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exnamdnd by Pust B4 Fashes (1926) are used. In the following sections we
i @ f4est.  and  (w) Fisher's 2-transformation
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?g.‘;i‘g\f{lsggﬂ.@a_l:vf&
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Lors, =00 %) e s random sample of sz » trom a normal populatiof T
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A

L3
o cammas e gppleet ¢ v 1 smal, In such cases exact sample tests, v.c:ﬁ._dnvuw
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unbsased evtmae cf e iy L u-ilh o
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EXACT aanam
gl T P p— 16-3
An .4‘ .«_ \_; semalem (162)
] w37
(i) (19
o, 1 A statintic 1 follemeing Stden « ¢ dtributiom with = 4/ will b shbweviated 2

Na,,cn_!:!ﬁta‘.
oL 11 < 4 7
o(1 1) TP e dem e b-ra/meid
-

ithlvh&&gwgg,gl‘:r;:g
l..’».-..gﬂgr; The expression (16 1) can be re
ritten as -
2 - x- 1” x- o wlﬂn‘ i «nﬂi‘\‘m.w
3 mu?-: 2 =D :Uﬂmr i e
Since x, (1= 1,2, ..., n) is a random sampie from the normal populaton with mwean
u and variance ¥, ¥ ~ N o2/n) Bl murwfw ~N® 1)
- ftw
(x_p .
Hence /n gs‘iluii;ltg
variate with | 4f
ns?
Also o is a y’-variate with (n - 1)/ (c/ Theorem 1551
ggmimsggsﬁw{l;ﬁ 1~
2 A .l
§§~§R~to§~r¢;gnl,l.:uu respectively. « a
1 ! ; .
?Aw‘aw v<§l&§§i!§¥

-3
I (¥/
AR = = e WE /05 B

- Fivp
3 (-
o3y (et

w‘{(#w.. uz

gl -

the factor 2 disappearing since the miegral b el - ?:zx.
4 ivﬁggggtn?!s:.vukgigﬁs!:7

vein-1)df
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16-4 x—p
ot in z= Q\abﬂn

The discovery of
it was cus

1
s _.nmu_.mma asa o
a
mary to 1P ,
Student gave his AL ed even for small samples. It has been b
as ap
x cmal test wi 1625 i
., _X=l and then 10 | for large n (€ £§ ) it
togive t='c.0 ; »&.BE&S_E =mm=w“ an era of exact sample &mig..ﬁ.
hat although the distribution ﬂm _”m_mmncﬂ_ ent’s t usher! putions have been made towargg N
L mples.

: 1l sa impor
normality for SMa” ° "4, overy many Lo ple theory: ~
(and —Kmﬁv m—._m Mw:”hh&o: of small (exact) 52 P bulated value of tforv=(n-y) ify
developmen

5 1 le | € tygs) = 095,
2. Confidence 07 Fiducial Limits for ¥ y=005 = P(I o

i tl> na.cm
59% level of significance: ¢/ P(!

jvenby
the 95% confidence limits for p are giv y

. s

Mh.m.' Stoos = x = loes: n
i £ 1o (5/7) "
Thus, 95% confide

. L Tty (/Y7 -8
Similarly, 9% confidence i o u“n | 1) nu f. mﬁcuu.\u Jevel of significance.
i lated value of t for v.= U= 217" i ormal variatetof
e 8_2” oy Definition). It is the ratio of a standard M by
16.2.2. Fisher's ‘t' (D¢f e variate divided by its degree reedon!

- S
< x+lgs =
S H oSﬁ.
| ¢t | Stoos ie.,

nce limits for pare:

i dent chi-squa : ) f., then Fisher's}
ma.cmnﬂmmon%wswm MWAMMWM:EM%S%E chi-square variate with ndf. 4
1sa ’ -

5
given by : t=

Lx&:

e /¢ distribution with 1 degrees of freedom.
it follows Student’s ‘t’ distribution wit . ol
" ”MM.M. Distribution of Fisher's ‘t'. Since E and x? are inde pendent ®
probability differential is given by : :

Ik}

exp (<13/2) (¢ )
4R = 5 0P D gy

Let us transform to new variates t and u by the substitution :

»NL|W||.| and u=y? = E=tJumand X' =¥
x3/n

Jacobian of transformation | is given by : 3
. =960 _| Vuzm :n,?l..;-)‘m b
WA» . _& 0 1 - n r
The joint p.d.f g(t, u) of t and u becomes :
n o1
gt ) = : 23

u 2
ﬂw.ﬁﬂ?\ﬁﬁ.mxv —lMﬁw + HVu:
mwbnminwombatsAnAs.zwomaIBA~A8
Integrating w.r. to ‘1’ aver the range 0 to w .

