=f() + glc) 
(afy(C) = (c)f(¢) + i(c)f(¢), 

(f gc) = f() glc) + flc) g'(c). 

The proofs follow easily by considering components. There is also a chain rule for 

differentiating composite functions which is proved in the same way. If fis vector 
valued and if u is real-valued. then the composite function g given by g(r) = 

f[u(x)] is vector-valued. The chain rule states that 

g'lc) = f'[ul)]u'tc),

if the domain of f contains a neighborhood of u(c) and if '(c) and f'[utc)] both 

exist. 



The Mean-Value Theorem, as stated in Theorem 5.11, does not hold for vector valued functions. For example, if f(r) = (cos 1, sin t) for all real 1, then 
(2) (O) = 0, 

but f'(t) is never zero. In fact, ||f(r)|| = 1 for all . A modified version of the Mean-Value Theorem for vector-valued functions is given in Chapter 12 (Theorem 12.8). 

5,14 PARTIAL DERIVATIVES 

Let S be an open set in Euclidean space R", and let f: S » R be a real-valued function defined on S. If x = (x1,..., x) and c = (c1, ... , C) are two points of S having corresponding coordinates equal except for the kth, that is, if xi = C for i # k and if xk # Ck» then we can consider the limit 

lim fo 

When this limit exists, it is called the partial derivative off with respect to the kth coordinate and is denoted by 

DSe) 
ôxk 

or by a similar expression. We shall adhere to the notation D,slc). This process produces n further functions D,f, D2f,.. ., D,S defined at those 
points in S where the corresponding limits exist. 

Partial differentiation is not really a new concept. We are merely treating JX1,.. , x,) as a function of one variable at a time, holding the others fixed. That is, if we introduce a function g defined by 

gXR) = SC,.. ., Ch-1» *» C+19 , Cn) 
then the partial derivative Dsc) is exactly the same as the ordinary derivative 
gc). This is usually described by saying that we differentiate f with respect to 
the kth variable, holding the others fixed. 

In generalizing a concept from R' to R", we seek to preserve the important 
properties in the one-dimensional case. For example, in the one-dimensional case, 
the existence of the derivative at c implies continuity at c. Therefore it seems 
desirable to have a concept of derivative for functions of several variables which 
wIll imply continuity. Partial derivatives do not do this. A function of n variables 
an have partial derivatives at a point with respect to each of the variables and yet 
not be continuous at the point. We illustrate with the following example of a 
Tunction of two variables: 

x + y. ifx = 0 or y = 0, 
Sx, y) = 

otherwise. 



The partial derivatives D,S0, 0) and D,f0, 0) both exist. In fact, 

DSO, 0) = lim , 0)- f0, 0) x 

x-0 

= 1, 

x0 x-0 X 

and, similarly, D2f(0, 0) = 1. On the other hand, it is clear that this function is 

not continuous at (0, 0). 
The existence of the partial derivatives with respect to each variable separately 

implies continuity in each variable separately; but, as we have just seen, this does 

not necessarily imply continuity in all the variables simultaneously. The difficulty 
With partial derivatives is that by their very definition we are forced to consider 

only one variable at a time. Partial derivatives give us the rate of change ofa 

function in the direction of each coordinate axis. There is a more general conceptof 
derivative which does not restrict our considerations to the special directions of 
the coordinate axes. This will be studied in detail in Chapter 12. 

The purpose of this section is merely to introduce the notation for partial 
derivatives, since we shall use them occasionally before we reach Chapter 12. 

If f has partial derivatives D,, ..., D,f on an open set S, then we can also 
consider their partial derivatives. These are called second-order partial derivatives. 
We write D,,s for the partial derivative of Df with respect to the rth variable. 
Thus, 

D,S = D,(D,S). 

Higher-order partial derivatives are similarly defined. Other notations are 

D,s= Dp-4, dx, ôx, dx,ôx, ôxk 
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