
FUNCTIONS OF 
BOUNDED VARIATION AND 

RECTIFIABLE CURVES 

6.1 INTRODUCTION 

Some of the basic properties of monotonic functions were derived in Chapter 4. 

This brief chapter discusses functions of bounded variation, a class of functions 
closely related to monotonic functions. We shall find that these functions are 

intimately connected with curves having finite arc length (rectifiable curves). They 
also play a role in the theory of Riemann-Stieltjes integration which is developed 
in the next chapter. 

6.2 PROPERTIES OF MONOTONIC FUNCTIONNS 

Theorem 6.1. Letfbe an increasing function defined on [a, b] and let xo, xi,. 
be n + 1 points such that 

a = Xo < X, < X2 <** < X, = b. 

Then we have the inequality 

[sx+) -f-)] s Sb) - Sla). 

Froof. Assume that y; ¬ (X2, xk+ ). For l < k sn - 1, we havef(x, +) S S(Y 

and J(-1) S S-), so that fX+) = S-) S J(V) - SOyk-1). If we add 

these inequalities, the sum on the right telescopes to J(Vn-1)- S(V%). Since 
J-1)- f(y) s Sb) - fla), this completes the proof. 

Since 

1he difference f(x +) - flx; -) is, of course, the jump of f at x. The fore-

EOing theorem tells us that for every finite collection of points x, in (a, b), the sum 

0T the jumps at these points is always bounded by f(6) - Sa). This result can be 

used to prove the following theorem. 

orem 6.2. 1ff is monotonic on a, b], then the set of discontinuities of f is 

countable. 

Assume thatfis increasing and let S, be the set of points in (a, b) at which 

Ump offexceeds 1/m, m >0. If x, < X2 <** K X-1 are in S,m Theoremn 

6.1 tells us that 
n-sf(6) -S(a). 

m 
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nis means that Sm must be a finite set. But the set of discontinuities of fin (a, b 
is a subset of the union m Sm and henee is countable. (lfsis decreasing, the 
argument can be applied to -1) 

6.3 FUNCTIONS OF BOUNDED VARIATION 

Definition 6.3. If [a, b] is a compact interoal, a set of points 

P = {Xo, X1s.., Xa}s 

satisfying the inequalities 

a Xo < X1** < Xn-1 < X, = b, 

is called a partition of [a, b]. The interval [x-1, X] is called the kth subinterval 

of P and we write Ax, = x; - Xk-1, so that 2=1 Ax = b -a. The collection 
of all possible partitions of [a, b] will be denoted by P[a, b]. 

Definition 6.4. Let f be defined on [a, b]. 1fP = {xo» x1,.. , xn}, is a partition 

of [a, b], write Af = flx) - Sa-1), for k = 1, 2,..., n. f there exists a 

positive number M such that 

14sls M 
for all partitions of [a, b], then f is said to be of bounded variation on [a, b]. 

Examples of functions of bounded variation are provided by the next two 
theorems. 

Theorem 6.5. 1ff is monotonic on [a, b], then fis of bounded variation on [a, b 
Proof. Let f be increasing. Then for every partition of [a, b] we have A20 
and hence 

14l A ) -f- = s6) -l) 
Theorem 6.6. 1ff is continuous on [a, b] and if f' exists and is bounded in the 
interior, say |f'(x)| A for all x in (a, b), then f is of bounded variation on [a, bj. 

Proof. Applying the Mean-Value Theorem, we have 

Af. = flx) - S-1) = fU% - x-1), where E (X*-1, X) 
This implies 

Theorem 6.7. Iff is of bounded variation on [a, b], say E |Af M for all par- 
titions of [a, b], then f is bounded on [a, b]. In fact, 

Is S If(a) + M for all x in [a, b]. 



Denof. Assume that XE (a, D). Using the special partition P = {a, x, b}, we nnd 

x)- Sa)) + f6) - fx)l M. 

This implies [f(x) -J(| s M, Ux) < f(a)| + M. The same inequality holds 

ifx = a or x = b. 

Examples 

1 It is easy to construct a continuous function which is not of bounded variation. For 

xample, letf(x) = * cos {7/(2r)} if x # 0, S0) = 0. Then fis continuous on [0, 1J. but if we consider the partition into 2n subintervals 

P- 
2n' 2n 1 

an easy calculation shows that we have 

2n 

2 14 =+1 
2n 

1 1 
+ + - +. 2n 2n 2 2n 2 

This is not bounded for all n, since the series 1 (1/n) diverges. In this example 
the derivativef exists in (0, 1) butf is not bounded on (0, 1). However,S" is bounded 

on any compact interval not containing the origin and hence f will be of bounded 
variation on such an interval. 

