14.4 FUNDAMENTALS OF MATHEMATICAL STATISTICS

which is the aggregate of the samp
stratified sample and the technique of

sampling. Such a sample is by far t
representative of the population from which it has b

14-3. PARAMETER AND STATISTIC
In order to avoid verbal confusion with the statistical constants of the population,

viz., mean (lL), variance o2, etc., which are usually referred to as parameters, statistical

measures computed from the sample observations alone, e.g., mean (x), variance (s2),
etc., have been termed by Professor R.A. Fisher as statistics.

In practice parameter values are not known and the estimates based on the
sample values are generally used. Thus, statistic which may be regarded as an
estimate of parameter, obtained from the sample, is a function of the sample values
only. It may be pointed out that a statistic, as it is based on sample values and as there
are multiple choices of the samples that can be drawn from a population, varies from
sample to sample. The determination or the characterisation of the variation (in the
values of the statistic obtained from different samples) that may be attributed to
chance or fluctuations of sampling, is one of the fundamental problems of the

led units of each of the stratum, is termed as
drawing this sample is known as stratified
he best and can safely be considered as

een drawn.

sampling theory.
Remarks 1. Now onwards, p and ¢ will refer to the population mean and variance
respectively while the sample mean and variance will be denoted by X and s respectively.
2. Unbiased Estimate. A statistic t = t (xy, x5, ..., X,), a function of the sample values x;, x,,

x, is an unbiased estimate of the population parameter 6, if E(¢) = 0. In other words, if :
E (Statistic) = Parameter, .. (14:1)

then statistic is said to be an unbiased estimate of the parameter.
14-3-1. Sampling Distribution of a Stdtistic. If we draw a sample of size n from
a given finite population of size N, then the total number of possible samples is :
N, _ N!
Co =mTN=mT
For each of these k samples we can compute some statistic t = ¢ (x;, xp, -.., X;), in

ey

=k, (say).

particular the mean ¥, the variance s?, etc ., as given below.

Sample Number Statistic

t - &2

x
1 t - 2
1 B 52

2 ¢ -
2 X, 522
3 ty = 52

k t P S.z

k k )J

Tl_'le set of the values of the statistic so obtained, one for each sample, constitutes
what is called the sampling distribution of the statistic. For example thelilaiues bbb

-, ty determine the sampling distribution of the statistic ¢. In oth’er words stalt,isi'ic 32

may be regarded as a random variable which can take the values t;, t,, t , P

can compute the various statistical constants like mean variance ;k:wie;; iil:tosjs
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etc.Xr its distribution. For e
t ' . xample, th i -
distution of the statistic ¢ are giveﬁ by: e

- 1 k
t =F(t1+t2+...+tk)=}?ztl
1=1

d 1 7 T = ;
! Var(®) =g [h-12+ -T2+ .+ (-T2 ] =1 T (-T2
i=1

4-3-2. Standard Error. The standard deviation of the sampling distribution of a
static is known as its Standard Error, abbreviated as S.E. The standard errors of some
of t well-known statistics, for large samples, are given below, where n is the sample
size 02 the population variance, and P the population proportion, and
Q < - P;n; and n, represent the sizes of two independent random samples

resgtively drawn from the given population (s).
Standard Error

F; 0. Statistic
o/Vn

’ . | Sample mean: x
| . | Observed sample proportion ‘p’ NPQ/n

’ . |Samplesd.: s W

Sample variance : s* o2VN2/n
Sample quartiles 1.36263 6/Vn
. | Sample median 125331 6/Vn
(1-p)/n,

7. | Sample correlation coefficient (r)
p being the population

correlation coefficient

o V96/n

3. | Sample moment : pj
4
Sample moment : J oiN96/n
Sample coefficient of variation @) o \/TE’ i
\2n 10*
A / o, %
o M
o’ of

Difference of two sample s.d.’s : (s; = $2)
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ﬁ
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Difference of two sample proportions : P-p)
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Thus, if the discrepancy betwe
value of a statistic is greater than z,
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en the observed and the expected (hypolti.Ca'l)
(cf § 14-4:5) times its S.E., the null hypoisis is

rejected at o level of significance. Similarly, if
| t=E(t) | Sz, xS.E. (8),

the deviation is not regarded significant at 5% level of signiﬁcance.‘ In other wos, the
deviation, t — E(t), could have arisen due to fluctuations of samphng and the ca do
not provide us any evidence against the null hypothesis which may, therefe, be
accepted at a level of significance. [For details sce § 14-4-3.]

(i) The magnitude of the standard error gives an index of the precision’ the
estimate of the parameter. The reciprocal of the standard error is taken as the msure
of reliability or precision of the statistic.

SE(p) =VPQ/n and S.E (X)=o0/Vn

In other words, the standard errors of p andX vary inversely as the square root the
sample size. Thus in order to double the precision, which amounts to reducir the
standard error to one half, the sample size has to be increased four times.

(1) S.E. enables us to determine the probable limits within which the popution
parameter may be expected to lie. For example, the probable limits for popution

pE3Npg/n. (c. f Remark §'-7-1)

Remark. S.E. of a statistic may be reduced by increasing the sa mple size but this reslts in

proportion P are given by :

corresponding increase in cost, labour and time, etc.
- ;

14.4. TESTS OF SIGNIFICANCE

Lar

oot }

e v e

|-

A very important aspect of the sampling theory is the study of the tels of

significance, which enable us to decide on the basis of the sample results, if

(f) the deviation between the observed sample statistic and the hypoth¢ical

parameter value, or

(1) th‘e deviation between two independent sample statistics
might be attributed to chance or the fluctuations of sampling.

Since, for large n, almost all
binomial, Hypergeometric (cf C

Test of Significance (c. f. § 147) for Ia
significance for studying such diffe

Fisher’s z-transformation.

14-4-1. Null and Alternative Hypotheses.
for thfe selection of sample units makes the t
applying the test of significance we first set u

the assumption that it is true.
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the distribut
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ingle statistic, H,
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rences for small samples are f-test, F-fest and

The techinique of randomisation used
est of significance valid for us. For
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Prof. R.A. Fisher, null hypothesis is the hypothesis ¢

u@a!ly denoted by H,,. According to
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arame.ter value and in the case of two
not differ significantly.
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Having set up the null hypothesis we compute the probability B that the
deviation between the observed sample statistic and the hypothetical parameter value
might have occurred due to fluctuations of sampling. If the deviation comes out to be
significant (as measured by a test of significance) null hypothesis is refuted or rejected
at the particular level of significance adopted (c.f. § 14-4-3) and if the deviation is not
significant , null hypothesis may be retained at that level.

Any hypothesis which is complementary to the null hypothesis is called an
alternative hypothesis, usually denoted by H,. For example, if we want to test the null
hypothesis that the population has a specified mean py, (say), i.e., Hp: 1 = Yo then the
alternative hypothesis could be :

(1) Hy s pg (ie., p> pg or b < p) (i) Hy : 0> Mo, (iff) Hy : p < Ho

The alternative hypothesis in (i) is known as a two-tailed alternative and the
alternatives in (i) and (iii) are known as right-tailed and left-tailed alternatives
respectively. The setting of alternative hypothesis is very important since it enables us
to decide whether we have to use a single-tailed (right or left) or two-tailed test (cf 8
14-4-4).

14.4-2. Errors in Sampling. The main objective in sampling theory is to draw
valid inferences about the population parameters on the basis of the samp]e.results. In
practice we decide to accept or reject the lot after examining a sample from it. As such
we are liable to commit the following two types of errors :

Type | Error : Reject Hy when it is true.

Type Il Error : Accept Hy when itis wrong, i.e., accept Hy when H, is true.

[f we write P {Reject Hy when it is true} = P {Reject Hy | Ho} = } .. (14-2)

and P { Accept Hy when it is wrong} = P {Accept Hy | H1} =8
then o and P are called the sizes of type I error and type Il error, respectively.
In practice, type I error amounts to reject'mg a lot when it is good and type II
error may be regarded as accepting the lot when it is bad.
Thus P {Reject a lot when it is good} = « ] . (14:20)
and P {Accept a lot when itis bad} = [ -
where o and P are referred to as Producer’s risk and Consumer’s rxsk'respectlvely. ‘
14-4.3. Critical Region and Level of Signiﬁcance: A region (Co'rresponc;mg
to a statistic #) in the sample space S which z%mounts. to rejection of Hy is tf:.“eal 3:
critical region of rejection. If @ is the critical region and if t =1 (%, X, -, X)) is the v
of the statistic based on a random sample of size 1, then
P(t e | Hy)=qa, P(te ® | H)=p ...(14-2b)
where ®, the complementary set of w, is called the acceptance region.
We have e et ¢' 8! o the critical
e probsbiy o hat e o vl o e
region e lé‘velﬂf:f mgﬂ)ifiln‘lum‘producer’s risk). The levels of sigr}ificalxc'e
size of the type | SCF (Qr by thesis are 5% and 1%. The level of significance is
usually employec ™ e 'ESlEt;he sample information.
always fixed in advance before collecting p
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14.4.4. One-tailed and Two
represented by a portion of the area under
distribution of the test statistic.

A test of any statistical hyp

i he critical region ;
-tailed Tests. In any test, t gion is
tail the probability curve of the sampling

othesis where the alternatives hypothesis is one taileq
(right-tailed or left-tailed) is called a one-tailed test. .For exantll.}lnle., a' test for testing the
mean of a population H : t = J1y against the alternative h).lpo .e51s ' '
Hj: u> po (Right-tailed)  or Hy:p<Ho (Left—tatled.), isa s.mgle.tazled t‘fSt‘
In the right-tailed test (Hy : |1 > Ho), the critical region lies entirely in the right tai]

of the sampling distribution ofx, while for the'left-tailed test (H; : 1 < Ho), the critica]
region is entirely in the left tail of the distribution . o ‘

A test of statistical hypothesis where the alternative hypothesis is two-tallgd
such as : Hy : |t = pg, against the alternative hypothesis H : p # p(’,(“ >Ypand p < Ho), is
known as two tailed test and in such a case the critical region is given by the portion of
the area lying in both tails of the probability curve of the test statistic.

In a particular problem, whether one-tailed or two-tailed test is to be applied
depends entirely on the nature of the alternative hypothesis. If the alternative
hypothesis is two-tailed, we apply two-tailed test and if alternative hypothesis is one-
tailed, we apply one tailed test.

For example, suppose that there are two population brands of bulbs, one
manufactured by standard process (with mean life j1,) and the other manufactured by
some new technique (with mean life {1,). If we want to test if the bulbs differ
significantly, then our null hypothesis is Hy : H1 = U, and alternative will be
Hy : py # py, thus giving us two-tailed test. However, if we want to test if the bulbs
produced by new process have higher average life than those produced by standard
process, then we have Hy : i, =y, and H; : K1 < Hy, thus giving us a left-tailed test.
Similarly, for testing if the product of new process is inferior to that of standard
process, then we have : Hy: 1y = py and H, : 1y > iy, thus giving us a right-tailed test.
Thus, the decision about applying a two-tailed test or a single-tailed (right or left) test
will depend on the problem under study.

14:4.5. Criliga.l Values or _Signiflcont Values. The value of test statistic which
separates the C.I'ltl'Cal (or rejection) region and the acceptance region is called the
critical value or significant value. It depends upon :

(i) The level of significance used, and
(i1) The alternative hypothesis, whether it is two-

As has been pointed out earlier, for large samp

corresponding to the statistic ¢ ,viz.,

tailed or single-tailed.

: lé?S. the standardised variable
_t=LC (¢

Z-S‘,E(J,)LN(O, 1), e

asymptotically as n — . The value of Z given by (
known as test statistic. The critical value of the test sta

a two-tailed test is given by z, , where Zq is determin,
P(1Z1>z)=qa

%) under the null hypothesis is
tistic at level of significance o for
ed by the equation :

... (14:20)

curve, from (14-2c), we get

Z> z(l) + P(Z > le) =Q [By symmetry]

= P(Z> z4)=0, = P(Z> z.)=q/n

LARGE SAMPLE THEORY
14.9

/2. Thus Z, 1is the value such that area to
= Z4) 15 @/2, as shown in the following

In other words, the area of each tai is ¢

the right of z, is «/2 and to the left of (
diagram :

TWO-TAILED TEST

(Level of Significance ‘o)
Lower
critical Upper
value critical

value
Rejection

; Rejection
region (a/2) eqion (a2)

~Zy Z=0 Zy

In case of single-tail alternative, the critical value z, is determined so that total
area to the right of it (for right-tailed test) is a and for left-tailed test the total area to
the left of (- z,) is a (See diagrams below), i.e.,

For Right-tailed Test : P(Z>z,) =« - (14-2d)
For Left-tailed Test P(Z<-124) =« .. (14-2¢)
RIGHT-TAILED TEST LEFT-TAILED TEST
(Level of Significance ‘") (Level of Significance ‘o)

Rejection  Rejection
region region

(o) (o)

Z=0 Z, —Z, Z=0

igni ti ingle-tai left or right) at level of
Thus the significant or critical value of Z for a single-tailed test ( ) at le
significance ’a’%};fame as the critical value of Z for a two-tailed test at level of significance
‘2al. . e
We give below, the critical values of Z at commonly used levels of sxgm'ﬁcance for
both two-tailed and single-tailed tests. These values hav_e‘ been obtained f_rom
equations (14-2c), (14-2d), (14-2¢), on using the Normal Probability Tables as explained

in § 146. , N

Critical value Level of significance (o)
(zo) 1% 5% 10%
(+3
Two-tailed test 2:58 | Ze | = 196 | Z, | = 1645
Right-tailed test 2:33 Z, = 1645 Zy, = 128
Zy = —233 Z, = —1645 Zy, = -128

Left-tailed test

Remark. 1f n is small, X
normal and in the that case we can t use thea
from normal probability curves. In this case,

istributi istic Z will not be
ling distribution of the test statistic ;
B e umnthe b%ve significant values which have been obtained

viz., n small (usually less than 30), we use the
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significant values based on the exac
§ 14-4-5, which turns out tobe ¢, F,or X
been tabulated for different values of n and o and

tion of the statistic Z. [defined in 3

nd 16]. These significant values have
at the end of Chapters 15 and 1g,

t sampling distribu
2 [see Chapters 14 a
are given

./ 14.5. PROCEDURE FOR TESTING OF HYPOTHESIS

[}
/

We now summarise below the various steps in testing of a statistical hypothesis i,
a systematic manner.

1. Null Hypothesis. Set up the Null Hypothesis H.

2. Alternative Hypothesis. Set up the Alternative Hypothesis Hj. This 2:._ enable ys
to decide whether we have to use a single-tailed (right or left) test or two-tailed test.

3. Level of Significance. Choose the appropriate level of significance (o) n_mwm:&:m
on the reliability of the estimates and permissible risk. This is to be decided before
sample is drawn, i.e., a is fixed in advance.

4. Test Statistic (or Test Criterion). Compute the test statistic :

_t=E()
Z= SE() under H,,.

5. Conclusion. We compare the computed value of Z in step 4 with the significant
value (tabulated value) z, at the given level of significance, ‘ot’.

H.m _ Z | <z4, ie., if the calculated value of Z (in modulus value) is less than Zy We
say it is not significant. By this we mean that the difference - E(t) is just due to
mcn.w:mco:m of sampling and the sample data do not provide us sufficient evidence
against the null hypothesis which may, therefore, be accepted.

