FUNCTIONS OF
BOUNDED VARIATION AND
RECTIFIABLE CURVES

6.1 INTRODUCTION

Some of the basic properties of monotonic functions were derived in Chapter 4.
This brief chapter discusses functions of bounded variation, a class of functions
closely related to monotonic functions. We shall find that these functions are
intimately connected with curves having finite arc length (rectifiable curves). They
also play a role in the theory of Riemann-Stieltjes integration which is developed
in the next chapter.

6.2 PROPERTIES OF MONOTONIC FUNCTIONS

Theorem 6.1. Let f be an increasing function defined on [a, b] and let x,, x,, . . ., x,
be n + 1 points such that

Q=X <X, <X3<'° "<ux,=0

Then we have the inequality

n—1
3 [f(xe+) — fi=)] < f(b) — fla).
k=1

Proof. Assume that y, € (X, X+ ). Forl < k < n — 1, wehavef(x,+) < f(x,)

and f(y,_,) < f(x,—), so that f(x,+) — fO—) < S = f(¥-y). 1f we add
these inequalities, the sum on the right telescopes to S(Yuz1) — f(»o). - Since

f(a=1) = f(y) < f(b) — f(a), this completes the proof.
The difference f(x,+) — f(x,—) is, of course, the jump of f at x,. The fore-

going theorem tells us that for every finite collection of points x, in-(a, b), the sum
of the jumps at these points is always bounded by f(b) — f(a). This result can be

used to prove the following theorem.
Theorem 6.2. If f is monotonic on [a, b], then the set of discominyities of fis
Countable. ‘ “
Proof, Assume that fis increasing and let S,, be the set of points iq (a, b) at which
the jump of fexceeds 1/m, m > 0. If x; < Xz <**° <, Ky ARSI D5 THECIEM
8.1 tells us that |

n—1 < f(b) — f(a).

m
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This means that S, must be a finite set. But the set of discontinuities of fin (q, b)

is a subset of the union |J®_, S, and henee is countable. (If f is decreasing, the
argument can be applied to —f.)

6.3 FUNCTIONS OF BOUNDED VARIATION
Definition 6.3. If [a, b] is a compact interval, a set of points

P = {an Xiyoer xﬂ}’
satisfying the inequalities

a=x0<x1---<x,,_,<x,,=b,

is called a partition of [a, b]. The interval [x,_,, x,] is called the kth subinterval
of P and we write Ax, = x, — X,_,, S0 that Yh-y Ax, = b — a. The collection
of all possible partitions of [a, b] will be denoted by P[a, b].

Definition 6.4. Let f be defined on [a, b). If P = {xo, Xy, ..., X,} IS a partition

of [a, b), write Af, = f(x) — f(xyy), for k = 1,2,...,n. If there exists a
positive number M such that

DALl < M

k=1
- for all partitions of [a, b], then f is said to be of bounded variation on [a, b].

Examples of functions of bounded variation are provided by the next two
theorems.

Theorem 6.5. If f is monotonic on [a, b), then f is of bounded variation on [a, b].

Proof. Let f be increasing. Then for every partition of [a, b] we have Af, > 0
and hence

2180 = 2 Af = 2 [0 — flxi-0)] = f(b) = fa).

Theorem 6.6. If f is continuous on [a, b] and if f' exists and is bounded in the
interior, say | f'(x)| < A for all x in (a, b), then f is of bounded variation on [a, b].

Proof. Applying the Mean-Value Theorem, we have

Afe = f(x) = f(x=y) = S () x — x,_)),

where 1, € (x,_,, x,).
This implies

Z: 1Af] = Z If'(t)] Ax, < 4 Z Ax, = A(b — a).

Theorem 6.7. If f is of bounded variation on

titions of [a, b], then f is bounded on [a, b]. y 2 1ALl < M forall p

In fact,
| /) < |f@) + M forall x in [a, b].



. proof. Assume that x € (a, b). Using the special partition P = {a, x, b}, we find
1/(x) = fla)l + 11(6) — fix)| < M.

This implies [/1x) = I < M, If(x)| < |f(@)| + M. The same inequality holds
l’f‘x =q0rx = b.

Examples

1. It is easy to construct a continuous function which is not of bounded variation. For
example, Ietf(.X) = X cos {_n'/(Zx)} if x # 0, £(0) = 0. Then fis continuous on [0, 1],
but if we consider the partition into 2n subintervals

p=lo 1l _1

LU
2n 2n-1""""3"2" [’

an easy calculation shows that we have

2n
1 1 1 1 1 1 1 1

A = — 4+ — 4+ — 4+ + .- — - = - —
.,;lfkl 2n 2n 2n -2 2n-2 +2+2 l+2+ +n'

This is not bounded for all n, since the series "% 1 (I/n) diverges. In this example
the derivative /” exists in (0, 1) but /” is not bounded on (0, 1). However, /” is bounded
on any compact interval not containing the origin and hence f will be of bounded
variation on such an interval.