#

O:UA

]

w_.S = u :.xm u o
2R 22 T 20 L o &P th i -/:z..T:D du ﬂ

n

the marginal p.d.f. £1(-)
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= = 1 : [l(n +1)/2]
2r2"2Tm/2)Vn 2\ Yo+ 12
1(:+5)]

= C(n+1)/2) . 1 el e
Vn T(n/2)r(1/2) ? = mv? Wz
n
B 1 y 2\ ( _S\|8A~A8
. n 2\(n+
ﬁim‘mX:mv

which is the probability density function of Student’s t-distribution with 1 d.f.
Remarks 1. In Fisher's ‘t' the d.f. is the same as the d.f. of chi-square variate.
2. Student’s ‘t’ may be regarded as a particular case of Fisher’s ‘¥’ as explained below.

SinceX ~N(, 0%/n), E=22B _N@©,1)..() andx2=15= 3 (x,-73 /0?..(*")

=7
Q\ﬁn i=1
is independently distributed as chi-square variate with (n — 1) d.f. Hence Fisher's t is given by :
f=—b uﬁzmns. G c_ YnGew _z-p

...A:iv
N/ -1 c S -
kbt - X/ (= 1) S

and it follows Student’s t-distribution with (n - 1) d.f. (c.f. Remark 1 above.)

Now, (***) is same as Student’s ‘t’ defined in (16:1). Hence Student’s ‘" is a particular case
ommmu—.ﬁ..m;n

16-2-4. Constants of t-distribution. Since f(t) is symmetrical about the line
t = 0, all the moments of odd order about origin vanish, i.c.,
Wor 41 (about origin) =0;r=0,1, 2, ...
- Inparticular, p," (about origin) = 0 = Mean
Hence central moments coincide with moments about origin.

M2rs1=0, (r=1,2,..) . ...(164)
The moments of even order are given by :

Mp, = W', (about origin) = .—

= o ) 24

1 n 1 (n+1)/2
B(3.5) 10 (1+7)
This integral # absolutely convergent if 2r <.

_Brfinde=2 .—H 2 f(t) dt

2 - 1-
Put ~+an = £ ni-y) = 2dt=-1

n m\\ = Q TNEH\
When ﬁno\._\uagnirghns\wuo.;mnmmog\
2 ‘—o 2 H&.ﬁ .
Hzr = .—\ VA._o_V\N.Nn_\N
ﬁ_mﬁ mv 1(1/y 1
2’2
n

1
.—c ()2 -1/2 y ln+ /212 gy

- Aw(33)
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, iy ) B
AT
wAM-‘N | =ﬁ ANM'N. ﬂ+wv
Al T AP A
ok (23 \
AM.MV _
rin/2) -1 +) ﬁm..E
Nw/a-" 2
=n
ra/re/? 11y (2
1323 (3-7)
U ozl /2 -1]
=1 7 [ - /2 -2/ =]
2r-1)@r=331 251 - (164
=1 G m-9..-2) " 2
In particular
4 1___n_ ?VNV G.mma
M2 =7-G- ) "n-2' ,
1 3n >4 oer (16-
nd Pn}?Nws-eus-nxfsé ) (68
n-2\.
Hence B =5=0 and p"w"iﬂvéve.
. -2) a2 1-2/n) | _ j
moinim_.aaiﬁ?ucumeu:_M:a m@dv|w~__ﬁs—uuﬁ\=vu_lu ...(164¢
2. Changing r to (r - 1) in [14-4(b)], dividing and simplifying, we shall get n:m._,mn::.ga
relation for the moments as FI?W..H."MMHHV , NVa ... (164)

3. Moment Generating Function of t-distribution. From [16-4(b)] we observe that if
t ~ t,, then all the moments of order 2r < n exist but the moments of order 2r > n do not exist