If 1 Z 1 >z, ie., if the computed value of test statistic i iti
oo , stic 1s greater than the critical o
m&:_:nmm: <.£:P then we say that it is significant and the :Em_ hypothesis is rejected mﬂ

level of significance , i.e., with confidence coefficient (1-a).

14-6. TESTS OF SIGNIFICANCE FOR LARGE SAMPLES

We ﬂmﬁ“ﬂﬂﬂ:ﬂﬂ\m “emoi_~__ discuss the tests of significance when samples are large.
distributions. e bi r large <m.-:mm of n, the number of trials, almost all the
Cpriatior mv..w: :os.:.mr .wo_m.mo? negative binomial, etc., are very closely
PP ed by normal distribution. Thus in this case we apply the normal test,

which is based upon the followi
probabitity e wing fundamental property (area property) of the normal

If X ~ N (1, %), then z=2ZB_X-E®0_\ 0
o o VX 0
us from the normal probability tables, we have
P(-3<2<3) = 09973, ie, p (1 Z1<3)=09973

- P(1Z1>3) = 1-P(1Z | £3)= 0.002 3
L.e., in all probability we should expect a standard normal var; i .
Also from the normal probability tables, we get Tt febeneen =2
P(-196<Z <1.96) = 0.95, ie, P(1Z|< 1.96) = 0.9
= wﬁ_N_vn.c@nmro.cmno.oml Y
and P(1Z1<258)=099 - P(lZ)|> 2:58) = 0.01 MMMMW

LARGE SAMPLE THEQRY
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Thus the significant va] o
tailed test are 1.96 and 2.58 amMMMMWNm_W B S

.H..TCm the steps to be used in the normal test are as follows -

(1) Compute the test statistic Z under H,,.

(@1 Z1>3 H,yis always rejected.

(i) If | Z | < 3, we test its significance at certain level of significance, usually at

5% and .moB.mZBmm at 1% level of significance. Thus, for a two-tailed test if | Z | >
1:96, Hy is rejected at 5% level of significance.

Similarly if |Z | > 2.58, H, is contradicted at 1% level of significance and if
I'Z | <2:58, Hy may be accepted at 1% level of significance.

From the normal probability tables, we have :
P(Z >1645) =0-5-P(0<Z<1645) =05-045=0-5-0-45=0-05
P(Z >233) =05-P(0<Z<233) =05-049=001
Hence for a single-tail test (Right-tail or Left-tail) we compare the computed
value of 1Z | with 1-645 (at 5% level) and 2-33 (at 1% level) and accept or reject Hy

accordingly.
Important Remark. In the theoretical discussion that follows in the next sections, the
samples under consideration are supposed to be large. For practical purposes, sample may be

regarded as large if n > 30.

14.7. SAMPLING OF ATIRIBUTES

Here we shall consider sampling from a population which is divided into two
mutually exclusive and collectively exhaustive classes—one class possessing a
particular attribute, say A, and the other class not possessing that attribute, and then
note down the number of persons in the sample of size 7, possessing that attribute.
The presence of an attribute in sampled unit may be termed as success and its
absence as failure. In this case a sample of n observations is identified with that of a
series of n independent Bernoulli trials with constant probability P of success wOn mw.nr
trial. Then the probability of x successes in n trials, as given by the binomial
probability distribution is : p(x) ="C, P*Q"-*;x=0,1, 2, .., 1N

14-7-1. Test of Significance for Single Proportion. If X is the 5:3&2, of
successes in # independent trials with constant probability P of success for each trial,
then N .
E(X)=nP and V(X)= nPQ, where Q=1-P,isthe probability of failure.

It has been proved that for large n, the binomial distribution tends to normal

distribution. Hence for large n, X ~ N (nP, nPQ), i.e.,
X-E X-nP
Z = = ~N(,1)
Vv VnPQ

. (14-4)

and we can apply the normal test. | |
Remarks 1. In a sample of size 1, let X be the number of persons possessing the given
attribute. Then
Observed pro )
H —_—
E(p) =E Ax\xvummcavnw:wlw
tion ‘p’ gives an unbiased estimate of t

portion of successes = X/n=p, (say)
.. (14-4a)

he population proportion P.

Thus the sample propor
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PQ

1 PO E (p) = - (14.4p
Also <§n<ﬁ Wvuw,\co"mm:vOu\:l = SE. (p) " )
ge 11, the normal test for the

Since X and consequently X/n is mmwavnomnm__w normal for lar
proportion of successes becomes :

P-E@_p-P ... (14-4c)
Z=g55= ~N(@©,1)
S.E. () PQ/n
2. If we have sampling from a finite population of size N, then
_ N-n) PQ . (14-4d)
AN CE

3. Since the probable limits for a normal variate X are E(X) £ 3VV(X), the probable limits
for the observed proportion of successes are :
E(p)+3SE.(p), ie, P+3VPQ/n.
If P is not known then taking p (the sample proportion) as an estimate of P, the probable

limits for the proportion in the population are : p+3Vpg/n. ... (14-4e)
However, the limits for P at level of significance o are givenby : p*z, Vpa/n, .. (14-4f)
where z, is the significant value of Z at level of significance .
In particular : 95% confidence limits for P are given by : p+1-96 pg/n, (14-4g)
and 99% confidence limits for P are given by : p+2-58 Vpgq/n. .. (14-4h)
Example 14-1. A die is thrown 9,000 times and a throw of 3 or 4 is observed 3,240
times. Show that the die cannot be regarded as an unbiased one and find the limits between

which the probability of a throw of 3 or 4 lies.
Solution. If the coming of 3 or 4 is called a success, then in usual notations :
n=9,000; X = Number of successes = 3,240
Under the null hypothesis (Ho) that the die is an unbiased one, we get

P = Probability of success = Probability of gettinga3or4 = W + W

Q=

Alternative hypothesis, H, : p # W\ (i.e., die is biased).

X-nP
We have Z= ~N(O, : :
0P (0, 1), since n is large.

Now 7 = 3240-9000x(1/3) _ 240 _ 240 536

9000 % (1/3)x (2/3) V2000 il

Si 1 Z | is rej . .
Emmm%nm Z 1 >3, Hy is rejected and we conclude that the die is almost certainly

: S . 1
Since die is not unbiased, P # 3 - The probable limits for ‘P’ are given by :

A AA A
wwu)\w n =p+3 — . _ 3,240 A
Q/n =p E\sismawénmgo.mmgaou&iéuo.i.

Probable limits for population proportion of successes may be taken as :

A A
P+3 A/ =036+ 036 x 0-64 _ : .
3 PR/ =036£3 So00 = 0-36 £ 3x 26X08_ 4 5o 2nd 0:375.

30 V10
ainly lies between 0-345 and

Hence the probability of getting 3 or 4 almost cert
0-375.
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Example 14.2. A random sample of 500
az.& m.m were found to be bad. Show that the S
this size is 0-015 and deduce that the
certainly lies between 8-5 and 17.5.

pineapples was taken from a large consignment
-E. of the proportion of bad ones in a sample of
percentage of bad pineapples in the consignment almost

Solution. Here we are given : =500
X = Number of bad pineapples in the sample = 65

p = Proportion of bad pineapples in the sample n% =013=9g=1-p=087
Since P, the proportion of bad pineapples in the consignment is not known, we
A

A
may take (as in the last example) : P =p =013, Q = g = 0-87.

AA
S.E. of proportion = A /P Q/n =013 x 0-87/500 = 0-015

Thus, the limits for the proportion of bad pineapples in the consignment are :

A

A
P+3 A /P Q/n =0130+3x0-015=0-130 + 0-045 = (0-085, 0-175)

Hence the percentage of bad pineapples in the consignment lies almost certainly
between 8:5 and 17-5.

Example 14-3. A random sample of 500 apples was taken from a large consignment and
60 were found to be bad. Obtain the 98% confidence limits for the percentage of bad apples in
the consignment.

Solution. We have :

p = Proportion of bad apples in the sample = % =012

Since significant value of Z at 98% confidence coefficient (level of mmmam.nmbnm 2% )
is 2-33, [from Normal Tables], 98% confidence limits for population proportion are :

p+233\pg/n =012+233V0-12x 0-88/500 = 0-12£2:33 x \0:0002112

=012 + 2:33 x 0-01453 = (0-08615, 0-15385)

Hence 98% confidence limits for percentage of bad apples in the consignment are
L, % } rashtra, 540 are rice eaters and the
rest .MMNMM%«MMM. MM_%NMM“HMMM Wm_ﬂww.ﬂw ﬂmMMMMMMMMM are ma:&? popular in this State
at 1% level of significance ?

Solution. In the usual notations,
X = Number of rice eaters = 540

we are given : 1 = 1,000

: X_ 540 _
: p =Sample proportion of rice eaters = 7= 1500 = 0-54
Null Hypothesis H, : Both rice and wheat are equally popular in the State so that
P = Population proportion of rice eaters in Maharashtra = 05 = Q=1-P=05.
Alternative Hypothesis, Hy : P # 05 (two-tailed alternative)
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Test Statistic. Under Hy, the test statistic is :
V4 I Al i (0, 1), (since n is large).

VPQ/n
054-050  _ 004 _»553)

Now Z= = 00138
V 05 x 0-5/1000

Conclusion. The significant or critical value of Z at 1% level of signi_fica.n‘ce for two-
2.532 is less than 2:58, it is not significant at 1%

tailed test is 2-58. Since computed Z =
level of significance. Hence the null hypothesis is accepted and we may conclude that
rice and wheat are equally popular in Maharashtra State.

Example 14-5. Twenty people were attacked by a disease and only 18 survived. Will you
reject the hypothesis that the survival rate, if attacked by this disease, 15 85% in favour of the
hypothesis that it is more, at 5% level. (Use Large Sample Test.)

Solution. In the usual notations, we are given: n=20.
X = Number of persons who survived after attack by a disease = 13

p = Proportion of persons survived in the sample = % =0-90

Null Hypothesis, Hy : P = 0-85, i.e., the proportion of persons survived after attack
by a disease in the lot is 85%.
Alternative Hypothesis, H; : P > 0-85 (Right-tailed alternative).

Test Statistic. Under Hy, the test statistic is :
-P
Z = _PL‘/_Q—E ~ N (0,1), (since sample is large).
090-085  _ 005 _ (caq

Jo@x0isa = 0079
0.85 x 0-15/20

Conclusion. Since the alternative hypothesis is one-sided (right-tailed), we shall
apply right-tailed test for testing significance of Z. The significant value of Z at 5%
level of significance for right-tailed test is + 1.645. Since computed value of
Z = 0-633 is less than 1-645, it is not significant and we may accept the null hypothesis
at 5% level of significance.

> Example 14-6..Work sampling studies are conducted to find the utilization of a machine.

mur g{ 20;) lt;bserv;z.l‘wnstk n;ade, c;nly 40 observations indicated the machine to be idle. Find the
tmber of observations to be made in order to satisfy 95% confi lizati

machine with expected accuracy of +5%. s

Solution. The sample size for n estimating th i
- . . e i i
confidence coefficient (1 — o) = 0-95 is given by tli equaE)t(i)(l))nu:l ation proportion ¥ i

Now Z =

Pr[lp—P|51'96\}PQ/n]=0.95 (n—)
Wewant P, [ | p—P | <0.05] = 0.95. e
From (*) and (**), we obtain 196 V\PQ/n = 005 = , - PQ(1-96) '

(0-05)2
Since P is not known, we may use its sample estimate 3 =p=230 _
P =505 =0-2.

_02x(1-02)x38416 _ 06147
P 0.0025 = 0035 = 24588 = 246,

LARGE SAMPLE THEORY 14.15

Com;::e i;,?;:s?; cstlgn"lc]oryce for Difference of Proportions. Suppose we want to
M g populations with respect to the prevalence of a certain attribute,
'y , : g EI.r members. Let X, X, be the number of persons possessing the
given a.ttrlbute A in random samples of sizes 7, and n, from the two populalions
respectively. Then sample proportions are givenby : p, = X;/n; and  py = Xo/12.
If P, and P, are population proportions, then
E(p1) =Py E(p) =P,

P
and |4 (PI) = ]"—IQI and V (Pz) - Pz QZ

",

[c. f. Equation (14-44)]

_ S.ince for large samgles, p1 and p;, are independently and asymptotically normally
dlstrlbuteq, (p1 - p2) is also normally distributed. Then the standard variable
corresponding to the difference (p, - p,) is given by :

z=0plE@op) N, 1) . ®
NV (p-p2)
Under the null hypothesis, Hy: Py = P, i.e., there is no significant difference
between the sample proportions, we have

E(i-p2) =E@)-E(p)=P1-P2=0
Also  V(pr1-pd) =V (@) +V (P
the covariance term Cov (p1, p2) vanishes, since sample proportions are
independent.
POy PO 1. 1
= Vir-p) ===+ = PQ( m* nz)’
[+ under Hy : P, = P, = P (say), and Q; = Q, = Ql-
Hence, under H, : P; = P, the test statistic for the difference of proportions
becomes : Z = PP ~N(,1) ... (14:5)
1 1
o)
al, we do not have any information as to the proportion of A’s in the

ch the samples have been taken. Under Hy : P = P, = P (say), an
tion proportion P, based on both the samples is

(Under Hy)

In gener
populations from whi
unbiased estimate of the popula

A
. _mp+ipy_ Xi+ X, ]
givenby: P==rn —m+m - (14-5a)

The estimate is unbiased, since
A 1 1
E(P) - E [n1p1 + "zﬂz] = — [ulE(pl) + M, E(pz)]

n +n ny + 1

1]

= ,—11‘1;; (mPy +mP2) =P [-- Py = P, = P, under H,
Thus (14-5) along with (14:5a) gives the required te
Remarks 1. Suppose we want to test the significanc
p. wherep = Q%’:—'%Ti;l) gives a pooled estimate of the population proportion on the basis of
both the samples. Wehave V@-p=V (v)) + V (p) —2Cov (pu, P)-
and p are not independent, Cov (py, p) # 0.

st statistic.
e of the difference between p, and

(Y

Since p;
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Cov (py,p) =E[{p,-E Q_: {p-E @v:
E ﬁ _3|mQ_v; 1 {nypy + np, — E (mpr + :%uv_ M E

= “.x E :w_l.m.?_v_ {n, FulmQ_vva?Nlm@va:
= L [mE {p-E )P+ mE ((n—E () (2= E @)} ]
= = [ V) +mCov ()] = e m V), 1 Cov (pypy) =)

m MM
n4+n, noon+n

Var (p) = <mn— Py * Bopy E = var (mipr+ n2p2)

n+n, | (ng+ny)?

= ! T:N Var (p,) + n,? Var QNL\

(11, + n,
covariance term vanishes since p, and p, are independent.

