THE RIEMANN-STIELTJES INTEGRA

7.1 INTRODUCTION

Calculus deals principally with two geometric problems: finding th-e tangent line
to a curve, and finding the area of a region under a curve. The ﬁrst.ls §tudled bya
limit process known as differentiation; the second by another limit process—
integration—to which we turn now.

The reader will recall from elementary calculus that to find the area of the
region under the graph of a positive function f defined on [a, &], we subdivide
the interval [a, b] 'into a finite number of subintervals, say n, the kth subinterval
having length Ax,, and we consider sums of the form 37_, f(#,) Ax,, where ¢, is
some point in the kth subinterval. Such a sum is an approximation to the area by
means of rectangles. If fis sufficiently well behaved in [a, b]—continuous, for
example—then there is some hope that these sums will tend to a limit as we let
n — oo, making the successive subdivisions finer and finer. This, roughly speaking,
is what is involved in Riemann’s definition of the definite integral [2f(x)dx. (A
precise definition is given below.)

The two concepts, derivative and integral, arise in entirely different ways and
it is a remarkable fact indeed that the two are intimately connected. If we consider

the definite integral of a continuous function S as a function of

_ its upper limit,
say we write

F(x) = jxf(t) dt,

then F has a derivative and F 'x) = f(x).
differentiation and integration are, in a sense, inverse operations

In tl}is chapter we study the process of integration in some detail. Actually
we consider a more general concept  than that of Rj

This important result shows that

integral is [} f(x) du(x), or something
occurs as the special case in which a(x) = :

\ oo -1 = X. Whenua h - vative
the definition is such that the Stieltjes integr: s U MIHOUSOSHS -

: , gral {7 7(x) du(x) be ‘the Rieman?
| 3ntegral__[f; JS(x) &'(x) dx. However, the Stieltjes integral(st)ill r;(;rl?es - zhen o
1s not differentiable or even when ¢ js dis SSSCHse

e ; continuous. 1In fact, it s i ing with
discontinuous o that the importance of the Stieltjes integra] be’cgr;i:;s;:i,:i By
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pecial €ases of this more general progcess.
pecOme i distributions thflt are partly discrete and
vol¥ .4 by using Stieltjes integrals. In the mathem
'tr-ea L is & very useful tool that makeg possible
fs ::;guous and discrete random variables,
of

n Chapter 10 we fllscuss another generalization of the Riemann integral
gown as the Lebesgue integral.

Problems in physics which
partly continuous can also
atical theory of probability
the simultaneous treatment

For previty we make certain stipulations cpncerning notation and terminology to
pe used in this chapter. We sha!l be working with a compact interval [a, b] and,
unless OthCrWiSe Stated, all functions denoted by f, g, a, ﬂ, etc., will be assumed to
be real-valued functions defined and bounded on [a, b]. Complex-valued functions

e dealt with in Section 7.27, and extensions to unbounded functions and infinite
itervals will be discussed in Chapter 10.

As in Chapter 6, a partition P of [a, b] is a finite set of points, say
P = {xg, Xy, ..., X},

such that @ = Xo< X3 < < Xpoy <Xx,=b. A partition'P' of [a, b] is said
to be finer than P (or a refinement of P) if P = P’, which we also write P’ 2 P.
The symbol Ax, denotes the difference Ao, = a(x,) — a(x;—), so that

Z": Aa, = a(b) — a(a).
k=1

The set of all possible partitions of [a, 5] is denoted by #[a, b].
The norm of a partition P is the length of the largest subinterval of P and is
denoted by | P||. Note that

P'o P implies [Pl < |IP].

That is, refinement of a partition decreases its norm, but the converse does not
lecessarily hold. |

™3 THE DEFINITION OF THE RIEMANN-STIELTJES INTEGRAL

f’?ﬁni'tion 71, Let P = {xg, xy, ..., %a} De @ partition of [a, b] and let t, be a
Mt in the subinterval [x, _,, x,). A sum of the form

S(P, f, @) = 2, St A

. 2
ls ; . - --
i"'z;fed a Riemann—Stieltjes sum of f with respect tofcx. = (W)e say[ i’ :;] ’{z’;"’;z’;fe

g ith resp d we write “f € R(a) on 14,
% respect to o on [a, b], an _
Pﬂlrzs‘a umber 4 haying the fo[llowing property: For every & > g, :z’:;ef ::c:s;t).:r;
e of [a, b] such that for every partition P finer than P,

* the poins t, in [x,— 4, x;], we have ISP, f, @) — Al <&



When such a number A exists, it is uniquely dctf:rmine'_il a.nd.ls denoteq
fb f dex or by |5 f(x) da(x). We also say that the Riemann-Stieltjes mteg.ra] [Jrd
exists. The functions f and « are referred to as the inteyﬂ{”d and the integratg,
respectively. In the special case when a(x) = x, we ‘write S(Il) l,f ) Instead o
S(P, f, o), and f e R instead of fe R(x). The integral is then ca efl a Riemap,
integral and is denoted by [®fdx or by f5f(x)dx. The numen;al value of
f4 f(x) do(x) depends only on £, «, a, and b, and does not depend on the symbq] ,

The letter x is a “‘dummy variable” and may be replaced by any other conveniep
symbol.