Hence the m.g.f. of t-distribution does not exist.
Example 16-1. Express the constants y,, a and m of the distribution :

x

%Eu_\afn mmVs&o -a<x<a ...3“

in terms of its |, and B,.
Show that if x is related to a variable t by the equation :
at () |

VTS Y

then t has Student’s distribution with 2(m+1) degrees of freedom. Use the ?nxm\o%%% e.

calculate the probability that t >2 when the de.
&rees of freeq 4.
Solution. First of all, we shall determj, Jredomare 2 and aiso when & Jorati®
that total probability is unity. .

fowf (R e o 20 = L

A _zwmwu.m:& is an even fun

€ the constant Yo from the cons

ction of#

EXACT SAMPLIN
G DISTR|
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- 2 -—.H\N 5
Yo o 057 6.acos04d0 =1, (x =asin @)
/2 |
= 2y, ._M cos?+1 949 - 1.
But we have the Beta i "2 .
aintegral, 2 sin? =( 4.1
‘-.c sin?6 cosi0d0 = wA 2 4v eell)
n/2
ayy.2 2m+19 g .
Yo . Cos? +19sin0 g 49 = 1 = ayyBm+1, WV =1 [Using (1)]
. _ 1
= :+¥(2)

1
. a wA m+1. Mv
:Jnm the given probability function is symmetrical about the line x = 0, we have
asin §16-2-4, Hor1=W1%,1=0;r=0,1,2, ... [ Mean = Origin]
The moments of even order are given by :

) o . a 2\m
Hzr =y, (about origin) = ._. X flx) dx = yq % " »\N‘AH - Mlm.v. dx
-a

a
_ K2\m n/2 .
=2yo ._.o RNAT nl».v dx =2y, ._‘c (asin ) cos? 6. acos0d6,  (x=asin 0)
2r+1 ik :
=yoa¥+12 i m5~5.oo%sic&muwo=~w+~m¢+w\5+c [Using (1)]
1 1 ;
e B(r + ~§“.5n=-.lw+mv _.AE+WV )
B(m +1,3) _JAE +r +W,v _,A Wv
Tim + (3/2)} .2
In particular, p, =a2. e Ol w: L =0
{m+3/2)} Tm+ 3/2)} r(1/2) 2m+3
= a2 = (2m +3)y, ...(3)
r'5/2) Ilm + (3/2)} 34
>~ — a4 = . cge .
SO Uy =2 —— Q\mv_x ) @m+5) @m+3) (On simplification)
. _Hs _32m+3) _9-5B, . .
- B; = 1 = m+5) = m= N’Amy (On simplification) ... (4)
Equations (2), (3) and (4) express the constants Yo, a and m in terms of p, and B,.
_ at X2 _ &
*Eoeminy e = @ " 2m+ 1)+ R
) ¥ _ 2m+1) IA mv-_ =
ie., Haa” = m+D P H+= , (n=2m+2) ,
I Y P U7 '3 B P

Also dx = T: + )72 b2 (n+ mv#\L =T BT T Tn+ mv&

_ an &wl.hl 1 &w
Yo TVn [+ /)P
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Hence the p.df. of X :.m:u \\\&_N\:N
dE(t) =Yo = ,? T +“\_v
(1o 3 dt
L

n-a
Ak

.r
nmAi.v nv & \lokoAoo @
ﬁ_ A J T +
. ility different
hich is the wno_uw_u_:q
Mmbnm the result. al)=2 2 m= 0. Hence from (**), we get (for My

For2d.f,ie,n=2weget 2 T

=2 5 whent=2.
_a__ = X V3

x= AN+ »NV_\N

al of Student’s t-distribution with 7 =2(m 41 df
jal o

a 1

s P(t22) nv—xwﬁmﬂ&n_n.—s@nmﬁ ._. .:WGJV

Tn-.::.. (*), since m ua_

dx ..

LI? |h=v g M mAr WV B 1__,%\% - :\_N,V__\,w:c = N_
T2\ 3 23
For 4 d.f, ie., n =4, we get m = 1. Proceeding exactly similarly we shall obtain
1 52
P(t22)= 2”16

Examipe 16-2. If the random variables X; and X, are independent and follow chi-squit
distribution with n d.f., show that\'n (X; - X,)/2N X;X, is distributed as Student’s t wilh
df., independently of X; + X,.