2. An example similar to the first is given by f(x) = x? cos (1/x) if x # 0, f(0) = O.
This f is of bounded variation on [0, 1], since f/” is bounded on [0, 1]. In fact,
f'(0) = 0 and, for x # 0, f'(x) = sin (1/x) + 2x cos (1/x), so that |f’(x)] < 3 for
all xin [0, 1].

3. Boundedness of /” is not necessary for fto be of bounded variation. For example, let
f(x) = x'3. This function is monotonic (1nd hence of bounded variation) on every
finite interval. However, f'(x) = 400 as x — 0.

6.4 TOTAL VARIATION
Definition 6.8. Let f be of bounded variation on [a, b], and let 3 (P) denote the sum
2i=1 |Afy| corresponding to the partition P = {xo, Xy, ..., x,} of [a, b]. The

number
Via, b) = sup {2 (P): Pe P[a, b]},

is called the total variation of f on the interval [a, b].

NOTE. When there is no danger of misunderstanding, we will write V', instead of
Vi(a, b).

~ Since fis of bounded variation on [a, ], the numbfsr Vyis ﬁnite: A]S_O, V, 20,
- Since each sum ¥ (P) > 0. Moreover, V/(a, b) = 0 if, and only if, f is constant
°n [q, p].



Theorem 6.9. Assume that f and g are each of bounded variation on [a, b]. They
so are their sum, difference, and product. A Iso, we have
Visg < Vot V1, and Vig < AV, + BV,
where
A = sup {lg(0)|:x€e[a, b]}, B = sup {|lf(x)l:xce€l[a,b]}.

Proof. Let h(x) = f(x)g(x). For every partition P of [a, b], we have
|ARy = |/(x)9(x) — f(Xi- 1)9(xy - 1)
= I[/(x)g(x0) — f(xi-1)g(x1)]
+ [[(xi-09(xa) — f(a-)g(xi- D]l < AIAfil + BlAg,.

This implies that & is of bounded variation and that V,, < AV, + BYV,. The proofs
for the sum and difference are simpler and will be omitted.

NOTE. Quotients were not included in the foregoing theorem because the reciprocal
of a function of bounded variation need not be of bounded variation. For example,
if f(x) = 0 as x — x,, then 1/ will not be bounded on any interval containing x,
and (by Theorem 6.7) 1/f cannot be of bounded variation on such an interval. To

extend Theorem 6.9 to quotients, it suffices to exclude functions whose values
become arbitrarily close to zero.

Theorem 6.10. Let f be of bounded variation on [a, b] and assume that [ is bounded
away from zero, that is, suppose that there exists a positive number m such that
0 < m < |f(x)| f(_)r all x in [a, b]. Then g = 1/f is also of bounded variation on
[a, 8], and V, < V,[m?.
Proof.

1
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6.5 ADDITIVE PROPERTY OF TOTAL VARIATION

I.n the last two tht?orems the interval [a, b] was kept fixed and Vi(a, b) was‘con-
sidered as a function of /. If we keep f fixed and study the total variation as a
function of the interval [a, 5], we can prove the following additive property.

Theorem 6.11. Let f be of bounded variation on [a, b, and assume that c € (a, b).
Then f is of bounded variation on [a, ] and on [c, b] and we have ;

Vf(a, b) = f(a., C)+ Vf(C, b).

Proof. We first prove that fis of bounded variation on [g4 c] and on [c, b]. Le
£4 be a partition of [4, c] and let P, be a partition of [, bj. Then P, = P, U P;
is a partition of [a, b]. If ¥ (P) denotes the sum 2 1AL Correspoondin to the
partition P (of the appropriate interval), we can write ‘ d

ZP)+ Z(P) = TPy < Vya,b), - (1)



_ 2) is bounded by V/(a, b) and thic means
bounded variation on [q, ¢] and op (¢, 8]. From J(rg) wg also ob ain the

, uality
ineq Via, o) + Vi(e, b) < Vi(a, b),

cause of Theorem 1.15. . :
To obtain the reverse inequality, Jet p _ {x6 x4, ..., 2} € P[a, b] and let

_ P u {c} be the (possibly new) partitiop, obtained ' '
p,=F o ithen weiave ed by adjoining the point .

[f(x) — F(x- 1)l < 1f(x) ~ @) + | () — Fex_ )l

and hence X (P) < X ('P 0)- Now the pf)ints of Py in [a, c] determine a partition
P, of [a’ (,'] and those in [C, b]_c?ctermme a partition Pz of [C, b] The corre-
sponding sums for all these partitions are connected by the relation

LB = 2P =T (P) + X (P,) < Vg, o) + Vy(c, b).

Therefore, ¥4(a, ¢) + Vy(c, b) is an upper bound for every sum 3" (P). Since this
cannot be smaller than the least upper bound, we must have

Vi(a, b) < Vi(a, ¢) + Vi(e, b),

and this completes the proof.