NOTE. . This is one of several accepted definitions of the Riemanr'l—Stieltjes integra],
An alternative (but not equivalent) definition is stated in Exercise 7.3.

7.4 LINEAR PROPERTIES

It is an easy matter to prove that the integral operates in a linear fashion on boty
the integrand and the integrator. This is the context of the next two theorems,

Theorem 7.2. If fe R(a) and if g€ R(®) on [a, b], then ¢,f + c,g € R(®) on
La, b] (for any two constants ¢, and c,) and we have

b b b
f (eof + czg)doz=c1J.fdoc+c2J. g da.

Proof. Leth = ¢, f + c,9. Given a partition P of [a, b], we can write

S(P, b, a) = Z h(t,) Aa; = c, ;f(tk) Ax, + c, E g(t,) Aa,

= CIS(Psf’ d) + CZS(P’ g, a)- :
Given ¢ > 0, choose P; so that P > p implies |S(P, f, ) — [° fdu| < ¢, and

choose P so that P o p” implies |S(P, g, o) — [egda) <& If we take
e = P, U Py, then, for P finer than P,, we have

; b b
S(P,h,a)—clffda—czf g da

and this proves the theorem.

Theorem 7.3. If fe R(o) and f e R(

B) on [a, b
(for any two constants ¢1 and ¢,) and we hape

< leyle + le,le,

1, then fe R(c,a + ¢,p) on [a, b]



Theorem 74, Assume that c € (a, b).
the third also exists and we have

'Lfda+rfdoc=.rfda. (1)

If two of the three integrals in (1) exist, then

Proof. 1f P is a partition of [a, b] such that ¢ P, et
PP=Pnlac] and pPr=pn [c, b],

denote the gorresponding pariitions of [a, c] and [c, b], respectively. The Rie-
mann-Stieltjes sums for these partitions are connected by the equation

S(P,f, ®) = S(P', f, &) + S(P", f, ).

Assume that [; f do and (® f du exist. Then, given & > 0, there is a partition
P, of [a, c] such that

S(P', f, @) — chda

a

; :
< 5 whenever P’ is finer than P,,

and a partition P/, of [¢, b] such that

(S(P", £ 0 — j " fda

c

< § whenever P” is finer than P,

Then P, = P! P" is a partition of [a, b] such that P finer than P, implies
P'2 P, and p” 2 P’. Hence, if P is finer than P,, we can combine the foregoing
results to obtain the inequality

S(P,f,d) - jcfda -—J. fdd

Thi‘s proves that [* f dx exists and equals f; fde + f2 f da. The reader can easily
verify that a similar argument proves the theorem in the remaining cases.

< E.

_ Using mathematical induction, we can prove a similar result for a decomposi-
on of [g, b] into a finite number of subintervals.

NCOTE. The preceding type of argument cannot be u§ed to prove that the lnte%r:;
o) da. exists whenever [® f da exists. The conclusion is correct, l_1lf)hweve;.1 i
Integrators o of bouﬁdedavariation, this fact will later be proved in Theorem 7.25.

iti bfdu exists.
Denition 7.5, If a < b, we define [3fde= — b f da whenever faf
€ also deﬁne I:fdd- = 0.

The equation in Theorem 7.4 can now be written as foll

rfda+ jcfda+'rfd“=0‘
a b ¢

ows!:



1.5 INTEGRATION BY PARTS

A remarkable connection exists between the intigrand_amli. thet}:ntegr_ator in
Riemann-Stieltjes integral. The existence of [;fda 1mplies | ¥ ;:x1§tence of
[ a df, and the converse is also true. Moreover, a Very SIMpIe relation holqg

between the two integrals, |
Theorem 7.6. If f e R(x) on [a, b], then « € R(f) on [a, b] and we have

j"f(x) da(x) + J * o) df(x) = f(b)b) — fl@)oa).

a

NOTE. This equation, which provides a kind of reciprocity law for the integra], jg
known as the formula for integration by parts.

Proof. Let ¢ > 0 be given. Since [} fdu exists, there is a partition P, of [q, b)
such that for every P’ finer than P,, we have

S(P, £, o) — J " f da

<eé& V)]

Consider an arbitrary Riemann-Stieltjes sum for the integral [° « df, say

S(P, o, f) = D a(t) Afy = 2 a(t)f(x) — E () f (%= 1),

k=1 k=1

where P is finer than P,. Writing A = f(b)a(b) — f(a)a(a), we have the identity

A= ;f(xk)a(xk) ~ ;f(xk_l)a(xk_l).