Solution. Since X, and X; are independent chi-square variates each with 7 df
their joint p.d. \ is mEm: by :

ot AK +x V\N 2)-
.e 1 2, .—A:\ V 1 Q_\Nv 1

n.. qﬁz /2P
= Vn (x, - x)

;0<x1<00,0<x <00

Put u mﬂﬂﬂ V=
=X
2V x, x, 1t

R S S

= x um )\?/_mv - ) a~nm 1——— 1.

(-3)
Jacobian of transformation js : =9, %) » ‘
o) . -7 7o

2n AH +%vu\~ ,

The joint p.d.f. of U and V becomes
= = 1
) =P m) 1 Jla e L

T ¢ Ry <vé%
"/2) Dn/2) ¥ A__N/vc_,é\YlSA:A%\O\

h

-9
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Using Legender’s duplication formula, viz.,

_,xu%;::\sl :muv\ﬁa = T(n/2)= ik ‘ , we get
zr(%37)
21 T(n/2) T(n/2) V7 = 221 Py \n —‘A v»\M szﬂnﬁmﬂw\mv —.;T.ﬂln_..va_
on-1 _.A :.N:v

. 1 - 1 1 . — oo < oo,
AN uU,v)= ©/2 -1 . ; 0<v<oo, <u
NA v A 2"Tn ¢ v I 11 :uv:_ +1)/2
nB AM\MV AH +ﬂ
= WQ‘? dv = .&uAtv WNAGV\ e, Tv
where si(w) = 1 . 1 5 e < U< ... (i)
ao(33) ()

d 1 g ... (iii)

ang 82v) = e v, 0<v <0 I

() = U =Vn(X;-X)/2VX;X; and V = X, + X, are independently distributed.
() = U =Vn(X-X)/2VX;X; ~ t,, and
(i) = V =X+ X, ~Ya=5n)
Example 6-3. If I (p, q) represents the incomplete Beta function defined by :
P1(1—¢)a-1 e (*
L(p g = m«?ﬁ_~ 1-H)1dt;p>0,9>0 *
show that the distribution function F(.) of Student’s t-distribution is given by :
-1
E(t) |~||~ A v where x = AH+ .Nv
Solution. If f(.)is p.df. of Student’s t-distribution with n d.f,, then

F(t) u_wx\ce du=1 |._ Ho\:s du=1- 1 _H.. T . :Nvé::b du

H .. A&.¥v
v5(3.5)
u? ||H| _ -2z
Put 1+ =2 = u=n A%v
- 1/2
i T R 2 =
Substituting in (**), we get : .
0
Ft) =1- |||.~H|= % ? . |v , zr+ :\Nﬁ <N~4Nuw\~ 1- NVL\NV dz
¥n(3.3) ’
0
uw++=—7+mv_.~?§ T(1-2zy1/24z
25(3.3)
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=1- 1 n)*0 ) Im:nmmon=v~\=~v:n th i

2 mAl\ lv standard normal distripygior. - . " 2Tiance of t-distribution is greater than that of

2’2 1 1bution and for 4 53 o : .
2 on the top than the normal "> 4,B, >3 and thus tdistribution is more flat

1, (n Hv T = AH +5 alcurve. In fact, for small , we have

-1-31(52)

where I, (p, q) is defined in () g pem ean deviation
mxminwo 16-4. Show that for t-distribution with n d.f., m about ean

given by : Jn T[n-172] /N=T(®/2)
Solution. E(t)=0.