: -1 2.7 N.EV-LE
A+ Var(p) T (n,+ny)? Aw: n, T2 n/) " n +n,

Substituting (*) and simplifying, we shall get

IR B B
Vp-p) = o 1 Nsi:ii:_

n,
(n, +ny) _

Also E(P,-P)=E (P,)-E(P)=P-P=0
Thus, the test statistic in this case becomes :
z Hﬁlvvlmnﬁ_lﬁv" p-p

S.E. (p-p)
n, pq
—?_ +1y) z,u

2. Suppose the population proportions P, and P, are given to be distinctly different, 1.c.,
N_ #P, .wbn_. we want to test if the difference (P, -P,) in population proportions is likely to be
hidden in simple samples of sizes , and 1, from the two populations res ectivel

We have seen that in the usual notations, P >

(i -p)-Ep,-p) (P -p)-(P - P
SEGopy T =) N1

~N(@O,1) (14:5b)

Z =

Here sample proportions are not given. If we
. ; . set up the null ] ipr=payie
samples will not reveal the difference in the vovc_mz_ws Eo“oh.ﬁ“a”h” co.nnw..l ﬁw_ﬂhm‘ ”ﬂM

difference in population proportions is i i ;
becomes prop s is likely to be hidden in sampling, the test statistic

.. (14:5¢)

Example 14.7. Random samples of 400 men g
. 1d 60
would like to have a flyover near their residence, 0

LARGE SAMPLE THEORY 14.17

Solution. Null Hypothesis H,
difference between the opinions of
concerned.

Alternative Hypothesis, Hy : Py # P, (two-tailed).

We are given :

:Py =P, =P (say), ie., there is no significant
men and women as far as proposal of flyover is

M =400, X; = Number of men favouring the proposal = 200
1, =600, X; = Number of women favouring the proposal = 325

- p1 = Proportion of men favouring the proposal in the sample = W_~|~ = % =05

p2 = Proportion of women favouring the proposal in the sample = W_IMN = % =0-541

Test Statistic. Since samples are large, the test statistic under the Null Hypothesis,
io is:

Z ~ N (0, 1), where
MU/ IZuﬁn.?:N.GN|vﬁ_+xNINOO+wNmHO.mMm = mHH|“HH|O.mNWH
T om+n,  nm+n, 400+600
0-475
0-500 — 0-541 __-0041 _ -0041
= D03z =~ 1269

~Z= S " V0:001039
/\o.mmm x 0-475 xA 00+ §v

Conclusion. Since | Z | = 1-269 which is less than 1.96, it is not significant at 5%
level of significance. Hence Hy, may be accepted at 5% level of significance and we
may conclude that men and women do not differ significantly as regards proposal of
flyover is concerned. .

Example 14-8. In a large city A, 20 per cent of a random sample of 900 school nEER:
had defective eye-sight. In other large city B, 15 per cent of :ﬁ.iai .%Sn.w of 1,600 n.EE\M:
had the same defect. Is this difference between :.R two nén.ew:e:m significant ? Obtain 95%
confidence limits for the difference in the population proportions.

Solution. In usual notations : n; = 900, p; = 20% = 0-20, n, = 1600, p, = 15% = 0-15.
mo :P 1= P 2-

Null hypothesis,
- § T: H ~u~ * wN A.ﬂsﬁqﬁmlmﬂv

Alternative hypothesis, =Py (
Test Statistic. Under Hy, the test statistic 1s:

7 = Pr-P2__~N(0,1), (since the samples are large.)

TSE. (p-p) A "
£ _900x020+160x015 _ 158 _, Q=1-P=0832
where = 900 + 1600
1 1 = /00002427 = 0-0156.
_ X -832( o= ||h
SE. (p1-P2) = *S&xo (s o)
020-015 _ 5 59
. Z ==gome - 321
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Conclusion. Since the c

an 196, it is significant at

_ ter th
23 g Jude that the difference

. Example 14-10. B : )
esis Ho and conc - Before an increase in excise duty on tea, 800 persons out of a sample of

59 level. We, therefore, rejec 1,000 persons were 1
0 ions is significant. driakérs ima maﬂEm\oe\:HW Qﬂ. be Jn 5&»«2. After an increase in duty, 800 people were tea
20U people. Using standard error of proportion, state whether there is

between the two vnom.o_ﬁo:m 1 p,— Pyare:
The 95% confidence limits for the difference Py —2are: a significant decrease i !
. gnifi ase tn the consumption of tea after the increase in excise duty ?

(py - p2) + 1:96 S.E. of (91~ P2

alculated value of
t the null hypoth:

Solution. In the usual notations, we have 1, = 1,000; n, = 1,200

p1 = Sample proporti i .
proportion of tea drinkers before increase in excise duty = %@ =0-80

P2 = Sample proporti i :
ple proportion of tea drinkers after increase in excise duty = % =067

Null Hypothesis, Hy: P i
] + Hp: Py =Py ie., there is no signifi i 1
consumption of tea before and after the increase in mxmmmmhwﬂpwnma difference i the

Alternative Hypothesis, H, : P > P, (Right-tailed alternative).
Test Statistic. Under the null hypothesis, the test statistic is :

where
-

015085 V - 0016 |

020x080  015%085
900 1600

Hence, the 95% confidence limits for P, — P, are:
(020 -0-15) £1:96 (0-016) =0-05% 0-031 =
Example 14.9. A company has the head office at Kolkata and a branch at Muanbai. The
personnel director wanted to know if the workers at the two places would like the mntroduction 7 =
of a new plan of work and a survey was conducted for this purpose. Out of a sample of 500
workers at Kolkata, 62% favoured the new plan. At Mumbai out of a sample of 400 workers,
41% were against the new plan. Is there any significant difference between the two groups
their attitude towards the new plan at 5% level ?
Solution. In the usual notations, we are given :
1, =500, p=062 and =400, py=1-041=059
i.e., there is no significant difference between the two

(0-019 and 0-081).

~N (0,1) (Since samples are large)

A
whe _mpy+np; 800 +800 _16 A N
re P = and Q=1-P=
z

n+n, 1000+1200 22* WM

0-80 - 0-67 0-13

)\ bexA ) : 0-019
22 %22 *\ 1000 * 1200

Conclusion. Since Z is much

clusion . 4 greater than 1-645 as well as 2-33 (since test i
nmmm&\ it is highly Emb«mnm:" at both 5% and 1% levels of m_—mamMm:nmm Mmm:_nm.moﬁw-
reject the .HF_: hypothesis Hy and conclude that there is a significant n_mn. i the
consumption of tea after increase in the excise duty. rease in the

=6-842

Null hypothesis, Hy: Py= P2,
groups in their attitude towards the new plan.

Alternative Hypothesis, Hy : Py # P, (Two-tailed).
Test Statistic. Under Hy, the test statistic for large samples is :

Ph-P -
ZosE g e N O D where Example 1 :
” outeotls H.Hﬂﬁmzuﬂﬂw M o\nﬁww.wzm NS:M?MEJ:% firm claims that its brand A of the cigarettes
6. If it is found that 42 out of a sample of 200 snioker: b
R and 18 out of another random sample of 100 smoker: b s prefer brand A
oyt myp, _ 500X 062 +400x 059 A A ; < 1 valid clai ;" 00 smokers prefer brand B, test whether the 8%
P= w: . ._Mmm _ ot —0607 = Q=1-P =039 difference _m. a valid claim. (Use 5% level of significance.)
. 7= 062 -0-59 __ 003 _ 003 _ o Solution. In usual notations, we are given :
. . 1,1 V000107 00327 - . n = 200, X, =42 = X _42
)\Tm%xo%wxﬁ m8+§i ! ' P1=g, =200 = 021
=100, X,=18 = p= Wu%-opm

115]
2

Critical region. At 5% level of significance, the critical value of Z for a two-tailed

test is 1:96. Thus the criti i i
test 18 e critical region consists of all values of Z = 196 or
Conclusion. Since the calculated value of | an
. . . .pe N _ = O.OH i it1
value of Z (1-96), it is not significant at 5% level of m.pmu.ﬂmnm:nw _Wwﬂm.wmﬂwrm MMM—M.M _Mw”

provide us any evidence against the null hy i i
. pothesis wh
may conclude that there is no significant difference “nﬂwmsaﬁmmmvyw%“www HMMM

attitude towards the new plan.

We set up the Null Hypothesis that 8% difference in the sale

) f

cigarettes is a valid claim, ie., Hy: Py — P, =0-08. g bEnts ot
Alternative Hypothesis : Hy : Py — P, # 0-08 (Two-tailed).
Test Statistic. Under H, the test statistic is :

z -—opBin B Ny

[since samples are large]
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X, +X,_ 42+18 - Q=1-P =080

A
where P = = 0
n+n, 200+1 o 005
(0-21 - 0-18) - 0-08 - 005 _ - ~oreog =-1:02
016 x 0:015

% level of significance. Hence
ay conclude that

e

. - L 5
Since | Z | = 1.02 < 1.96, it is not significant at
i i 9 ignificance and we m
null hypothesis may be retained at 5% level of signi . : ; :
a &mmwwq_om of 8% in the sale of two brands of cigarettes is a <m_i claim by n:m.:::.
Example 14-12. On the basis of their total scores. 200 candidates of a civil service

examination are divided into two groups, the upper 30 per cent and the remaining 70 per cent.
tion. Among the first group, 40 had the correct

Consider the first question of this examina
o, Y 80 had the correct answer. On the basis of these

answer, whereas among the second group,
results, can one conclude that the first question is no good at discriminating ability of the type

being examined here ?

Solution. Here, we have
n = Total number of candidates = 200

= The number of candidates in the upper 30% group = 155 X 200 = 60

30
m 100

70 200 = 140.

n; =The number of candidates in the remaining 70% group = 755

X; =The number of candidates, with correct answer in the first group =40
X, = The number of candidates, with correct answer in the second group = 80

. = X_40_ =X _ 80 _
S P1= =60 06666 and Fl:u|§o|o.mw3

Null Hypothesis, Hy : There is no significance difference in the sample proportions,
i.e.,, Py = P;. In other words, the first question is not good at discriminating the ability
of the type being examined here.
Alternative Hypothesis, Hy : P, # P,.
Test Statistic. Under H, the test statistic is :
Z = PrmPe ~N(©,1)

(Since samples are large.)

AN
1.1
A
|.xu+xN| 40 + 80 A A
wiere 3 =w +m  60+140 =06, Q=1-P =04
. _ 0-6666 — 0-5714 .
- Z = Z00953 oo

loseos &+

Conclusion. Since | Z | <1.96, the data are consistent wi i
on. Ol , the. with the null hypoth t
5% _.m<.m_ &.m_m:&nmbnm. Hence we conclude that the first question is %2 m%m mMMMmﬂ
to distinguish between the ability of the two groups of candidates.
Example 14-13. In a year there are 956 births in a town A i
I . g » of wh -59 A
GER.S .§§w A and B combined, this proportion in a totq] of H.EMEMM_” Mw...wm %mﬂmaazﬁww
any significant difference in the proportion of male births in the two towns ? .

LARGE SAMPLE THEORY 14.21

Solution. In usual notations, we are given :
n =956, 1 +n, = 1,406 or nz = 1,406 — 956 = 450
P1 = Proportion of males in the sample of town A = 0-525.
Let p, be the proportion of males in the sample (of size n,) of town B. Then

A

P = Proportion of males in both the samples combined = B.Wrﬂlmmmuu 0-496 (Given)
1 2

956 x 0-525 + 450 x P2

1,406 =0-496 = (On simplification).

‘N =0-434
Null waem\ﬁﬂ.@ Hy: P, =P, ie., there is no significant difference in the proportion
of male births in the two towns A and B.
Alternative Hypothesis, H, : P, # P, (two-tailed).
Test Statistic. Under Hy, the test statistic is :

Z hop ~N(0,1) (Since samples are large.)

Il

A A A
_Mmpr+mp _ - -
where P = P 049% = Q=1-P =0504
. 7 - 0525 - 0434 _0091 4.0

1 " ~ 0027
\/\*OA@Q X Q.MQ#A ﬁ + hl.deM

Conclusion. Since | Z | > 3, the null hypothesis is rejected, i.e., the data are
inconsistent with the hypothesis P, = P, and we conclude that there is significant
difference in the proportion of male births in the towns A and B.

Example 14-14. In two large populations, there are 30 and 25 per cent respectively of
blue-eyed people. Is this difference likely to be hidden in samples of 1,200 and 900
respectively from the two populations ?

Solution. Here, we are given : ny = 1,200, ny =900.

P, = Proportion of blue-eyed people in the first population = 30% = 0-30
P, = Proportion of blue-eyed people in the second population = 25% = 0.25

. D—HHI@—"O.QO and Dnﬂ Hlﬂnﬂc.wm

We set up the null hypothesis, Hy that p, = py, i.e., the sample proportions are equal.
In other words, the difference in population proportions is likely to be hidden in

sampling.
Test Statistic. Under Hy : p; = po, the test statistic is :
| P,-P, |
1 Z1 — ~ N(©,1) (Since samples are large.)
0-30-025 - 005
: 1zl = = 00195 = 256

N 03x07 025x075 v
1,200 900
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Conclusion. Since |Z
significance and we conc
to be hidden in sampling. In

i ions. _ -
S I ndom sample of 400 students of the “I’”T"'YS;;y h’ﬂd;u!X
A3 P , i . In another ran

ExamPl? 14 Zjn; that 300 students failed n the examm,atmn”lepsanw L-m,,”-,,m.ﬁ::
e s pond liated colleges, the number of failures m “ i
sample of 500 students of the affili : of farlures n the university teaching

| t whether the proportion » . '
:’"S ﬁfmnitmisb esfgf)tg:fizzlfi!;;reater than the proportion of fatlures in the wniversity teaching
epartments ¢ L

departments and affilia ted colleg
Solution. Here we are given :
g1 =1-p =1-075=025

(pr =P is refuted at 5% level of
;lation pmportions is unlikely

| >1.96, the null hypothesis
Il reveal the difference in the

1 in pop
lude that the difference
F i)ther words, the samples W

es taken together.

300 _p. _ 300 _ o
n, = 400, n, =500, P1= 7300 =075, I’z*;mao()o

and Ga=1-py =1-060= 0-40
A A
H, that py and p =P, where P is the pooled

Here we set up the null hypothesis,
ity teaching departments and

estimale, i.c., proportion of failures in the univlers
affiliated colleges taken together, do not differ singificantly.

L - ﬂ;) [cf (14:5D)] (*)

S.E. of (P"Pl) = (ul + 11, X"]

0-33

i} _”1 P +112E,=4w)(0-75+5m>(0'60 =067

- = = -0-67
where p= =" 300 + 500 = =1 67

—
SE.of (p —py) = V(‘i—%f“—sggx%) - 0018 [Using (*)]

Test Statistic. Under the null hypothesis, Hy, the test statistic is

)

~ -
Z= S__L—E}__E. of & =pp) ~N(0,1), (Since samples are large.)
L 067-075 _ -008 _

Z=""0018 - oois - 408

Conclusion. Since the calculated value of |Z | is greater than 3, it is significant.
Hence the null hypothesis Hj is rejected and we conclude that there is significant

difference between p; and p =
Example 14-16. If for one-half of n events, the chance of success is p and the chance of

failure 1s q, while for the ot}:c'r half the chance of success is q and the chance of failure is p,
show that the standard deviation of the number of successes is the same as if the chance of

successes were P in all the cases 1.e ‘J "pq but that th r S 55
2, LE, 1e nmean of t o y 'SSES 1S
" rid %0t 4. f he numbe L)f HCCeSSES 5

ao*osgl}t”]l?nf. Let X, and X; denote the number of successes in the first half and the
second haltofnevents respectively. Then according to the given conditions, we have

E(X,) = '21 p
V(X)=35pq

E(X)="q
V(X)) = 2gp

LARGE SAMPLE THEORY 14.23

The mean and variance of the number of successes in all the 1 events are given
by:

E(X1+X2)=E(X1)+E(xz)=gp+nq:%l (P+q=l)

2
V(X1 +X)=V(X)+(Xo) =5pq+59p=npq.
since the first and second half of events are independent.
Hence the variance is the same as if the probability of success in all the n events
159
14.8. SAMPLING OF VARIABLES

In the present section we will discuss in detail the sampling of variables such as
height, weight, age, income, etc. In the case of sampling of variables each member of
the population provides the value of the variable and the aggregate of these values
forms the frequency distribution of the population. From the population, a random
sample of size n can be drawn by any of the sampling methods discussed earlier,
which is same as choosing 1 values of the given variable from the distribution.