2. An example similar to the first is given by f(x) = x* cos (1/x) if x # 0, f(0) = 0. 

This f is of bounded variation on [0, 1], since is bounded on [o, 1]. In fact. 
SCO) = 0 and, for x # 0, f(x) = sin (1/x) + 2x cos (1/x), so that f'(x)| s 3 for 

all x in [0,lj. 
3. Boundedness of f is not necessary for fto be of bounded variation. For example, let 

Sx) = xs. This function is monotonic (ind hence of bounded variation) on every 
finite interval. However, S'(x) - +o as x - 0. 

6.4 TOTAL VARIATION 

Definition 6.8. Letfbe of bounded variation on [a, 6], and let E(P) denote the sum 
2-1 14sl corresponding to the partition P = {Xo, X1,...,X of la, b]. The 

number 

Vyla, b) = sup {(P): Pe @[a, b]} 

IS called the total variation off on the interval la, b]. 

NOTE. When there is no danger of misunderstanding, we will write V, instead of 

Va, b). 

ince fis of bounded variation on [a, b], the number V, is finite. Also, V, 20, 

ce each sum (P) 2 0. Moreover, Vla, b) = 0 if, and only if, fis constant 

on [a, b]. 



Theorem 6.9. Assume that f and g are each of bounded variation on [a, b]. Then 
so are their sum, difference, and product. Also, we have 

and Vg AV, + BV, Vtg V + V 
where 

A = sup (lg(x)| : x ¬ [a, b]}, B sup {S)):x¬ [a, b]}. 
Proof. Let h(x) = S(x)g(x). For every partition P of [a, b], we have 

Ah = Sx)otr%) - Sa-1gls-1) 

= I[satx) - S-1)g(x)] 
+L-1)9(x) - Sam- 1glx-1)]| s A14f| + B|Agl. 

This implies that h is of bounded variation and that Vh S AVS + BV The proofs 
for the sum and difference are simpler and will be omitted. 

NOTE. Quotients were not included in the foregoing theorem because the reciprocal 
of a function of bounded variation need not be of bounded variation. For example, 

if f(x) » 0 as x xo, then 1/f will not be bounded on any interval containing x and (by Theorem 6.7) 1/f cannot be of bounded variation on such an interval. To 
extend Theorem 6.9 to quotients, it suffices to exclude functions whose values 
become arbitrarily close to zero. 

Theorem 6.10. Letfbe of bounded variation on [a, b] and assume that fis bounded 
away from zero; that is, suppose that there exists a positive number m such that 0 < ms IS)N for all x in [a, b]. Then g = 1|f is also of bounded variation on [a, b], and V, s Vs/m. 
Proof. 

1 
S(x) S(-1 Sx)s%-| m 

Ag= 

6.5 ADDITIVE PROPERTY OF TOTAL VARIATION 
In the last two theorems the interval [a, b] was kept fixed and V^(a, b) was con sidered as a function of f. If we keep f fixed and study the total variation as a function of the interval [a, b], we can prove the following additive property. Theorem 6.11. Letf be of bounded variation on [a, b], and assume that ce (4, b).Then f is of bounded rariation on [a, c) and on [e, b] and we have 

Va, 6) = VAa, c) + VAc, b). 
Proof. We first prove that fis of bounded variation on [a, c] and on [c, b]. Let P, be a partition of [a, c and let P2 be a partition of [c, b]. Then Po = P, uP is a partition of [a, b]. If 2 (P) denotes the sum 2 |AS| corresponding to the partition P (of the appropriate interval), we can write 

P) +ZP) = ZP) s Vla, b). (1) 



shat each sum 2(P1) and 2 (P2) is bounded by Va, b) and this means 
Thissho 

s of bounded vari This Snhounded variation on la, c and on [e, b]. From (1) we also ob ain the 
inequality 

Va, c)+ Ve, b) s V(a, b), 
hecause of Theorem 1.15. 

To obtain the reverse inequality, let P = 

uicbe the (possibly new) partition obtained by adjoining 
e Pla, 

the
b] 

point 
and let

cC. 
fce -1» Xkl, then we have 

f)-Sa-1 S Sx) - S) + S) - Sa%-1. 
hence EP) S 2(P%). Now the points of Po in [a, c] determine a partition of fa. c] and those in Le, b] determine a partition P2 of [c, b]. The corre-nding sums for alll these partitions are connected by the relation 

P) (P) = 2(P) + 2(P2) V{a, c) + VAc, b). 
Therefore, Va, c) + Ve, b) is an upper bound for every sum 2 P). Since this CAnnot be smaller than the least upper bound, we must have 

V,a, b)V(a, e) + VAc, b), 
and this completes the proof. 