: 1 _,. Lt 1dt
M.D. (about mean) L lelf (#)dt= —

T

" g __n _.. dy__, P
uﬁ_mm‘wv rA:mv?_E m@mv o(l +3)" 72 Ax _\v
B[ o) S

2
(1) a8 5)

16-2:5. Limiting Form of t-distribution. As n — , the p.d f. of t-distribution wik

nSN
~-(n+1)/2 1
xcu||H.||?+mv - |m~l¢|:.mva|M-v\18A~A8

ol

. 1 A TmeD/2 1 1 (n)_ 1
Proot. lim —— T = T Y ,;Auv V2r
n- «mmAM.Mv n-=

[--T/2) = vrand lim mﬂ,.nﬁ% =1t (c.f Remark to § 168)]

1

-3 1
T [(+8)] P pim (1+5)

n—oo n—ree

2'2
= 'Hl 2 — oo
«mmx_qu\Nv\ <t<oo
Hence for large d.f. t-

&mﬂccm.oz tends to standard R
16-2.6. Graph of t- normal distributio

distribution. The p-d.f. of t-distribution with n df.is:
fin=c (14 By D"
‘ n

Since f (- t) =f(t), the probability curve ) . _o.pel
increases, f(t) decreases rapidly ang te Is symmetrical about the line

nds to zer, o _axis is &
asymptote tqhe curve. We have shown that © as t — o, so that t-a

n
He=yTgm>2; g,=300-2)

n-3) >4

1m0 <t<oo

s..NJ gmgmcmgmnn“v.ﬁw_ﬂ.»v_N?VNTA_N_N?v‘ NIZAO\:
-di ; ;
standard norma] &mﬂvﬂ nwo“»%aﬂ _”MMM a greater probability (area) than the tails of

d.f), t-distribut: T we have also seen [§ 16-2-
@f) t-distribution tends to standard normal distribution. SRR S
;ﬁ (0
Normal curve
n=7
n=3
— . _ _ | . o
—4 -3 -2 -1 t=0 +1 +2 +3 +4 e >

Fig. 161 :Graph of t-distribution

. _GNN Critical Values of t. The critical (or significant) values of t at level of

significance a.and d.f. v for two-tailed test are given by the equation :
PlIt]>t(o)]=c

...(16:5)
= PlItISt(o)=1-0

...(16:5qa)

X

Rejection
region (a/2)

Acceptance
region (1-a)

~l t=0 fy
Fig. 16:2 : Critical values of t-distribution

The values t,(c) have been tabulated in Fisher and Yates’ Tables, for different
values of a and v and are given in Table I at the end of the chapter.
Since t-distribution is symmetric about t = 0, we get from (16-5)
P>t (@] +P[t<-t,()]=00 = 2P[t>t (0)]=0

=  Pit>t,(0)]=0/2 s P>t Qo)) =o ...(16-5b)

t, (20) (from the Tables at the end of the chapter) gives the significant value of

for a single-tail test [Right-tail or Left-tail-since the distribution is symmetrical], at
level of significance a.and v d.f.

Hence the significant values of t at level of significance ‘o’ for a single-tailed test can be
obtained from those of two-tailed test by looking the values at level of significance 2a.
For example,
tg (0-05) for single-tail test =15 (0-10) for two-tail test =1-86
t,5(0-01) for single-tail test = t5 (0-02) for two-tail test = 2.60.
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16-3. APPLICATIONS OF t-

g The #-distribution has a W1
are enumerated below. _
(i) To test if the sample mean (x)

tion mean :
value p of the ﬁov:_mn « of the difference between two sample meang,

il ignifican .
(#) To test the signi bserved sample correlation coeffj;
(ifi) To test the significance of mH: ob: -
sample regression coefficient. "
(iv) To test the significance of observed vmn:m. il ,
I the following sections we will discuss these applications in detail, one by one,

*/ 163.1. tTest for Single Mean. Suppose we want to test:
of size n has been drawn from 4 nony

DISTRIBUTION o -
de number of applications 1n Statistics, some of -

differs significantly from the 362:2,5_

correlation coefficient,

(i) if a random sample x; (i=1,2, .-/ n)
population with a specified mean, say Ho , OF .
(ii) if the sample mean differs significantly from the hypothetical value Ho of
population mean.
Under the null hypothesis, Hy:
(i) The sample has been drawn from the population with mean p, or
(ii) there is no significant difference between the sample mean X and the population mem A

T-u
S/

=]

the statistic t= ’ (164

2

where X =
n

i=

n n
1 -
Lx and S2=—— T (x,-% ), ..[164
n-1 =1

follows Student’s t-distribution with (n-1)d.f.

of m.<<m.ﬂo€ compare the calculated value of ¢ with the tabulated value at certain ke
nm_n%“mwnm_:mm_v :n nM_nEmz,.a |t 1> tabulated ¢, null hypothesis is rejected andl
Remarks 1 M abulated v Ho may be accepted at the level of significance adopte
formula (16-60) .nm9:¢8§t:~ﬁ.5= of S for numerical problems. Ifx comes out in integers, ¥
€ conveniently used for computing S2. However, if M comes in fractie

then the formula (16-6a) for i
computing 2 is very 5 t
case, step deviation method, given UEME __“ szan“: Mu .m_z:ﬁm "l fs ot recommended 3
, eful.