14.8.1. Unblased Estimate for Population Mean (1) and Variance (c?). Let x,,
Y, ..., X, be a random sample of size n from a large population X;, Xz, ..., Xy (of size

and

N) with mean pt and variance 62 Then the sample mean ( ¥) and variance (s?) are

n n
given by =% x, and s?= LS (x,-x)?
’ ns n; 7

"

EGE) =E(y £ x) =) L Ex)

i=1

Now

Since x, 15 a sample observation from the population X, (i = 1,2, ..., N) it can take
any one of the values X,, X3, ..., Xy each with equal probability 1/N.

1
E(r) =N Xi+ Xt oo+ Xn= X+ Xo+ 4 Xp) = (1)

Hence E(E)=-,';E(u)=,1,rm = Ex)=p ...(14-6)

1=1

Thus, the sample mean ( x ) 1s an unbiased estimate of the population mean (p).

Now
t=1

£ =£ {33 0| =B (] T x52) =) 5 red) B @)

We have V (x,) = E[x;— E(x)]? = E(x; - n)?, (From (1)]

= Ll -wr+ (- + o+ (X -] = 02 e

Also V(x) =E() -[E@]P = E()=V(x)+(E(x))? ..(4)

In particular E(x?) = V(x;) + [E(x)}? = 6% + p? -..(5)
Also from (4), weobtain  E(¥)=V(¥) + [E(X)P

But V(X) = g: where a2 is the population variance. [cf §14.82]

E(T) =%2 + 2 [Using (14-6)] ...(5a)
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Substituting from (5) and (54) in (2) we get
< o
E) =+ 2 af:NTAM,,i
i=1
? 1 2 = E 2 ...(14.
Spend G- e

T i i pop i1 variance.
Since E #0 i 1 iased estt an\ opulatio
ce AmNV 2, EEEN variance is not an unb

ns? 2
. =0
From (14-7), we get - NM Esy) =0 - = A n— Hv
n
1 _¥Rl=02, ie, E(S)=0? ...(14-8)
= mﬁzi_.m? HVM (o}
n

where §2= =|m|» X (xi-x)? ...(14-8q)

=1
». S?is an unbiased estimate of the population variance o”.

Aliter for E(s2).

2=y M ?-%Ti > :a,.-slﬁm-sl

i=1

HW ‘Mﬁ AH_.I_.&~+:AMIEN|MAMIE WH AR_IIL

But L(xi—-p) =Xx-nh=nx—nu=n(x—-n)

1

P ACIN EC R [ e

=1

= Es) =% m?iEFmQIEN o Mm??m?:ﬁm:?m@?

L n oo

W:W Vi) -vi(x)=(1- i)

Remarks 1. I.Q.o we see that although sample mean is an unbiased estimate of population
mean, sample variance is not an unbiased estimate of population variance. However, an
unbiased estimate of 62 is given by $?, defined in equation (14-8a).

S? plays a very important role in sam

Whenever o2 is not known, its estimate S2 Pling theory, particularly in small sampling theory-

given by (14-8q) is used for practical purposes.
2. We have muuw_%_ (xi-x)? and §2 u:lwm.%_ (,-%)2

ns?=(n-1)5* = %nﬁ_lwv 2

Hence for large samples, Le., for n1 = e, we have s2 g2,

In other words, for large samples (i.e., n — =), we may take mu =g (14:80)

S
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V" 14.8.2. Standard Error of

4 . Sample Mean. The variance of the sample mean is 62/ n,
where o is the population standa

rd deviation and n is the size of the random sample. The S.E.
of mean of a random sample of size n from a population with variance o2 is o/N1.

Proof. Let x, (i=1,2, ..., n) be a random sample of size n from a population with

i 2 =, -
variance ¢7, then the sample mean ¥ is : RMWO& X s+ Xy)
n

. > 1
-~ V(x) <ﬁMAH~+&~+...+H=Lumm<ﬁx_+kw+:.+H._V

= MHM T\?\; +V(x) +... + V(x,) #\

the covariance terms vanish since the sample observations are independent.
But Vix)=02% (i=1,2,..,n) [From (3) of § 14-8-1]

,.\‘.m‘. van%?gu% = SE.(x)= = —= ...(14-9)

n

14.8-3. Test of Significance for Single Mean. We have proved that if x;,
(i=1,2, ..., n)is a random sample of size n from a normal population with mean
and variance g2, then the sample mean is distributed normally with mean p and
variance 62/n, ie., x ~ N(it, 62/n). However, this result holds, i.e., x ~ N(i, o2/n),
even in random sampling from non-normal population provided the sample size n is
large [c.f. Central Limit Theorem]. Thus for large samples, the standard normal variate

o2 [+]
n

corresponding to x is :
z=1"E
o/Vn
Under the null hypothesis Hy, that the sample has been drawn from a population
with mean p and variance 62, i.e., there is no significant difference between the

sample mean ( X ) and population mean (i), the test statistic (for large samples), is :

-p
= ~N(,1 ...(149
Z="F (0,1) (14-9a)

Remarks 1. If the population s.d. ¢ is unknown then we use its estimate provided by the
sample variance given by [See (14-85)]. 2=s* = & =s (for large samples).

2. Confidence limits for . 95% confidence interval for W is given by :

x-p
o/\n
and ¥ * 1-960/Vn are known as 95% confidence limits for p. Similarly, 99% confidence limits

for p are ¥ +2-586/Vn and 98% confidence limits for j arex +2-330/Vn.
However, in sampling from a finite population of size N, the corresponding 95% and 99%

confidence limits for p are respectively

- - o N-n
*£196% NTp o and X258 4 [ -(14-10a)
n

3. The confidence limits for any parameter (P, , etc.) are also known as its fiducial limits.

1 Z1<196, ie., <196 = x-196(0/Vn) < p <X +196 (6/Nn) ...(1410)
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13-4 cms. and s.d. 261 cms. Is the
61 cms.?

14-26

Example 14-17. A sample of 9
sample from a large population of mean

d its mean 1s unknot

00 members has a mear
3.25 cms. and sd. 2:

If the population is normal an on, find the 95% and 98% fiducial

limits of true mean.

Solution. Null Hypothesis, (Ho) : The sample h
with mean t = 3-25 cms. and S.D. 6 = 261 cms.

Alternative Hypothesis, Hy : 1 # 3:25 (Two-tailed).

as been drawn from the population

Test Statistic. Under Hy, the test statistic is Z= M\n,m ~ N(0, 1), (Since 1 is large.)

Here, we are given: x=23-4cms., n=900cms, = 3:25 cms. and ¢ = 2:61 cms.

_340-325 015 x30 _ 173
261/V900 261
Since | Z | < 1-96, we conclude that the data don’t provide us any evidence

against the null hypothesis (Hp) which may, therefore, be accepted at 5% level of
significance.

Z

95% fiducial limits for the population mean |1 are :

¥ +1.96 (6/vn) = 3.40 +1.96 (2-61//900) = 340 + 0-1705, i.e., 3-5705 and 3-2295
98% fiducial limits for u are given by :

2:61

J Pl ' .
pHN.ww)\M lw.hoHN.wmx 0 - 3:40£0-2027, ie., 3:6027 and 3-1973

Remark. 2:33 is the value z, of Z from standard normal probability integrals, such that

P(1Z1>2)=098 = PZ>z)= 049

Example 14-18. An insurance a i
. X gent has claimed that the average age 1Y~ S
whe insure through him is less than the average for all agents, which awmcw% M\ﬁﬂﬁwe:& o

A random sample of 100 policy-

age distribution : holders who had insured through him gave the following

Age last birthday ~ :  16—20 21—25  26—30 31—35 36—40

20 30 16

deviation of this distribution and use these
aiice. You are given that Z (1-645) = 0-95.

No. of persons : 12 22

Calculate the arithmetic mean and standard
values to test his claim at the 5% level of signific

Solution. Null Hypothesis, Hy : n = 30.5 years, i.e

population mean (1) do not differ Significantly -, the sample mean ( ¥ ) and

Alternative Hypothesis, Hy : jt < 305 years (Left-tailed alternative)

LARGE SAMPLE THEORY 14.27

CALCULATIONS FOR SAMPLE MEAN AND S.D.

Age last No. o Mid-poi
S.m:i@ E«E&\S : xnei d=% |m~m fa fd?
16—20 12 18 -2 24 48
21—25 22 23 -1 -22 22
26—30 20 28 0 0 0
3135 30 33 1 30 30
36—40 16 38 2 32 64
Total N =100 Sfd=16 Tfd? = 164
— 5x16 %
X =28+ 100 =28-8years; s=5x ﬁﬁlAmom&v * = 6-35 years

Since the sample is large, G=s=635 years.
Test Statistic. Under Hy, the test statistic is :

z =K <~ N@©,1), (Since sample is large.)

Vs?/n
Now 7 -_288-305 _ mwwm = 0681
(6-35)2/100

Conclusion. Since computed value of Z = -2:681 <-1-6450r | Z | =2:681 > 1-645, it
is significant at 5% level of significance. Hence, we reject the null hypothesis, Hy
(Accept H,) at 5% level of significance and conclude that the insurance agent’s claim,
that the average age of policy-holders who insure through him is less than the average
for all agents, is valid.

Example 14-19. As an application of Central Limit Theorem, show that if E is such that
P (I X-p | <E) > 095, then the minimum sample size n is given by

n = {(1-96)2 62/ E?} where pand o? are the mean and variance respectively of the population

and X is the mean of the random sample.

Solution. By Central Limit Theorem, we know that X ~ N(i, 62/n) asymptotically,
i.e., for largen.

. 7z =X~ ~ N(0, 1), asymptotically, i.e., for largen.

- =i
From normal probability tables, we have P( | Z | £1:96) =0-95
= wﬁ XM mH.cm_uobm or P _mlt._mH.@mmucbm )
o/\n =
We are given that P[ | X-p | <E]>095 )
1965 (196)*c* _ 3-840°
From (*) and (**), we have E> T = n> " = -

Hence minimum sample size 7 for estimating p with 95% confidence coefficient is

given by n = 3-84 0%/ E?, where E is the permissible error.
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Remark. The minimum sample size for estimating p with confidence coefficient (1- 0) s
given by 02z,2/ E2, where z, is the significant value of Z at level of significance & and E is y,q

permissible error in the estimate.
Arguing similarly, the minimum sample size for estimating population proportion P iy,

confidence coefficient (1 - &) is given by n = PQ z,*/ E?, where z4 is the significant value of 7
o _m<m_ of significance and E is the permissible error in the estimate. If P is unknown, we may
use P=p.
Example 14-20. The inean muscular endurance score of a randont sample of 60 subjects
Msm found to be 145 with a s.d. of 40. Construct a 95% confidence interval for the true mean
ssume the mm.EEm size to be large enough for normal approximation. What size of sample ~.A
required to estimate the mean within 5 of the true mean with a 95% confidence ? ’

Solution. In usual notations, we are given:n=60,x=145 and s=40
95% confidence limits for true mean (n) are : A
X+1-96 5/Vn (02 = &2, since sample is large)

196 x 40
=145+ = 784 _
Veo 145+ 755 = 145+10-12 = 134-88 and 155.12

Hence 95% confidence j t i
Empl 11 e interval for pu is (134-88, 155:12). In the

- Awnm. QVN _ Aﬁommx AQVN = (1568) = 24586 - 246,

notations of

[ 2p05=196,6=s = 40 x
5=196,6=s = diX-pl<5=¢
Example 14.21. T} pulaton & 20 ems.
. The ati J
that e s 1 i) c\“mmﬂmmww%ﬂsazo: of a population is 2.70 cpys. Find the probabilit

075 cm. or more, and e 1) the mE:E.m mean will differ from the population ne y
ot (gioen s o (52 te sample mean will exceed the population mean by () w:: iy
gl te of the standard normal probability integral fro, _\cﬂ ‘“\muﬂw_ s
| ! n 02251s
Solution. Here we are given n =

- 66, g = 2. .
mean x ~ N(u, o2/n). © =270 ems. Since  is large, the

ample

z 2Ty
W N,
We want o ()

(i) .c?mln_No.um_uTE_mxz_Aowﬂ

Ti _mm _Aou w
-75
v [From (*)]

H.LuA_N | <075 Y1
G

]

Vuuumv?ANAo.vm@v
]

H|.Mmu~oAN.n V66
0.75 Y66
> 270 vuufmw?ANAoﬁmx@sJ

]

=1-2P(0<Z <255 270
. _ 25)=1-2
(1) _ % 0-4877 = (.
PE=1>075) = Pz > 075 31/, Pz e
= > N.mmv

=05-p
0<zZ< 2:25) =0.5_ 0-4877 = 0-0123
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Example 14-22. A normal population has a mean of 0-1 and standard deviation of 2-1.
Find the probability that mean of a sample of size 900 will be negative.

Solution. Here we are given that X ~ N(l1, 62), where p = 0-1 and ¢ = 21 and
n = 900. Since X ~ N(i, 62), the sample mean x ~ N(i, 62/n). The standard normal
variate corresponding to X is given by :

P _X-p _X-01 _x-01
o/Nn 21730 = 007

The required probability p, that the sample mean is negative is given by :

= ¥=01+007Z, where Z ~ N(0,1)

_ipriam - P 4 o _ -010
p=P(%<0)=P01+007Z <0)=P( Z< =u10)
— P (Z <-143) = P(Z > 1-43) = 0.5 — P(0 < Z < 1-43) = 0.5 - 0-4236 = 0-0764.
(From Normal Probability Tables)

Example 14-23. The guaranteed average life of a certain type of electric light bulbs 1s
1,000 hours with a standard deviation of 125 hours. It is decided to sample the output so as to
ensure that 90 per cent of the bulbs do not fall short of the guaranteed average by more than 2-5
per cent. What must be the minimum size of the sample ?

Solution. Here 1 = 1,000 hours, o =125 hours.
Since we do not want the sample mean to be less than the guaranteed average
mean ([ = 1,000) by more than 2:5%, we should have
x> 1,000 - 2:5% of 1,000 = x> 1,000-25 =975
Let 1 be the given sample size. Then

7z =X=E ~ N(0,1), since sample is large.