Ifc€ [xk—]’

66 TOTAL VARIATION ON [q, x] AS A FUNCTION OF yx

Now we keep the function f and the left endpoint of the interval fixed and study
the total variation as a function of the right endpoint. The additive property
implies important consequences for this function.

Theorem 6.12. Let f be of bounded variation on la, 8]. Let V be defined on [a, b]
as follows: V(x) = Vi@, x)ifa < x < b, V(a) = 0. Then:

i) Visan increasing function on [a, b].
i) V—fis an increasing function on [a, b].

_P rof. If @ < x < Yy < b, we can write V/(a, y) = V/(a, x) +'Vf(x, y). This
'mplies V(y) — V(x) = V(x, ) > 0. Hence V(x) < V(y), and (i) holds.

To prove (ii), let D(x) = F(x) — f(x) if x € [a, b]. Then,ifa < x < y < b,
We have

20) = Dx) = V(3) — ¥(x) — [f03) = S0I] = Vi ) — [FG) — S0
But from the definition of V,(x, y) it follows that we have

f() = f(x) < Vylx, y).
This meaps that D(y) — D(x) > 0, and (ii) holds.

N ati |
in(::E' For some functions f, the total variation V,(a, x) can be expressed as an
Bral. (Seq Exercise 7.20.)
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6.7 FUNCTIONS OF BOUNDED VARIATION EXPRESSED AS THE
DIFFERENCE OF INCREASING FUNCTIONS

The following simple and elegant characterization of functions of bounde

d varj.
tion is a consequence of Theorem 6.12.

Theorem 6.13. Let f be defined on [a, b]. Then f is of bounded gfariation.on [a, )
if, and only if, f can be expressed as the difference of two increasing functions.

Proof. If f is of bounded variation on [a, b], we can write f = V —.D, where
Vis the function of Theorem 6.12 and D = V — f. Both ¥ and D are Increasing
functions on [a, 5].

The converse follows at once from Theorems 6.5 and 6.9.

The representation of a function of bounded variation as a difference of two
increasing functions is by no means unique. If f = f, — f,, where /1 and f, are
increasing, we also have f = ( fi +9) = (f2 + g), where g is an arbitrary in-
creasing function, and we get a new representation of £, If g is strictly increasing,

the same will be true of f; + g and J2 + g. Therefore, Theorem 6.13 also holds
if “increasing” is replaced by “strictly increasing.”

6.8 CONTINUOUS FUNCTIONS OF BOUNDED VARIATION

Theorem 6.14. Let f be of bounded variation on [a, b]. If x € (a, b], let V(x) =
Vi(a, x) and put V(a) = 0. Then every point of continuity of f is also a point of
continuity of V. The converse is also true.

Proof. Since V is monotonic, the right- and lefthand limits ¥(x+) and V(x-)
exist for each point x in (a, b). Becaus

_ e of Theorem 6.13, the same is true of
J(x+) and f(x—).

Ifa < x <y < b, then we have [by definition of Ve(x, )]

0 <1/ - fx) < vy — Vix).
Letting y — x, we find

0 < 1fx4) = f(9] < Vixt) — V()

Similarly, 0 < 4 (x) = flx=)| < V(x) - V(x—). These inequalities imply thal
a point of continuity of V is also a point of continuity of f;
To prove the converse, let f be conti

: nuous at the point ¢ in (a, b). Then, given
¢ > 0, there existsa é > 0 such that 0 <|lx—-¢ <s implies |f(x) — f(c)| < &2
For this same ¢, there also exists a partition P of [c, 8], say

P={X0,xl,...,xn},‘ x0=C, X, =5

such that "
Ve, b) — 28 < kZ 1AL,
=

b



Adding more points to P can only increase the sum > |Af;| and hence we can assume
that 0 < X; — Xo < 0. This means that

ALl = 1f(x)) - f(o) < g,

and the foregoing inequality now becomes

Vc,b—f<f' 3 £

since {x,, X3, - - - » X,} 1S & partition of [x,, b]. We therefore have

Vf(cs b) = Vf(xl, b) < &.
But

O é V(xl) - V(C) == Vf(a’ x{l) - Vf(a: C)
Vf(%,,sfii = Vie,b) — Vi(x, b) <.

Hence we have shown that
O0<x;, —c<d implies 0 < V(xy) — V() < .

This proves that V(c+) = V(c). A similar argument yields V(ic—) = V(c). The
theorem is therefore proved for all interior points of [a, b]. (Trivial modifications
are needed for the endpoints.)

Combining Theorem 6.14 with 6.13, we can state

Theorem 6.15. Let f be continuous on [a, b]. Then f is of bounded variation on
La, b] if, and only if, f can be expressed as the difference of two increasing continuous
Junctions.

NOTE. The theorem also holds if “increasing” is replaced by *‘strictly increasing.”

Of course, discontinuities (if any) of a function of bounded variation must
be jump discontinuities because of Theorem 6.13. Moreover, Theorem 6.2 tells us

that they form a countable set.
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