If we take d; = X;— A, where A is any m_.Eme number, th
, then
s? uIFTl@ mVN_ ! ﬁ ’
L - =1 2 _ (Zx)? ‘
n-1 n-1 L2 - :V .:am&
1 — 2
=—— [ zaz - @]
— 75| -since variance jg ind 3 |
ependent of igi 168
Moot . y change of origin.
u, (6¥
2. We know, the sample Variance: 2.1 S -3
. g _ e T s e men s
Hence f cblems. :1...
Or numerical problems, the test statigy;, ( A
i (166 i
peItw g Onusing [166(c) becomes
S/ #,\/,.:z b, 164

EXACT SAMPLING DISTRIBUTIONS-II (t, F AND z DISTRIBUTIONS) 16-13

?nmw»w“. Assumption for Student’s t-test, The following assumptions are made in the Student’s

(i) The parent population from which the sample is drawn is normal.

(i) The sample observations are independent, i.e., the sample is random.
(#7) The population standard deviation o is unknown.

Example 16-5. A machinist is making engine parts with axle diameters of 0-700 inch. A
random sample of 10 parts shows a mean diameter of 0-742 inch with a standard deviation of
0-040 inch. Compute the statistic you would use to test whether the work is meeting the
specifications. Also state how you would proceed further.

Solution. Here we are given :

M =0-700 inche, X=0.742inche, s=0-040inche and n =10
Null Hypothesis, Hy : p = 0-700, i.e., the product is conforming to specifications.
Alternative Hypothesis, H, : p # 0-700

=X-K _ -b \(::..:

Test Statistic. Under H,, the test statistic is : f = =
= VS2/u  st/(mn-1)
f= 9 (0742 - 0-700) _ 3.15

0-040 b

How to proceed further. Here the test statistic ‘t’ follows Student’s t-distribution
with 10 -1 = 9 d.f. We will now compare this calculated value with the tabulated
value of t for 9 d.f. and at certain level of significance, say 5%. Let this tabulated value
be denoted by ¢,.

(1) If calculated ‘t’, viz., 3-15 > t;, we say that the value of ¢ is significant. This
implies that x differs significantly from p and Hj is rejected at this level of significance
and we conclude that the product is not meeting the specifications.

(11) If calculated t < t;, we say that the value of t is not significant, i.c., there is no
significant difference between x and p. In other words, the deviation ( x-p) is just due
to fluctuations of sampling and null hypothesis H, may be retained at 5% level of
significance, i.e., we may take the product conforming to specifications.

Example 16-6. The mean weekly sales of soap bars in departmental stores was 146-3 bars
per store. After an advertising canipaign the mean weekly sales in 22 stores for a typical weck
increased to 153-7 and showed a standard deviation of 17:2. Was the advertising campaign
successful ?

Solution. We are given: n=22,x=1537,5 =17-2.
Null Hypothesis. The advertising campaign is not successful, i.e., Hy: u = 146-3

Alternative Hypothesis, H, : p > 146-3 (Right-tail).

Test Statistic. Under Hy, the test statisticis: t = i V ~ by 1=ty
153-7-146:3 _ 7-4xV21

t = 5 =903
V(17:2)/21 :

Conclusion. Tabulated value of t for 21 d.f. at 5% level of significance for single-
tailed test is 1.72. Since calculated value is much greater than the tabulated value, it is
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as definitely 0 boys had the following L.Q.s : 70, 120, 1
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i Lo
e mean LQ- values of samples of 10 8_%%

consistent with the assumptioy, faq ss

g
16-14
highly significant
advertising campaign w
mple 16-7. A randont sample :
88 mmwu.m\ @m\ 107, 100. Do these m.&n vwm@w "
S@ ? Find a reasonable range in which m e
Solution. Null ypothesis, Ho: ”\M\N data
L1.Q. of 100 in the population, 1. u=100.
Alternative hypothesis, Hy : 1# 100. -
»' -
TSP €5 U S
Test Statistic. Under Hy, the test statistic 18 t T n-1)
sample values of 1.Q.’s.