6.6 TOTAL VARIATION ON la, x] AS A FUNCTION OF x 

Now we keep the function f and the left endpoint of the interval fixed and study the total variation as a function of the right endpoint. The additive property implies important consequences for this function. 
Theorem 6.12. Let fbe of bounded variation on [a, b]. Let V be defined on [a, b] as follows: V(x) = V^(a, x) ifa < x s b, V(a) = 0. Then 
i) Vis an increasing function on [a, b]. 

i) V-fis an increasing function on [a, b]. 
roof. If a <x < y s b, we can write Vla, y) = V/la, x) + V,(x, ). This 
umplies V(y) - V(x) = V^lx, y) 2 0. Hence V(x) s V(), and (1) holds. 

prove (ii), let D(x) = V(x) -Sx) if x e [a, b]. Then, f a sx <y Sb, 

D(y) - D(x) = V) - V(a) - L) - So)] = Vlz, ) - [) - s]. 
But from the definition of V(x, y) it follows that we have 

This neans that D(y) - D(x) 2 0, and (ii) holds. 

Fo orSome functions, the total variation Va, x) can be expressed as an 

we have 

SO)- Sx) s V{x, y). 

NOTE. 
nlegral. (See Exercise 7.20.) 



In. 6.13 

6.7 FUNCTIONS OF BOUNDED VARIATION EXPRESSED AS THE 
DIFFERENCE OF INCREASING FUNCTIONS 

The following simple and elegant characterization of functions of bounded varia- tion is a consequence of Theorem 6.12. 

Theorem 6.13. Letfbe defined on [a, b]. Then f is of bounded variation on [a, b] , and only if, f can be expressed as the difference of two increasing functions. 
Proof. If f is of bounded variation on [a, b], we can write f = V - D, where 
Vis the function of Theorem 6.12 andD = V -S. Both V and D are increasing functions on [a, b]. 

The converse follows at once from Theorems 6.5 and 6.9. 

The representation of a function of bounded variation as a difference of two 
increasing functions is by no means unique. If f = f1 - 2, where f and f2 are 
increasing, we also have f = Ui + 9)- a + 9), where g is an arbitrary in 
creasing function, and we get a new representation of J. If g is strictly increasing, the same will be true off, + g and f2 + 9. Therefore, Theorem 6.13 also holds if "increasing" is replaced by *"strictly increasing." 

6.8 CONTINUOUS FUNCTIONS OF BOUNDED VARIATION 
Theorem 6.14. Let f be of bounded variation on [a, b]. Ifx e (a, b], let V(x) = 

Vla, x) and put V(a) = 0. Then every point of continuity of f is also a point of continuity of V. The converse is also true. 

Proof. Since V is monotonic, the right- and lefthand limits V(x+) and V(x) exist for each point x in (a, b). Because of Theorem 6.13, the same is true of Sx+) and f(x-). 
Ifa <x < y s b, then we have [by definition of Vx, v)] 

0 I)- fa V() - V). 
Letting y > x, we find 

0s ISx+) -Sx)) s V(x+) - Vx). 
Similarly, 0s IS)-Sx-)s V(x) - V(x-). These inequalities imply that a point of continuity of V is also a point of continuity off. To prove the converse, let f be continuous at the point c in (a, b). Then, give E 0, there exists að > 0 such that 0 < lx - cl < & implies |S) - Sc) < 6 For this same e, there also exists a partition P of [c, b], say 

P = {Xo» X1 , Xni, X0 = C, * = b, such that 

A.)-1AA 



Adding more points to F can only increase the sum IAfland hence we can assume that 0< X1 - Xo ð. This means that 

4fl ISx) -S¢)N < 
& 

and the foregoing inequality now becomes 

VAe.b)-i+4sl+ V, b), 1, b), 

since X1, X2 ., x, is a partition of [x1, b]. We therefore have 

Ve, b)- Vlx1. b) < e. 
But 

0 Vo)- V() = Vla, x1) - V{a, c) 
= V6, *) = V{e, b) - V, b) < e. 

Hence we have shown that 

0<X1 c <8 implies 0 V(x) - V() < E. 

This proves that V(c+) = V(c). A similar argument yields V(c-) = V(c). 
theorem is therefore proved for all interior points of [a, b]. (Trivial modifications 
are needed for the endpoints.) 

The 

Combining Theorem 6.14 with 6.13, we can state 

Theorem 6.I5. Let f be continuous on [a, b]. Then f is of bounded variation on 
a, b]f,and only if, fcan be expressed as the diference of two increasing continuous 
functions. 
NOTE. The theorem also holds if "increasing" is replaced by "strictly increasing." 

Of course, discontinuities (if any) of a function of bounded variation must 
be jump discontinuities because of Theorem 6.13. Moreover, Theorem 6.2 tells us 

that they form a countable set. 
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