= o/n
Wewant Z =X-B ., 9B-L000 _ Vn (-%>975)
o/Vn 125/Vn 5
According to the given condition : P(Z > -\n/5)=090 = P(0<Z< \Nn/5) =040
= % =128 (From Normal Probability Tables)

o n =25x(1-28)2 = 41 (approx.)
Example 14-24. A survey is proposed to be conducted to know the annual earnings of

the old Statistics graduates of Delhi University. How large should the sample be taken in order
to estimate the mean monthly earnings within plus and minus Rs. 10,000 at 95% confidence

level ? The standard deviation of the annual earnings of the entire population is known to be
Rs. 30,000.
Solution. We are given: o = Rs. 30,000.
We want : P[1 x-pl <10,000] = 0:95 (™)
We know that, in sampling from normal population or for large samples from any

population, X ~ N(u, 62/n). Hence from Normal Probability Tables, we have

96] = 0- p||X=x mEm:uo.om
P[1Z1<196]=095 = :q)g



14-30 FUNDAMENTALS OF MATHEMATICAL STATIST|Cg

LARGE SAMPLE THEORY 14-31
= P _.._ x-pl<1.96x AQ\/\MVH_ =095 .:TJ 3.1f 5,2 # 6, and @, and o, are not known, then they are estimated from sample “HMMM
19 %0 1-96 x 30,000 This results in some error, which is practically w_.b_dmpm_mwr if samples are large. These estima v

From (*) and (**), we get v =10,000 = ll«ﬂ = 10,000 for large samples are givenby - 6,2=S2=57 and 0 =S7=s? (Since samples are large.

n
s n= Q.@m X .mvM = Ammmvu =34.56 ~ 35 In this case, (14-11) gives Z = A|~\H_ﬂl|ulﬂul\w ~ N, 1) . :b.._.:n.z
Aliter. Using Remark to Example 14-19, 5.2 /mm;) Hs2/n
’ : 2 96 x 30,000 2 Example 14-25. The means of two single large samples of 1,000 and 2,000 E%_“NMM”NM
v .\ "= ANgm qv HA : :vu_A 000 v = 35. 67.5 inches and 68-0 inches respectively. Can the samples be regarded as drawn front

- population of standard deviation 2:5 inches ? (Test at 5% level of significance.)
.~ .~ 14-8-4.Test of Significance for Difference of Means. Letx; be the mean of

\

Solution. In usual notations, we are given :

a sample of size n; from a population with mean ; and variance 6,2 and let %, be the

| S . X, =6751 X, = 68-0 inches.
mean of an independent random sample of size 1, from another population with n, = 1,000, n, = 2,000, X; =675 inches, X; r en drawn
mean [, and variance 6,2. Then, since sample sizes are large, Null hypothesis, Hy : iy = M2 and 0 =25 Enrmnm.mr.m , 7:5 samples have
x X lation of standard deviation 25 inches.
X1~ N(u, 0:2/n) and X~ N(uy, 6,2/n,) from the same popu

Alternative Hypothesis, Hy : py # Ha (T wo-tailed)

Also x; — X;, being the difference of two independent normal variates is also a Test Statistic. Under H,, the test statistic is :

normal variate. The value of Z (S.N.V.) corresponding to X; — X, is given by

o o 7z ~N(0,1) (since samples are large)
- AH__ I.u.mvlmm\.n‘_ IHNV
Z — ~ N(0,1)
SE (x,-X,)
Under the null hypothesis, Hy - i, = i
» Ho " Hy = Uy, 1e., there is sig ; T -05 _
between the sample means, we get 2 1s no significant difference Now 7 = v =-51
1 1
%1~ %) = E() - E( %-% Lo 5)> * 230
E(x1-x) = E(x)) - E(%,) = ~H =0V (% -%) = V(o) + V(3 = -, O 1000 ' 2000 ) )
oMy , lue is highly significant and we reject the nu
the covariance te i i _ _ Conclusion. Since | Z | > 3, the value ghl :
T MB vanishes, since the sample means X, and X; are independent hypothesis and conclude that samples are certainly not from the same population
hder Hy @ [y = py, the test statistic becomes (for large samples) with standard deviation 2:5. ‘ s
I.—% ! i e chosen at ran
Z=—_N17X N Example 14-26. In a survey of ?Q:._w ‘Bw:.m. 400 women mwﬁ.ﬁnm.am ar e skl fiod
2 0, 1) (14-11) .yper market ‘A’ located in a certain section _of -the city. Their averag y
; (02 /m) + (0,2/ny) in U_Mum.::m is Rs 250 with a standard deviation of Rs. 40. For 400 wonien shoppers chosen at
i :
Remarks 1.1f 5,2 = 02 =03 1e, ifthe samples have been d mu.vm. 1 in super market ‘B in another section of the city, the average ﬂm%@\aan expenditure
common S.D. g, then under Hyipy =y, N drawn from the populations with ! _ﬁ:m 0 520 N_Sn:ﬁ o standard deviation of Rs. 55. Test at 1% level of significance whether the
’ s Rs. ;
z X -x Wcm_‘amm weekly food expenditure of the two populations of shoppers are equal.
=t . i i that
2 Ifing1 (/n) + (17my) N, 1) [14-11a] Solution. In the usual notations, we are given 10
. in (14-11a), 5 is not known, then its . =400 X = Rs. 250, $1= .
5, i - s estimat, n, = 400, 1
the sample sizes are not sufficiently large, then an _.M.M_,WMa on the sample variances 15 used . If 1 = i 350, 5, = Rs. 55
MW =152 4 (mm 1152 mmzaw*mOmQ:mmu{m: by _:uu.moo. 2

Null hypothesis, Ho : f1 = Ko, 1€ the average weekly food expenditures of the two

1 equal.
i populations of shoppers are |
= m_’+ﬂ|’~ ?: “Dat+(n,-1) QN_ =g Alternative I.cﬁcw:mm_.m. Hy: iy # M (Two-tailed)

A |
.mAqu - mAn,-2 :zﬂ -1) ESH) + (ny - 1) _mnm%v“

But since sample sizes are large, 5,2

. Si%, 52 = 5,2 o large, under Ho, the test statistic is :
racti ; TSN -1 ~ ce samples are large,
P ce, for large samples, the mozos::m estimate of g2 Ezwro:_. ~n,, :...u ~1 > n,. Therefore in ) Test Statistic. Sin lv >
mu _ s+ nys? any serious error is used ~ N(0, 1)
" +n,

However, if sample sizes

are small, t - [14-110]
(cf Chapter 16) is to be used. all, then an exact sample test, t-test for differe
nce

of means
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Since o, and o, the population standard deviations
A A . .
large samples 6,2= 5,2 and 0,?=s;?and then Z is given by :

250 - 220 = 8-82 (approx.)
T@r@
400 © 400

are not known, we can take foy

Conclusion. Since | Z | is much greater than 2:58, the null h i

. i s , ypothesis =)
H&mnzﬁ at 1% level of significance and we conclude that the m<m_.mmmuﬂ<<m_.w_w__m
expenditures of two populations of shoppers in markets A and B differ significantly Y

Example 14.27. The avera

F . ge hourly wage of a sample of 150 workers in a plant ‘A’

MNEM M.ww.mm mﬂzw a .&.ndnai deviation of Rs. 1-08. The average hourly wage of a mw_:imw\ M.Mm

o a&:zv ﬁ: B’ was Rs. 2-87 with a standard deviation of Rs. 1-28. Can an appl; ’
y 1 that the hourly wages paid by plant ‘B’ are higher than those paid by Enh_“u .Mm:“__

Solution. Let X; and X, d
, . 2 denote the hourly wages (in i
and plant B respectively. Then, in usual :Qmmoﬂm im E.mm m_.a_\Mma._v.OM M e
m=150, % =256 s =108=0,

2=128=g,

(Since samples are large.)

1y =200, X =287,

Null Hypothesis, H, : ]
, fp i Wy = Uy, e, there i ignifi
mean level of wages of workers in plant l-”:% hwsmﬂ_m:_:nm:» clference between the

}:mnaﬁ:.ﬂm _m_\‘uﬁ:\mmmnm\ ~m~ . —._‘N t.,_ Le., _T: tu H.mmﬁlwm——mh— test
st .W . ’ . ; A W ol mv v

Nm. :~:m:ﬁ c:nmmh ~m E-m test m»D:w:ﬂ QCH —NH € sam .—OMV 1
0. S

, 1)

= =031 _
VOoo1e 0126 = —2:46.

[=]
W
—

(108

150 + (287

200

|

s ]
( ritic u: ENMSQE. mOﬂ a Osmlnmn—mn —nmm—. n.Tm Oﬂwn. m_. \%
’ 1C

significance is 1.645 .
Z<-1.645 - The critical region for left-tajleq test

Conclusion. sj
- usion. nce calculated
Mm.H 645), it is significant at 5% ~M<£< mw:m ol
m_MuW& at 5% level of significance M
paid by plant ‘B’ are certainly Emrmnmnﬂ

Em_:m of Z at 5% level of
Uus consists of all values of

. . O n.=.= h__um T rror o, \w

\\.‘ ) - h~h3&5 h& € &a erence
Wﬂ \\n . \»NMQ\m. .—R w}ﬁ mm \\.n -\r

1 erence Signy cant ¥ o CONn, hh&mmnﬁ.b

ms prod,
produced by the two processes

betu
veen the two sample means. Is this 4

limits for the 4
e difference ;
respectively, ifference in the average weights of ite
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Solution. In usual notations, we are given :
n = NWO~
Hy = hOO.

\/\Amm +o.|- = 5,5 (Since samles are large.)
Hy My - n, N,
v ~ 0576+ 0490 =1.034

Null Hypothesis, Hy : py = l1y, i.e., the sample means do not differ significantly.

% =1200z., $ =120z m_
N

X;=1240z., s,=140z.= O;

, (Since samples are large.)

S.E. (x1-X2)

1%

Alternative Hypothesis, H, : 1 # pz (Two-tailed).
Test Statistic. Under Hy, the test statistic is :

X, -x 120-124
== —="9mf ~ NGO

Z = ——E—
S.E. (x;-X3)
-2 __3.
- | Z | = 1535 =387
Conclusion. Since | Z | > 3, the null hypothesis is rejected and we conclude that

there is significant difference between the sample means.
...m:mo_.nrmn_:mmum:nm.55mm<mnmmm<<mwm7~m

99% confidence limits for | py—pa |,

of items produced by two processes, are -
| %,—%, | +258 S.E. (%) - X;) =4+ 258 X 1034 =4+2:67 (approx.) =667 and

1-33
133 < | g3 —Hp | <6:67.

he mean height of 50 male students who showed above average
68-2 inches with a standard deviation of 2-5 inches; while

Example 14-29. T
terest in such participation had a mean height of 67-5

participation in college athletics was
50 male students who showed no in
inches with a standard deviation of 2-8 inches.

(i) Test the hypothesis that male students w
than other male students.

(ii) By how much should the sample size of each of the two groups be increased in order
that the observed difference of 0-7 inches in the mean heights be significant at the 5% level of
significance.

Solution. Let X, and X, denote the height (in inches) of athletic participants and
non-athletic participants respectively. In the usual notations, we are given:

m =50, x; =682, 5= N.ms“ n, =50, X=67-5, s,=28

Null Hypothesis, Hg: B = H2-
Alternative Hypothesis, Hy:py > H2 (Right-tailed).

ho participate in college athletics are taller

i
Test Statistic. Under Hy, the test statistic for large samples is :
Z = Ho% ~ N(0,1)
07 07
. _ - =97 - 132
z Vo2




th
fc
o
be
iy
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For a right-tailed test, the critical Amwmamnm:s val

° Mwmwgnm the calculated value of Z(1:32) is less than EM nn:%mm_mwm_w Mnﬁmmﬂw v
not significant at 5% level of significance. Hence the null Euw_ e Pted and
we conclude that the college athletes are not taller than other male . .

(if) The difference between the mean heights of two groups, eactngf sizen wiNg

significant at 5% level of significance if Z 2 1-645

ue of Z at 5% level of significan,

2-675 07 _ >1.645, ie, —2— 2> 1.64
= 8 2 1645 or 1409/n 1645, ¢ 3-754/\n ]
@57, (28)
n n
2
n 2 A %xwﬁv - (882192 = 7783 = 78

Hence the sample size of each of the two groups should be increased by at least
78 — 50 = 28, in order that the difference between the mean heights of the two groups

is significant.
-’ 14.8-5. Test of Significance for the Difference of Standard Deviations. If
"5, and s, are the standard deviations of two independent samples, then under null
hypothesis, Hy: 6, = 0, i.e., i.e., sample standard deviations don’t differ significantly,

the statistic :

1=5

s
Z =g5F Giosy ~ N(0, 1), for large samples.

But in case of large samples, the S.E. of the difference of the sample standard

deviations is given by : S.E. (s;-s,) =

...(1412)

02 o2
—_— + —,
2n, " 2n,
0% and 6,2 are usually unknown and fo

. r large samples, we u i imates
given by the corresponding sample variance 8 P €s, se their estim

s. Hence the test statistic reduces to
7 = 51—8,

~ N(@01) (for large samples)  ...(14-13)

Example 14-30. Random samples MSS: . )
relating to the heights of adult males : from two countries gave the following data
Country A Country B
Mean height (in inches) 67-42 67.25
Standard deviation (in inches) 2.58 2.50
Number in samples 1,000 1,200

(i) Is the difference between the means significan; >
(ii) Is the difference between the standard deviations significant ?
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15.2
.1. INTRODUCTION . _ .
3 The square of a standard normal variate 1S known as a chi-square Variate
(pronounce?i as Ki-Sky without S)with 1 degree of freedom (d.f.).

X-p
i B = 2=~ N(0,1)and
Thus if X ~ N (4, 6?), then Z - (

72 =(Z(_'L‘)2 is a chi-square variate with 1 4.f. . (15:)
c

In general if X, (i=1,2,...,n) aren independent normal variates with means
and variances 62, (i=1, 2, ..., n), then
LJ 2
x2= Xi- ’J'i)
i

i=1

»is a chi-square variate with n d.f. -+-(15-1a)

15:2. DERIVATION OF THE CHI-SQUARE (x2) DISTRIBUTION

First Method—Method of Moment Generating Function
IfX; (i=1,2, ..., n) are independent N(y,, 67), we want the distribution of
n
Xi-p): & -
=2 (‘T") = ‘Zl U2, where U, = X2l 0, 1)
i=1 i i= o

[

Since X/'s are independent, Uys are also independent. Therefore,

Mlz(t) =MIU,'(t) = ,l=-11 Mu‘z(f) = [MU',(t)]n, [+ U’s are iid. N (0, 1)) ()

M) =Elexp (U = | expitu) f (e d,

= J‘_ . exp(tu?) ;\}?’I exp (- (x; - p)2/ 202)dx,

=1 [
“Van f - w OXP (tu?) exp (<u2/2) du;, = “]
[}
_1 = 1-2¢
\Jz_n.[-m exp[—(\ ,,,z} du; = \l__ Vn = 21y
> ) . . = - l/2_(1—2t) 1/2
[ J‘ e_n N dx - %—1!]
M.t = ~2yns2,
which s th e
€m.gf of a Gamma Variate with Parameters 1 :
Hence, by uniquen T "
' queness theorem of mgf’s,
=Y (X 2,
: ( = ),xsaGamzmvariatewith ar; 1 !
Parameters 2 and Sn.

M
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dP(X’) = T(n/2)" [exp (- 122)] (X)/2-1 gy
1
= 272 T(ny2) [P (X*/2)] 0A/A-1dX2,0<x2 < o0 ..(15:2)

r varies from 0 to = and 6 from 0 to 2n. The joint probability differential of

which is the required p.d.f. of chi-square distribution with n degrees of freedom.