R SAMPLE MEAN AND S.D.

at z:

where ¥ and S? are to be computed from the

TABLE 16-1: CALCULATIONS FOI

| x (x-%) = .j
| ~ = 739.84
| k- 8 519.84
2 7% 163-84
, 101 39 e
M - -92 i
e 142 20164
95 -22 4-84
h 98 08 0-64
| s 9.8 96-04
| 100 2.8 7-84
[ Total 972 1833-60
- =972 _ -
Here n=10, ¥=33=972 and 52=18860_y3
. p1=1972-101_ 28 g
V20373/10 035 4514 = 062

Tabulated ty.5 for (10 - 1), ie, 9d.f. for two-tailed test is 2-262

Conclusion. Since calculated t is Jegs than tabulated ¢, . for 9 d f., Ho may ¢
ed fy.o5 S 110

accepted at 5% level of significance ma
. ; and i
with the assumption of mean 1.Qy of I ”mﬁm vwowﬂn_:nm that the data are consistett
ation.

The 95% confidence limits within

boys will lie are given by : which the mean 1.Q. values of samples of 10
Xtty05 S Nn= 972%2260x 4514 = g7, , 65
Hence the required 95%, confidence interva ﬁmmu 107-41 and 86-99
is [86.99

Remark. Aliter for computing x and
hat X comes in fractions and®
and time cons
* 8 Biven below.

’ 2 &2,
such the computation of (x - X)2 s quite lap, » Here v, See t
Orloyg

method of step deviations to compute ¥ ang g2

uming. In this case we U o

EXACT SAMPLING DISTRIBUTIONS-II (t, F AND z DISTRIBUTIONS) 1 m.a 5
x d=x-90 d? _
70 ~20 400
120 30 900
110 20 400
101 11 121
88 =52 4
83 =7 49
95 5 25
98 8 64
107 4 289
100 10 100
Total Si=72 3d? =2,352
Here d =x-A, where A = 90. Therefore
=A+13d=90+72_ -1 &dy |w~ Llﬁn 3.7
RI>+=M\I8+.~clcv..~m=.um~|:|lwﬁ§~l = “—lw 2352 10 203-73.

Example 16-8. The heights of 10 males of a given locality are found to be 70, 67, 62, 68,
61, 68, 70, 64, 64, 66 inches. Is it reasonable to believe that the average height is greater than
64 inches ? Test at 5% significance level assuming that for 9 degrees of freedom P (t > 1-83) =

0-05.

Solution. Null Hypothesis, Hy : B = 64 inches
Alternative Hypothesis, H; : B > 64 inches

TABLE 16-2 : CALCULATIONS FOR SAMPLE MEAN AND S.D.

x 70 67 62 68 61 68 70 64 64 66 | Total
660
x-x 4 1 -4 2 -5 2 4 =2 =2 0 [\
— 1
(x-%)2| 16 1 16 4 25 4 16 4 4 0 90 |
Z_ 2x _660 _ .. —_1 )2 -0 _
X=4"=95 =66 S'=,7Y(x-x)=%=10

Test Statistic. Under H), the test statistic is :

X-p _66-64 _,

t = — = =
¥S$2/n V10/10

which follows Student’s t-distribution with 10-1=94d.f.
Tabulated value of ¢ for 9d.f. at 5% level of significance for single (right) tail-test
is 1-833. (This is the value ty.1o for 9 d.f. in the two-tailed tables given at the end of the

chapter.)

Conclusion. Since calculated value of t is greater than the tabulated value, it is
significant. Hence H, is rejected at 5% level of significance and we conclude that the
average height is greater than 60 inches.

Example 16-9. A random sample of 16 values from a normal population showed a niean
of 41-5 inches and the sum of squares of deviations from this mean equal to 135 square inches.
Show that the assumption of a mean of 43-5 inches for the population is not reasonable. Obtain
95 per cent and 99 per cent fiducial limits for the sante.