Subtracting the last two displayed equations, we find

A—-SP,af)= ’;f(xk)[a(xk) — a(t)] + ’;f(xk-l)[a(tk) — ox—1)]-

The two sums on the.r.ight can be combined into a single sum of the form S (P, £, 9,
where P’ is that partition of [a, b] obtained by taking the points x, and ¢, together.

Then P’ is finer than P and hence finer than P.. Therefore the inequality (2) i
valid and this means that we have ’

< g,

A= SP,of) - rfda

a

whenever P is finer than P,. But this is

exactly the b ists
and equals 4 — [b fdy. Y the statement that [’ « df exi

7.6 CHANGE OF VARIABLE IN A RIEMANN

Theorem 7.7. Let fe R(a) on
function defined on an interpql

~STIELTJES INTEGRAL

[a, b]‘and let g be a Strictly monotonic continuous
S having endpoints ¢ qnd d. Assume that a = 9(¢)



p = g(d). Leth and B be the composite functions defined as follows:
hx) = fl9®)], B = ofg(x)], ifxes.
Then h € R(B) on S ind we have [} fdu = (¢ h df. Tharis,

g(d)

£(t) dat) = J * 1091 dfoe0])

g(c)

Proof. For definiteness, assume that g is strictly increasing on S. (This implies
¢ < d.) Then g is one-to-one and has a strictly increasing, continuous inverse g !
defined on [a, b]. Therefore, for every partition P = {0, -, ya} of [, d],
there corresponds one and only one partition P’ = {xo, ..., x,} of [a, b] with
x, = g(»)- In fact, we can write

P'=g(P) and P =g (P

Furthermore, a refinement of P produces a corresponding refinement of P’, and
the converse also holds. ,

If ¢ > 0 is given, there is a partition P, of [a, b] such that P’ finer than P]
implies |S(P", f, @) — (b fdx| < e. Let P, = g~'(P) be the corresponding par-
tition of [c, d], and let P = {y,, ..., y,} be a partition of [¢, d] finer than P,.
Form a Riemann-Stieltjes sum

n

S(P, h, B) = ; h(u) AB,,

where u, e [Yk-1> 7] and AB, = B(y) — B(yk—y)- If we put 1, = g(u,) and
% = g(y),then P' = {x,, ..., x,} isa partition of [a, 4] finer than P.. Moreover,

we then have

S, b ) = 3 FToualela()] — ofa(r-0)]}

3 fu{ax) — alxe-r)} = SP S, ),

since 7, ¢ [X.—1, x,]. Therefore, |S(P, h, f) — [ofdx| < & and the theorem is
Proved,

NOTE, Thjs theorem applies, in particular, to Riemann integrals, that is, when
“x) = x, Another theorem of this type, in which g is not required to be mono-
onic, wijy later be proved for Riemann integrals. (See Theorem 7.36.)

"1 REDUCTION TO A RIEMANN INTEGRAL
The next theorem tells us that we are permitted to replac.:e the sympol .da(x') by
“(x) dx in the integral (? f(x) da(x) whenever & has a continuous derivative x’.



Theorem 7.8. Assume fe R(o) on [a, b] and "5:”"“’ z:hat “ ha:s' @ continyg,,
derivative o' on [q b). Then the Riemann integral (2 f(x)e'(x) dx exists and v, hae

J ’ 1) dex) = j J00(x) dx.

Proof. Let g(x) = f(x)«'(x) and consider a Riemann sum

S(P, g) = kz:; g(ty) Ax, = ,;f(tk)a’(tk) Axy.

The same partition P and the same choice of the #, can be used to form th
Riemann-Stieltjes sum

S(P, f, @) = Z f(t) Aa.
Applying the Mean-Value Theorem, we can write

Aa,‘ = Ct'(vk) Axk, Where Uk € (xk_ 1 xk),
and hence

S(P, f, ®) — S(P, g) = k;f(rk)[a'(vk) — ()] Ax,.

Since f is bounded, we have |f(x)| < M for all x in [a, &], where M > 0. Con-
tinuity of o' on [a, b] implies uniform continuity on [a, b]. Hence, if ¢ > 0 is
given, there existsa § > 0 (depending only on ¢) such that

O<|x—yl <36 ‘imlies '(x) — o <——8——.

p ) = Ol < o —
with norm ||P!|| < 6, then for any finer partition P we
< ¢/[2M(b - a)] in the preceding equation. For.such

If we take a partition P,
will have |o'(v,) — o' (1))
P we therefore have

ISP, f, @) — S(P, g)] < §

On the other hand, since f e R(«) on [a, b], there exists a partition P? such that
P finer than P” implies

&
< -.

|S(P,f, %) — f e < &

a

Combining the last two inequalities, we s

e that when P is finer than P, = P, U P
we will have |S(P, g) — [° fdu| < ¢, an ) o

d this proves the theorem.

NOTE. A strouger result not requiring continuity of g jg proved in Theorem 7.35
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