Remarks 1. 1f a r.v. X has a chi-square distribution with n d.f., we write X ~ x%,) and its

pdfis :

=—L 2 D1, 0<x < oo ...(15:2q)
flx) 22 T/2) e x<

2. If X ~ %% then %X~y( %n )
Proof. The p.df of Y =1 X ,is given by :

_ dx|__ 1 (/-1 o _ 1
8y) f(x).| dy| zn/zr(,./z)t_y'(zy) I(n/2)

1 1
Y:EX~“{(EH).

eV Yy/A-1; 0<y < oo

Second Method—Method of Induction
If X, ~ N (0, 1), then 1 x2 isay( %) so that X is a x2 variate with d.f. 1.

If X; and X, are independent standard normal variates then X2 + X2 is a chi-

square variate with 2 d.f. which may be proved as follows :

The joint probability differential of X; and X, is given by :
dP(xy, X3) = flxy, x) dx; dx; = fy(x1) fo(x2) dxy dx;

1
= sexp {- (22 + x)/2} dxy dxy, — o0 < (3, %) < oo

Let us transform to polar co-ordinates by substitution x; = r cos 6, X3 =7 sin 6.

Jacobian of transformation J is given by :

3x1 612 )
9 or cos® sin®@
I: = =7r
a
% % —rsin® rcos®

Also we have 72 = x;2 + x;2 and tan 0 = x,/x;. As x; and x, ran e from — oo to + o
1 2 2 g »

r and 6 now

1
becomes dG(r, 0) =% &P (-72/2)rdrdf;0<r<-,0<0<2n

Integrating over 8, the marginal distribution of r is given by :

dGy(r) = J’u dG(r,6) = r exp (- 12/2) drl 26_n =exp (-r?/2)rar
0

2
0

= dGy() = yexp (/2 dr = s exp (- 2/2) (/2 d(r22)
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15-4 ‘ |
r2 X1 +X7' ¢ 2 4(1) variate and hence 7= X2 + X is a x’-variate with 4 f

Thus 5= f
For 1 varlables Xi (=1 2, .o M)y WE transform (Xq, Xy, ..., Xa) to

(o, 61, 62 B,1) (1-1 transformatxon) by :
0y e O .

= cos 6 €Os @, ... Cos 0,1 '

= cos ; cos 9, ... cos B, sin 0,1

x =y cos B cos 9, ... cos 6,3 SN 0,2

e .. .(15.3))

x;= 1,08 B; cos ; ... €oS By SIN On_j1

=7 sin 6;

1 . 1
where >0, -t <6 <n and -%ﬂ<91<§“if0r’=z' 3, ...5(n-1).

Then x2+ 22 + ... + x,2=x2 and |] | =x"1cos"26;cos">6, ... cos 0,_,
(cf. Advanced Theory of Statistics Vol. 1, by Kendall and Stuart,)

The joint distribution of X3, Xy, ..., X, viz.,

n n
dF (xy, X, +ee) Xp) =(—l—) exp (- x2/2) Hl dx;, transforms to
i=

V2n
1
dG(x, 61, 8y, ..., 0,_1) = exp (— EXZ) X" cos"20; cos" 8, ... cos 6, ,dy dO, d6, ...ds, |
Integrating over 0y, 8y, ..., 8,;, we get the distribution of 2 as :
dP(y?) =k exp (-x/2) ()™ dy?, 0 < y2 < oo

The constant k is determined from the fact that total probability is unity, i.c.

[ ePan=1 = kJo oxp (-x2/2) (22 'yt =1 = k=
2"21(n/2)

dP(x?) m exp (=x2/2) (xz)z o< 32 < oo

n

= Xz‘ Z X2 is a chi-square

1 1 .
Fse X = 2, 2 X?is ay(n/2) variate

variate with n degr
with nd.f. i Of freedOm (df)and (15-2)

Remarks1.1fX;; =1, 2,.

gives p.d.f. of ch1 -square distribution

,naren ind
- ﬁ (X, i €Pendent normal variates with mean Y, and S.D. o,
- s is a x2-variate with n df. '

1

2. In random sampling from a normal

Popul,
normally about the mean Hwith SD. g/v7 . Pulation with mean yand S.D. 6,7 is distributed

~ N(0, 1) = [I— ]2‘
0/\/— o/vnl ¥2x%variate with 14.f
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3. Normal distribution is a particular case of y?-distribution when 1 = 1, since forn=1,

1 i
(x3) =—=——— exp (x*/2 2171 2 <yt < oo
P ) p (x*/2) ()" " dx50=x°<
1' 2
=——exp (x%/2)dy,— =<y <e
5 p (-x*/2)dx X
Thus 7 is a standard normal variate.
4.Forn=2,

p(x?) =% exp (- —x‘), x220 = px) =% exp (221) x > 0 which is the p.d.f. of
exponential distribution with mean 2.
15-3. M.G.F. OF CHI-SQUARE DISTRIBUTION

Let X ~ Xz(n) ’ then

1 X p—X, n
Mx(t) —E(e’x) J. !Xf(x) dx —mj etx _g—x/2 x(n/2) - 14y

= 2 T(n/2) 1}("/2) Io exp [— ( = 5 2 x] Cx(n/D-14x
1 r(n/2)
= on/2 r(n/z) [(1 _ 21)/2]n/2
=(1-20"2,12t1<1
which is the required m.g.f. of a x*-variate with n d.f.
Remarks 1. Using Binomial expansion for negative index, we get from (15-4)

£(5+) 260 (32 Gor)

22+ ... + =

[Using Gamma Integral]

...(15-4)

M@ =1 +ﬂ(2t)+
p,” = Coefficient of m the expansion of M(t)

nin n n,
=2z (5+l)(5+2)... (2+r ])
=nn+2)(n+4)..(n+2r-2) ...(15-4a)
2. If n is even so that n/2 is a positive integer, then

' =2r T[(n/2) +71/Tn/2)

r

...(15-4b)

15.3.1. Cumulant Generating Function of x2-Distribution. If X ~ x?%,), then

3 4
K,(H) =logMy(®)=-7% log(1—2t)——[2t+ 2, & +%)—+_,_]

2
x, = Coefficient of ¢ in K(t) =7, x, = Coefficient of 5 in K(t) = 2,

4
k5= Coefficient of % in K(t) =8n, and Ky = Coefficient of 4—t—, in K(¢) = 48n

- o
In general, .= Coefficient of ;7 inK(h=n2"1(r-1)! ...(15-4c)
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Hence
Mean =K; =7, Variance = =Kz =27
=8n, By = Kg+ 367 =48n+ 12n2 (54

g _b_12
M : and Bz_p,zz—"+3

Bl =—; =
uq -
15.3.2. Limiting Form of 2 Distribufion for Large Degrees of Freedom, [
X~ 3w, then My()=(1-2t)"/2 1 £ 1 < L

The m.g.f. of standard y’-variate Z is : M x-p/a(t) = €M/9 My(t/ o)
= M,(t) =e® (1-2tf0) /2= gt 2n ( 1_2t )'"/"
2n

= = n_n 2
Ky) =logMy()=—t /% — Zlog (1-¢/2)
2

_ _44ln,n 722 B 3/2
= z*z[‘- ;+§-;+§(%) +]

= 1’2 .Jn 2 2
t 2 + £ 5 +E+ O(n-l/Z) = AZ_+ O(n‘l/z),

where O(n1/2) are terms containi
ontaining n'/2 and hj .
lim K.gf< 2 gher powers of # in the denominator
now Z )‘E = Mz(c) = e"/2 a5 11 —00

which is the m.g.f. of a
! -8 standard normal i
mg.f. Z is asymptoti variate. Hence, b i Sce
ymptotically normal, In other words stanc}i,alrlcri] 1;](‘;9‘1/‘::;:het0r? .
! e e tends to

standard normal varia
te as n =g
for large d.f, = e Thus, 2, distribution tends to normal distribution

In practice for n >
30, the y2-, . .

€ X™-approximation to normal distribution is fairl d

s fairly good.

So whenever 1 > 30
» We use
the normal Probability tables for testing the significance of

the value of x2 That i

) - hatis why in the tab gi\

X* have been tabulated till = 30eotnalyles ( 8¢ 15:56), the significant val f
: page 15-56), values o

Remark. F, o
Remark 2 to § lg-réfil,e distribution of y2

(o 1=n,0?=2n)

-Variate for
large values of n, see Example 15.7 and also

]5'3'3. C - Y

9x() = Efexp (itx)) =
exp (itX)) = Jo eXP (itx) f(x) dx

- 1 "
"7 |, e -(152) ) i

15-3-4. Mode ang Skewn dx = (1-2ityns2 ...(15-4¢)
f(x) =*‘ess of XLDishibuﬁon Let
on2 ex/2 xtn/2)-y " et X ~ %2 SO that
Mode of th, T2 0S1<e
€ of the distrip L
Logarithmic differens: .‘llthn is the solytiq ) ™
f) rentiation w.r.fo x i () g #f@=0 and fr(x <o
L&) _ 1 8lves : X) <
f _0'5“(%‘1)- I nm-2.y
X
2x

...(15:5)
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Since f(x)#0, f(x)=0 = x=n-2

It can be easily seen that at the point, x=(1-2), f ‘(x)<Q
Hence mode of the chi-square distribution with n d.f. is (n - 2).

Also Karl Pearson’s coefficient of skewness is given by :

_Mean—Mode_n—(n—ZL_ 2| (15
Skewness = SD. == '\/ = ...(15-6)

oefficient of skewness is greater than zero for n = 1, the x2-
s is inversely proportional to

Since Pearson’s ¢
distribution is positively skewed. Further since skewnes

the square root of d.f., it rapidly tends to symmetry as the d.f. increases.
15.3.5. Additive Property of x2-variates. The sum of independent chi—sqyare
variates is also a x2-variate. More precisely, ifX;, (=12 ...,k are independent x2-variates
k k
with n, d.f. respectively, then the sum X X; is also a chi-square variate with ‘}:1 n; d.f.
i=1 i=

Proof. We have My ) =(1- 2 mif2;i= 1,2, ...k

k
The m.g.f. of the sum X X;is givenby :
i=1
sz'(t) =M xl(t) M X2(t) MX,,(t) [-- X/’s are independent}
= (1202 (1-2t)"2/2 .. (1-20)"/2=(1-2¢)" e
which is the m.g.f. of a x?-variate with (n; +n + ... + ny) d.f. Hence by uniqueness
k k

+m)/2

theorem of m.g.f’s, £ X; isay>variate with X n; d.f.
i=1 i=1

Remarks 1. Converse is also true, i.e., if X;;i=1,2, ..., kare x2-variates with n;;i=1,2, ..,
k k

kdf respectivelyand if ¥ X;isa y2-variate with X n; d.f,, then X/s are independent.
=1 1=1

2. Another useful version of the converse is as follows :
If X and Y are independent non-negative variates such that X + Y follows chi-square

distribution with n, + n,df. and if one of them say X is a x2-variate with n, d.f. then the other,
viz.)Y, isa x3-variate with n, d.f.
Proof. Since X and Y are independent variates, M, (f) = Mx(t) M\(t)

]

[-X+Y~ xz(", . and X ~ %2

(-2t ™72 =@ -2 My(t)
(my)

=
. M) =(1-20"""7,
which is the m.g.f. of x2-variate with n, d.f. Hence by uniqueness theorem of m.g.f.’s, Y ~ %2
(ny)

3. Still another form of the above theorem is “Cochran theorem” which is as follows :
Let X, Xy, --- X, be independently distributed as standard normal variates, i.e., N(0, 1).

Let 21 X2=Q+Q+ .+ where each Q, is a sum of squares of linear combinations of

X, X, .-, X, with n; degrees of freedom. Then if n, + 1, + ... + n, = n, the quantities Q,, Q
Q, are independent ’-variates with n, n,, ..., n, d.f. respectively. 2r <ees
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15-3-6. Chi-square Probability Curve. We get from (15.5),
70 =[ 2] o

Since x > 0 and f(x) being p.d.f. is always non-negative, we get from (157):
flx)<0 if (n-2)<0,
for all values of x. Thus the y2-probability curve for 1 and 2 de
monotonically decreasing. When n > 2,
>0,ifx <(n-2)
“(x)=) =0,ifx =n-2
& [ <0,ifx >(n-2)

This implies that for n > 2, f(x) is
0<x<(n-2)and monotonically decreasing for
attains the maximum value.

For n > 1, as «
increases, f(x) decreases f(x) 1\
rapidly and finally
tends to zero as x — . 5
Thus for n > 1, the x2-
probability curve is
positively skewed [c.f.
(15-6)] towards higher
values of x. Moreover, n=3
X-axis is an asymptote \ n=4
to the curve. The shape N\
of the curve for n = 1,p2, \\\‘\ =S
3, ..., 6 is given in n=6
Fig. 15:1. For n = 2, the
curve will meet y = f(x) n=1
axis at x = 0, ie., at f(x) .
=05Forn=l,itwillbe *———" ™ X
an inverted J-shaped
curve.

...(15.7)

grees of freedom is

monotonically increasing fo,
(n-2) <x <o, while at x =, 2, it

Fig. 15.1; Probubility Curve of Chi

15.4. SOME THEOREMS ON CHI-sQuA
Theorem 15.1. If

-square Distribution

RE DlSTRlBUTlON
Xy and X, are ind

. X, .
respectively, then Yi isa Bz( % ) %)

Proof. Since X, and X; are independent v2 variat . ectively,
their joint probability diffcsen : o byxt A r1ates with n, and n, d.f. resp
dP(xy, x2) = dPy(x;) dPy(x,)

ependent y2-varigtes with ny and ny d.f.
Variate,

1
[ 2""L(n,/2) eXp (-x,/2) (xl)("‘/z)‘ldxl]

X[ 1 _ (/D)1 (11’2]
m exp (—x,/2) (xp)
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In this section we will introduce various hypothesis -testing procedures based on
the use of the chi-square distribution. As with other hypothesis-testing procedures,
these tests compare the sample results with those that are expected when the null
hypothesis is true. The acceptance or rejection of the null hypothesis is based upon
how ‘close’ the sample or observed results are to the expected results. For detailed
discussion on Testing of Hypothesis, see Chapter 17.

15-6-1. Inferences About a Population Variance. Suppose we want to test if a

random sample x,(1=1,2,..., n) has been drawn from a normal population with a
specified variance 62 = 52 (say).

~-’ Under the null hypothesis that the population variance is 62 = 6%, the statistic

F
y2= 2, M]._.L xP - @] =11£7 ...(15-14)
2 | G~

i=1 o2 O Lli=
follows chi-square distribution with (n - 1) d.f.

By comparing the calculated value with the tabulated value of x2 for (n —1) d.f. at
certain level of significance (usually 5%), we may retain or reject the null hypothesis.

Remarks 1. The above test (15-14) can be applied only if the population from which the
sample is drawn is normal.

2. If the sample size n is large (>30), then we can use Fisher’s approximation

2x2 ~ N(V2n-1,1), ie,Z= \/2—)(; -vN2n-1 ~ N(0,1) ...(15-14a)
and apply Normal Test.

Example 15-9. It is believed that the precision (as measured by the variance) of an
instrument is no more than 0-16. Write down the null and alternative hypothesis for testing
this belief. Carry out the test at 1% level given 11 measurements of the same subject on the
instrument :

2.5, 23, 24, 23, 25 27, 25 26 26, 27 25

Solution.
COMPUTATION OF SAMPLE VARIANCE
X X-X (X -X)2
2:5 -0-01 0-0001
23 -0-21 0-0441
24 -011 00121 *
Null Hypothesis, 2-3 -0-21 0-0441
Hy: 02 =016 25 -001 0-0001
Alternative Hypothesis, ;Z * 3'19 0-0361
- -0-01 0-0001 '
H;:62>0-16
1 2:6 . + 0-09 0-0081 |
2:6 + 0-09 0-0081 1
2.7 +0-19 0-0361 ‘
25 ~ -0m 0-0001 |
= 276 _, T T
A= sesl (X - X2 =01891 |

Under the null hypothesis, Hy: 62 = 0-16, the test statistic is :
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ns? LX-XP_ 01891 _ 480

=g 016 |

ion wi ~1=(1-1)=10. |

i 2 gistribution with d.f. 1 |
which follows x~d1 ue of 2 is less than the tabulated value 23-2 of 2 for 1 i
it is not significant. Hence H, may be accepted ang |

tent with the hypothesis that the precision of the |

Since the calculated val
at 1% level of significance, _
conclude that the data are consis

instrument is 0-16. ' ‘
Example 15-10. Test the hypothesis that © = 10, given that s = 15 for a random sample
of size 50 from a normal population.

Solution. Null Hypothesis, Hy : 0 = 10.

Weare givenn=50,5=15. Now

Since 1 is large, using(15-14a), the test statistic is : Z = N2x? - V2n-1 ~ N (0, 1)
Z=225-99 = 15-9.95 = 5.05

Since | Z | >3, it s significant at all levels of significance and hence Hy is rejected
and we conclude that ¢ # 10.

~~ 1562, Goodness of Fit Test. A very powerful test for testing the significance of
the discrepancy between theory and experiment was given by Prof. Karl Pearson in
1900 and is known as “Chi-square test of goodness of fit”. It enables us to find if the

deviation of the experiment from theory is just by chance or is it really due to the
inadequacy of the theory to fit the observed data.

Iffi (i=1,2,..,n)is a set of observed (experimental) frequencies and ¢, (i=1,2,

-+, 1) is the corresponding set of expected (theoretical or hypothetical) frequencies,
then Karl Pearson's chi-square, given by :

xt=Z [ﬁ:"i]' (E§1ﬁ - ,‘;21'1 e,) it

i=1 i
| follows chi-square distribution with (1 -1) d.f.
e I:temtar:(. This is an approximate test for large values of n. Conditions for the validity of
X"-test of goodness of fit have already been given in § 154 Remark 2 on page 15-12.
The goodness of fit test uses the chi-s

TR i o chi-square distribution t ine if a hypothesized
Rypothesized sribution for a population pravides 3 goy . Arptans or pgoion of i
(f’s) in a sam ﬁel;nd th: istribution is based upon differences between observed frequencies
Decisi P e A expected frequencies (¢/'s) obtained under null hypothesis Hy.
on rule : cceptHoif 2 < a2 = . . 2;
the calculated value of chj X =¥ (’:airll)ezndeec‘:t Hoif x2 > y2, (n —2 1), where X*3
tabulated value of chi-square for (n-1) on using (15-15) and %

Example 15.11. The demand for

a particylar : ary |
Jrom Si-fo<day. Ina sample sy the follrwing ingortnas " Sectory was fourd 10 01
ays * Mon ’ |

- Tues. Wed i Sat.
No. o ts d ed. Thurs. Fri. |

of parts demanded 4 125 g1 1129 1126 105

EXACT SAMPLING DISTRIBUTIONS.| [CHI-SQUARE (x2) DISTRIBUTION]

Test the hypothesis that the nymper of parts demanded does not depend on the day of the

week. (Given : the valyes chi-square signi j 1.07
12:59, 14-07 at the 5% )‘evelj;f signquﬁcai:;%mﬁcance 95007, & arevespectioafl ’

15-27

Solution. Here we set

up th | i f ts
demanded does not depend P the null hypothesis, H, that the number of par

on the day of week.

Under the null hypothesis, the expected frequencies of the spare part demanded
on each of the six days would be :

1
6 (1124 + 1125 + 1110 + 1120 + 1126 + 1115) = 9%22 =1120

TABLE 152 : CALCULATIONS FOR x2

Frequency
Days Observed | Expected | (f.—e) (fi—e)?
V)] (e €
Mon. 1124 1120 16 0014 | 2= Egiz‘mz =0179
1
Tues. 1125 1120 25 0022 | The number of degrees of
freedom = 6 — 1 = 5 (since
Wed. 1110 1120 100 0089 | we are given 6 frequencies
p 0 subjected to only one linear
Thurs. 1120 1120 constraint - Zfl - 2 e = 6720)
Fri. 1126 1120 36 0-032
Sat. 1115 1120 25 0-022
Total 6720 6720 0179

The tabulated x2y¢s for 5 d.f. = 11-07.

Since calculated value of x? is less than the tabulated value, it is not significant
and the null hypothesis may accepted at 5% level of significance. Hence we conclude
that the number of parts demanded are same over the 6-day period.

Example 15-12. The following figures show the distribution of digits in numbers chosen
at random from a telephone directory :

Digits  : 0 1 2 3 ¢ 5 6 7 8 9
1026 1107 997 966 1075 933 1107 972 964 853

Total

Frequency : 10,000
Test whether the digits may be taken to occur equally frequently in the directory.

Solution. Here we set up the null hypothesis that the digits occur equally
frequently in the directory.

Under the null hypothesis, the expected frequency for each of the

digits
0,1,2,...,9 is 10,000/10 = 1000. The value of x2 is computed as follows :
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OR ¥?
TABLE 153 CALCUM Fon%
Frequency
2
Digits | Observed Ex,x(ze«;ted (el | (ize)S
(ﬁ) €; €
. p.)2
0 1026 1000 676 0-676 2 = EL—' )
&
1 1107 1000 | 11449 | 11449 ~58.547
2 997 1000 9 0009 | The number of degrees
3 966 1000 1156 1156 | freedom
4 1075 1000 5625 5625 = Number of observations .
Number of independep
5 933 1000 4489 4489 constraints
6 1107 1000 | 11149 11-449 =10-1=9
7 972 1000 784 | 0784 | Tabulated x% s for 9df. =169y
8 964 1000 1296 1296
9 853 1000 | 21609 21609
Total 10,000 | 10,000 58.542

Since the calculated value of %2 is much greater than the tabulated value, it is

highly significant and we reject the null hypothesis. Thus we concl igi
nific r . ude that the digits
are not uniformly distributed in the directory. ’

EXACT SAMPLING DISTRIBUTIONS.| [CHI-SQUARE
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TABLE 154 : CALCULATIONS FOR 2
—

Frequency ]
Category | Observed Expected —e)? [

m) (c') (fl 1) i e-ej)z

Failed 46 80 ; —e)?
1156 14450 |2 _y Gime¥_ 55417
Il Division | 68 60 64 1.067 &
df. =4 —1 = 3, tabulated

II Division 62 40 484 12:100 X{)'OS for3 d.f. =7.815
I Division 24 20 16 0-800
Total 200 200 28417

whichisintheratioof4:3:2:1for Frequ
the various categories. Category Ob F—ency d
served Expecte
) (e))
Failed 46 4 x 200 = 80
" 10
nder the nul] hypothesis
, th III Divig;j
expected frequencies can be com? B 8 % x200=e
g:tlzc? as shown in the adjoining 11 Divici
_ vision 62 12—0 x 200 = 40
I Division 24 L 200=20
10
Total
e N

Since the calculated value of 2 is greater than the tabulated value, it is significant
and the null hypothesis is rejected at 5% level of significance. Hence we may conclude
that data are not commensurate with the general examination result.

Example 15-14. A survey of 800 families with four children each revealed the following
distribution :

No. of boys : 0 1 2 3 4
No. of girls : 4 3 2 1 0
No. of families : 32 178 290 236 64

Is this result consistent with the hypothesis that male and female births are equally
probable ?

Solution. Let us set up the null hypothesis that the data are consistent with the
hypothesis of equal probability for male and female births. Then under the null hypothesis :

N =

p = Probability of male birth =3 =4

p(r)= Probability of ‘¥ male births in a family of 4 = 4C, ( %)2 (%)4_’ =14C, (

)

N[=

The frequency of r male births is given by :
4
fir) =N. p(r) =800 % 4C, ( %) =50%4C,;r=0,1,2,3,4. (®

Substituting 7 = 0, 1, 2, 3, 4 successively in (*), we get the expected frequencies as
follows :

f(0)=50x1=50,

f(3) =50 x 4C, =200,

f(1) =50 % 4C, =200,
fi4) =50 x 4C, = 50.

f(2)=50><4C2=300,
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OR TABLE 156 : C
TABLE 15:5 : CALCULATIONS FOR 2 ALCULATIONS FOR 2
No. of ——’F'ZIF ) Mistakes Frequency o
3 / - _¢; | = i— €, . "
ale | Observed Expected ;- eV fﬁ_?i)_ perpage | Observed  Expected | (fi—e)? | (f,—e)? 2=3 (fi- e,v_l - = 40-937
births () (€ ___/_________—L—— 2 — 2 (fi—e)? (09 i (e) € df.=7-1-1-3= 2
0 32 50 324 648 (% 2 0 275 24211 108241 4471 | (One d.f. being lost because of the
178 200 484 242 = 1963 1 72 1167 1998.09 | 17121 | linear constraint 3f; = L e; 1 d.f. is
: 0-33 2 2 30 281 261 | 0128 | lost because the parameter m has
2 290 900 100 Tabulated x5 for 5-1 3 7 45 been estimated from the given data
236 200 1296 6-48 _ e Q. and is then used for computing the
: 50 196 3.92 falf: 15 94458: 4 5 03 expected frequ-encies; 3 d.f. are lost
4 64 15 51| 9801 | 19217 | because of pooling the last four
Total 800 800 . 1963 5 2 01 expected cell frequencies which
W 6 1 0 are less than five.)
Since calculated value of x2 is greater than tabulated value, it is significant at 5} ] 200 2 T
level of significance. Hence we reject the null hypothesis and conclude that male ang Ea ) 4093
female births are not equally probable. 3 . o .
Example 15-15. When the first proof of 392 pages of a book of 1200 pages were read, ke Tabulated value of ? for 2d. at 5% level of significance is 599. )
distribution of printing mistakes were found to be as follows : Conclusion. Since calculated value of %2 (40-937) is much greater than 5-99, it is
No. of mistakes in a page (x) : 0 1 ) 3 4 5 § highly significant. Hence we conclude that Poisson distribution is not a good fit to the
No. of pages ( f) ;275 72 30 7 5 2 1 given data.
Fit a Poisson distribution to the above data and test the of goodress of fit. 15.6-3. Test of Independence of Attributes—Contingency Tables. Let us
. s o T consider two attributes A and B, A divided into r classes Ay, Ay, ..., A, and B divided
Solution. Mean of the given distribution is: X = %Zf X = lg—; =0482 into s classes By, B, ..., Bs. Such a classification in which attributes are divided into
In order to fit a Poisson distribution to the given data, we take the men more than two classes is known as manifold classification. The various cell frequencies
(parameter) m of the Poisson distribution equal to the mean of tt’m given distribution, can be expressed in the following table known as r x s manifold contingency table where
ie., wetake m = X = 0-482 (A)) is the number of persons possessing the attribute A;, (i =1, 2, ..., r), (B)) is the

number of persons possessing the attribute B; (=12, ..., 5)and (A;B)) is the number

The fr i . . . .
e frequency of r mistakes Per page is given by the Poisson law as follows: of persons possessing both the attributes A;and B, (i=1,2, ..., 7;j=1,2, ..., 5).
s

fr) = Np(r) = 302 x €22 (0-482) r
plr) = 392 x-r(!\l; r=0,1,2,...,6 Also . (A;) = 2 (B) =N, where N is the total frequency.
fO) =392x 0482 =397« Ansi] i e

0g (- 0-482 logg e) J

=392 Antilog (- 0482 x log, 2.71 83)

Now

TABLE 15-7 : rxs CONTINGENCY TABLE
( e= 2715‘3)

=392 x Antilog (- . A
og ( 0-482 x 0-4343) =392 x Antilo (__ 02093) A A, .. A aes A, Total
= 392 x Antilog (1 8 B :
f1) =mxf0)=048 8 (17907) =392 x 06176 = 2421
0482 2421 = 11669, f7) _ m 12 B, | (4B) AB) .. (AB) ... (AB) | (B
oy o 0-482 N =Fxf(1) = 0241 x 116:69= 28 _
3 *fl2) = 3 %2812 = 4518 fla) =m 0-48 2 @B (2 e o ¥
3 . === 482 . - : H . . : ' o
f6) =Zxfity=2482, (54 ) = =tExas - 0% ' ' |
5 ) = 0-052 =
Hence the theoretical Poj 6 < %xf(5) =0482 o052 = 00 B; (48)  (A:B) " iz “-B) @
given below : a0 h'e‘l“encies c 5 : 5 : . : ‘ : :
orrect to one decimal place ar
X — B, | (AB) (AB) . (AB) .. (AB)| @®)
Frequency 242.1 I+ 3 Total L—uz—)’ (A) (A) N J
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attributes A and B under consideratiop arp
the two

The problem is to test if

independent or no;l' hypothesis that the attributes are independent, the theoreticq 5
Under the null hypo .
frequencies are calculated as follows : "

ibute A, =-5~;i=12,. ,

N
, B,
sthe attribute B; ==, j=1,2, .

ttr
P[A;] = Probability that a person possesses the 2

—

1 = Probability that a person possessé
P[Zf;} = Probabiliz that a person possesses the at.tribute; A;n a;\c; Baj; I:[E :') P(B)
(By compound probability ﬂ.\eorem, since the attributes A; ; ependen;
under the null hypothesis.)
P[A,B,]:‘—I‘f,'-).(—l%ﬂ;i=1,2,...,r;j:l,z,...,s and

(AB)o = Expected number of persons possessing both the attributes A; anq B,

(A)By)

- (A4B)="L2 (i=1,2,..,r;j=1,2..,5)

X ... (151¢)

By using this formula, we can find out expected frequencies for each of the cell-
frequencies (AiB/) (=12 .,rj=12 ..5), under the null hypothesis of
independence of attributes.

The exact test for the inde
degree of approximation is
goodness of fit, viz.,

pendence of attributes is very complicated but a fair
given, for large samples, (large N), by the y2-test of

i=1j=1 B e

2=3% T M]zzu L (1516)
i

i
where f; = observed frequency for contingency table category in column i
€;j = expected frequency for contin
which is distributed as a x2
of freedom].

and rowj,
gency table category in column i and rowj,
“variate with (r—1) (s - 1) df. [c.f. Note below on degrees

Remarks 1. ¢ = X2/N is known as mean-square contingency
Since the limit 2 2 e )
closeness ;ﬂhif:]}ﬁg:sﬂ)p ‘l;:rtzvégndlfizrle-?t cases, they cannot be used for establishing the
suggested another measure, known as smEé?ggr:fo;haraCterS under study. Prof. Karl Pearsof

mean square ” ich is denot
by C and is given by . Nra - q ontingency” which is 3
, X+N = N1yg (151
Obviously C is always less than yn; e (

number of classes into which A and
value of C = Y(r=1/7). Since th ATXr contingency table, the maximu™
= strictly speaki
classifications are not comparabtl:e’_ M8 the valyes of C obtained from different types of
es of Freedom (g,
up the statistic (e-8. X2) is known “*). The ny, . ake
v . h m
cedony @f) angei:iesm I\iraréatestwsigy o (e
ually denote

€ maximum . ;
rxr(r=234,.), value of ¢ differs for different classification, 0/
2. Note on Degre, b
mber of
letter ‘Nu’ of the Greek alphabet), % the degrees of fr e

EXACT SAMPLING DISTRIBUTIONS.| [CHI-SQUARE () DISTRIBUTION] 15-33
The number of degrees of freedom
number of independent constra

number of independent

edom, in general, is the total number of observations e
raints imposed on the observations. For example, 1f k is the
constraints in a set of data of n observations then v = (n—k).

Thus in a set of n observations usually, the degrees of freedom for x? are
(- 1), one d.f. being lost because of the linear conztraint p) Lg= T e; = N, on the frequencies (c.f.

Theorem 15-3). If 7’ independent linear constraints are imp:ased on the cell frequencies, then the
d.f. are reduced by ‘r.

In addition, if any of the

population parameter(s) is (are) calculated from the given data
and used fo

T computing the expected frequencies then in applying x?-test of goodness of fit, we
have to subtract one d.f. for each parameter calculated. Thus if ‘s’ is the number of population

parameters estimated from the sample observations (1 in number), then the required number of
degrees of freedom for y-test is (1~ s - 1).

If any one or more of the theoretical frequencies is less than 5, then in applying x*-test we

have also to subtract the degrees of freedom lost in pooling these frequencies with the
preceding or succeeding frequency (or frequencies).

In a r X s contingency table, in calculating the expected frequencies, the row totzfls’, the
column totals and the grand totals remain fixed. The fixation of ‘' column totals and ‘s’ row

r s
totals imposes (r + s) constraints on the cell frequencies. But since 2, (A')=Z1(B') = N, the total

i=1 j= .
number of independent constraints is only (r + s — 1). Further, since the total number of celi-
frequencies is r x s, the required number of df.is: v =rs—(r+s-1)=(r-1)(s- 1)

...(5-17a)
Area Yoo Total

Example 15.16. Two sample

polls of votes for two candidates A and A B

B for a public office are taken, one from

among the residents of rural areas. The Rural 620 380 1000

results are given in the adjoining table.

Examine whether the nature of the area Urban 550 450 1000

is related to voting preference in this

election. Total 1170 830 2000

Solution. Under the null hypothesis that the nature of the area is independent of
the voting preference in the election, we get the expected frequencies as follows :

830 x 1000
E(620) = 5o = 585, E(380) = —gp0 =415,
EG50) = L% - 5g5, and  E(450) = S021000._ 4is

s . : g = _1)(2_1)=1.°Iﬂy0neofthe
. x 2 contingency table, since d.f. = (2 i, .

cell ?:'eteliercii: can be filled up independently and the remaining will follow

immedigtel since the observed and theoretical marginal totals are fixed. Thus having

obtained aK;r one of the theoretical frequencies (say) E(620) = 585, the remaining

theoretical frequencies can be easily obtained as follows :

E(380) = 1000585 = 415, E(550) = 1170 - 585= 585, and E(450) = 1000 - 585 = 415.
. _5g5)?, (380415 (550585 (450 - 415)?
2= [Q'—e—e—')—]=@%g5@+ 45 T 585t
i i

415
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b 1 ) 225)[2 % 0002409 + 2 X 0-001709] = 10,95,
s —l——+—l’-+_ﬁ—§= i Iculated %2 i
= (35)2( g5 T 415 5852 _p=1 df. is 3-841. S:inf\i 1;:::11'l ;;;h esig‘is':e.‘:“tch
Tabulated X205 for (2~ 1) (.t is highly si ificant an f area is related to \]roc.ed
greater than the tabulated v;l}l‘le, i hat nature 0 i
ignifi us
at 5% level of sxgnxflc?,nce.
i lection.
preference in thee A
Example 15:-17. (2x2 CONTINGENCY

"

N(ad - bc)?

we conclude

BLE). For the 2 X 2 table,

prove that chi-square test of independence gipe

2 d),N=a+b+C+d '(15'18)
X =@+ob+d@+b)(c+ .
Solution. Under the hypothesis of independence of attributes,
E(@) = (ﬂé).r\.}‘iﬂl b et

_(@a+b)(b+d)
Eb) = N c+d
E() = (@a+c) (c+d)

|
b ) d a+c { b+d l N
and E(d)=( +4)Ngc+ ) o

1
2 =l=E@P  b-EQP  [c-EQP , [d-EQ

c

.
I

E(a) E(b) E(c) E(d) ()
_ (@a+b)@at+c) _a(@+b+c+d)-(@*+ac+ab+bc) _ad-be
a—-E@=a- N = N
Similarly, we will get : b—E(b):—%ﬂzc—E(C),’ d-E(d):”dN—“—bc
Substituting in (*), we get
2 = (ad - bc)? 1

1 .1 .1 1
N2 [E(a) YEOTEQ T E(d)]

_ (ad - bep? 1 1 1 1
N [[(a+b)(a+c)+(a+b)(b+d)}+[(a+c)(c+d)+(b+d)(C+d)}]

b+d+a+c

b+d
@+Da+b+d) T@v g (c :;)?bi d)]

_ gadnbcgz[
- N

= - be)2 c+d+a+b — h\2
(ad - bc) [W‘mﬁ]=(¢z+b) N(ad - bc)

s
(@+c)b+d)(c+d)

alue of %2 for 2 x 2 conti
in the value of x2in
,000 graduates ;
employfres 120 are females, Use x2to determin: gf ;
the basis of sex. Value of X2 at 5% leve| for one degree of freedom i 3.84
is 3-84.

Remark. We can calculate the v,

. 18
directly. The reader is advised to obta ngency table by using (15 )

Example 15.16 by using (15-18).

EXACT SAMPLING DlSTRIBUTlONS-I [CHI-SQUARE (x2) DISTRIBUTION] 15.35
Solution. We set ) . ,
on the basis of sex,seanl:lptet::iNu” hypothesis that no distinction is made in appointment

. . t against i ; istinction is made
in appointment on the basis of ge N the Alternative hypothesis that distinction 1s

The observed and expecteq frequencies are shown in the following table :
TABLE NO. OBSERVED FREQUENCIES

EXPECTED FREQUENCIES
Employed Not T, Not
otal Total
employed ‘ Employed employed
Male 1480 5720 7200 | 7200X1600 o0 1440 7200
=1440 = 5760
Eemale 120 680 800 | 1600-1440 64005760
=160 =640 800
Total 1600 6400 8000 1600 6400 8000
TABLE 15.8 : CALCULATIONS FOR x2
Frequency B
Class Observed  Expected | (fi—e) | (fi—e)? (fi—e)
(f,) x;;:,) €; x?' = E €
=13-89
| Male employed 1480 1440 40 %g% =111 if =(2-1)(2-2)
Male unemployed | 5720 s760 | -40 | 1600 _ g8 =1
\
| Female employed 120 160 -40 _11%0.? = 10-00 | Tabulated x2p.05
\ 1600 for 1 df. = 3-841.
| Femnale unemployed| 680 640 40 Bag = 250

Conclusion. Since the calculated value of 2 (13-89) is much greater than the

tabulated value of x2 (3-841), the value of 2 is highly significant and null hypothesis

is rejected. Hence we conclude that distinction is made in appointment on the basis of
sex.

Example 15.19. A random sample of students of XYZ University was selected and asked
their opinions about ‘autonomous colleges’. The results are given below. The same number of

each sex was included within each class-group. Test the hypothesis at 5% level that opinions
are independent of the class groupings :

Numbers
Class Favouring Opposed to “autonomous Total 1
‘autonomous colleges’ colleges’
B.A./B.Sc../B.Com. Part I 120 80 200
B.A./B.Sc./B.Com. Part Il 130 70 200
B.A./B.Sc./B.Com. Part III 70 30 100
M.A./M.Sc./M.Com. 80 20 100
| ol 400 200 600

Solution. We set up the null hypothesis that the opinions about autonomous
colleges are independent of the class-groupings.
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2 contin €.
15-36 . ranged in the form Of:l at : :omP“te independently f;ﬁ
Here the freque(!;Cle:)a:e 3x 1= Hence we;‘:fted frequencies can be obtaineq,

the d.f. are (4 - 1) %

the remaining €X

ATHEMATICAL STATIgpe.

three expected frequencies ag column tot
subtraction from the row an independence :
Jer the null hypothesis of ieP 400 x 100
Under _400x200 _133.33: E(70) = ~gg5 = 6647
_ 400x200 _ 133.33 ; E(130) = T600 below
E(120) = —p0 s can be completed as shown below :
encies R —
ble of ex ected frequ —_—
ez P Numbers
‘! Total
p Opposed to ‘autonomous
vourin, ,
cles atonosaaleges U
13333 = 6667 20
B.A./B.Sc./B.Com. Part I 13333 200 gz;z e 202
B.A./B.Sc./B.Com. Part II 13333 200 - i 2
B.A./B.Sc./B.Com. Part Il 66:67 100 — 66- =
e 6667 100- 6667 =3333 100
M.A./M.Sc./M.Com. - ]
200 600
Total 400
TABLE 159 : CALCULATIONS FOR CHI-SQUARE
fi € fi—ei (f.'f:)z (fi—l‘,)z/(’.r
120 11333 ~1333 1776889 13327
130 13333 -333 11-0889 0-0832
70 6667 333 110889 01663 1
80 6667 1333 1776889 | 26652 |y =2, _(f';"')
80 6667 1333 177.6889 26652 —
70 6667 3-33 11-0889 0-1663
20 3333 -1333 177-6889 5.3312
Total 400 400 127428

Tabulated value of X2 for (4 - 1) x (2~ 1) = 3 d.f. at 5% level of significance is 7:815

Conclusion. Since calculated value of x2
significant at 5%
conclude that the

groupings.

’ E{ran?ple 15-20. Two researchers ado
nvestigating the same group of studen
intelligence levels. The results are as foll

Below Average
X 86
Y 40
| mar [

ows :

No. of students in eqch level
Average

Above Avera ge
6 44
= 25
93 69

Genius
10
2
12

| Llated is greater than the tabulated value, it
evgl .°f significance and we reject the null hypothesis. Hence, We
opinions about autonomous colleges are dependent on the clas

opted different sampling techniques whilt
fs to find the number of students falling in differert

1

Total
_—_’_—_/
200

100
——//

300

EXACT SAMPLING DISTRIBUTIONS-I [CHI-SQUARE (42) DISTRIBUTION] 1637
Would you say that the sampling techniques adopted by the two researchers are

significantly different ? (Given 5% gl 2 5.991 and 7-82
respectively.) value of y?for 2 d.f. and 3 d.f. are

Salutl.on. We set up the null hypothesis that the data obtained are independent of
the samPh.ng techniques adopted by the two researchers. In other words, the null
hypothesis is that there is no significant difference between the sampling techniques
used by the two researchers for collecting the required data.

Here we have a 4 x 2 contingency table and d.f. = (4-1)x (2-1)=3x1=3.
Hence we need to compute only 3 independent expected frequencies and the

remaining expected frequencies can be obtained by subtraction from the marginal row
and column totals.

Under the null hypothesis of independence, we have

126 x 200

93200 _

69 %200 _

E(B6) = —7350—=84; E(60)= —555—=62; E(44)= —355 =46
The table of expected frequencies can now be completed as shown below :
Researchers No. of students in each level Total
Below Average Average Above Average Genius
X 84 62 46 200-192=8 200
Y 126 -84 = 42 93-62=31 69—-46 =23 12-8=4 100
Total 126 93 69 12 300

Since we cannot apply the x2-test straightway here as the last expected frequency
is less than 5, we should use the technique of pooling in this case as given below :

TABLE 15-10 : COMPUTATION OF THE VALUE OF x?

Researchers | Type of Students fi € fi—e | (fi—e)? | (fi—e)?
el

X Below average 86 84 2 4 0-048
Average 60 62 -2 4 0-064
Above average | 44 46 -2 4 0-087 2

(fi—e
Genius 10 8 2 4 |osoo |2=X = J
1

Y Below average 40 42 -2 4 0-095 =0.923
Average 33 31 2 4 0-129
Above average | 25 23

27 27| 0 0 0
Genius - :
Total 300 300 0-923

and the df. =@4-1)x (2-1-1=3-1=2,since 1d.f. is lost in the method of
pooling. Tabulated value of x2 for 2d.f. at 5% level of significance is 5-991.

Conclusion. Since calculated value is less than the tabulated value, null hypothesis
may be accepted at 5% level of significanf:e and we may conclude that there is no
significant difference in the sampling techniques used by the two researchers.
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15:6.4. Yate's Correction. In a 2 x 2 contingency tal?le',the number of df. i
(2-1) (2-1) = 1. If any one of the theoretica% cell frequ(?m:les is les's than .5, then
of pooling method for y2-test results in x> with 0 d.f. (since 1df. is lost in pogjj,
which is meaningless. In this case we apply a cor l'_ecf’lon due to F. Yat.es (1934), Which
is usually known as “Yate’s Correction for Continuity” [As already pomnted out, y2;,
continuous distribution and it fails to maintain its character pf continuity if any of the
expected frequency is less than 5; hence the name ‘Correction for Continuity”, | Tp;,
consists in adding 0-5 to the cell frequency which is less than 5 and then adjusﬁng fop
the remaining cell frequencies accordingly. The x2-test of goodness of fit is then
applied without pooling method.

)

a b

For a 2 x 2 contingency table, N(ad- bc)?

'We}‘a"exz=(a+c) (b+d)(@+b)(c+d)

c d

According to Yate’s correction, as explained above, we subtract (or add) %from aandd

and add (subtract)% to b and ¢ so that the marginal totals are not disturbed at all

Thus, corrected value of x? is given as :
, Nl@iharh-psd s L]
- (a+c)(b+d)(a+b)(c+d)

2
Numerator =N[(ad—bc)'+%(a+b+c+d)] =N[ | ad —bc | N’

N[lad-bc| ~N/2)2

2 -

X “(a+o) (b+d)(@a+b)(c+d) ___(15-18a)
Remarks 1. If N is large, the use of Yate’s correction will make very little difference in the |

value of x2. If, however, N is small, the application of Yate’s correction may overstate the 1

probability. ‘

2. It is recommended by many authors and it seems quite logical in the light of the abo¥
discussion that Yate’s correction b

: e applied to every 2 x 2 table, even if no theoretical <!
frequency is less than 5.

15-6-5. Brandt and Snedecor For

mula for 2 x k Contingency Table. Let

observations a;, (i=1,2;j=1,2, ..., k) be arranged in a 2 x k contingency table 8 |
follows : |
A
B Ay Az L 4 L Ay Total
B] an 2 . L a1k mi
B, axn 42 . a L. Ay 2
———""’/)q
Total ny e n; Nk N
|

Under the hypothesis of independence of attributes, we have
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