Cary

STy
tatistical tables : Y

16-16

qation fromt S
You may use the foll

p=0.05,t=2131

16, ¥ =415 inches and X(x-X)2=

Solution. We are given =257 oo = S=3
ﬁu\_MMATl =715
S2=

owing inforn

135 5q. ing
|

. _ 43.5 inches, ie., the data are consisten, J
= 435 it

is, Ho: I ., the cal
Zﬂmoﬂﬁwﬂrﬂhnﬁmw height in the population 15 43-5 inches.
assum] :
Alternative Hypothesis, Hi : 1 # 435 inches. )
gt t _ X — T— -
Test Statistic. Under H,, the test statistic 1S ¢ t = S tor- )

Ly olas-351 8 o667

o - 3 \ 4

Here number of degrees of freedom is (16 — 1) = 15.

We are given : foqs for 15 df =2131 and fo0 for 15d.f. = 2:947.

Conclusion. Since calculated | t | is greater than 2:131, H.Ec hypothesis sty
at 5% level of significance and we conclude that the assumption of mean of 435y
for the population is not reasonable. |

Remark. Since calculated | t | is less than 2:947, null hypothesis (i = 43-5) may —xﬁ
at 1% level of significance.

95% fiducial limits for |1 : (d.f. = 15)

S 3

Tt ity x = =415£2131 x5 =415%1598 = 39902 < p <4308
n
99% fiducial limits for i : (4,f = 15)
- s 3
il xE =41542947x7=4371and 3929 = 39-29 < p < 4371

7 16-3.2. t-Test for Difference of Means. S i
. ! S. Suppose we want to testifl
independent samples x, (i=1,2, ..., ;) and Y (1=1,2, ..., n,) of sizes n; and iyl

- .
been drawn from two normal populations with means Kx and py respectively.

Under the null hypothesis (Hy) that the samples have been drawn from the il

Nuésmmgm SN.N? means :x h:& t. z:& naer 4 A:uﬂxtln m v
~ - 2 Y u &N MNNm SUN 1 ] i
. A v ol assu ~%u&=v= N\NQM NN:\ Nu ( ) |

¢ = Q-SLF-EV. (i

where x = hl m x;, y=1 2 |
“m LY,

and S = ny + FILM (x;~x)2 +w,.€7,m vw_ L

is an unbiased estimate of the comm ot

... . o .
distribution with (1, + n, - 2) df. "' Population Variance g2, follows Stud

EXACT SAMPLING DISTRIBUTIONS-I (1, F AND z DISTRIBUTIONS)

(n, - 1) d.f. respectively, by the additive property of chi-square distribution, x? defined
in (**) is a x2-variate with (1, - 1) + (n, - 1), i.e., n; + n, —2 d.f. Further, since sample
' mean and sample variance are independently distributed, § and x? are independent
. random variables. Hence Fisher’s # statistic is given by

16-17

Proof. Distribution of t defined in (16.7).
g - E-9)-EG-)
VVE-7)
But  E(x-¥) = E(X)-E®y)=px-py
V(x-y) = V(% Y IGN Q<~| L X
F-9) =V@+ V()= K+ E =02 1+ 1)

~ N(,1)

(By assumption)

ny n,
[The covariance term vanishes since samples are independent.]
e N HAHI let.xltiv)\ N(,1) ..

o2 AF + ...nlvv
n o on,

Let 2 ":..—l s — < -y
2 =L % -9 T -9

2

= —M Q_imvN\aN_ + H_M in%\q“_ = Mol | nasy’ (™)
! J

o? o?

Since n,5x2/62 and n,5v2/6? are independent x2-variates with (1; — 1) and

&

2
_ X
ny+n,—-2

t =

X

_ (=) - (x=1y) 1
- _ 172
e O A

=GV -Wxol) pere 52= %W? -¥P+ 3, -77]
YRy
n o ony

and it follows Student’s t-distribution with (ny + ny — 2) d.f. (c.f. Remark 1,

§16-2:3).
Remarks 1. S?, defined in (16:7a) is an unbiased estimate of the common population

variance o2, since
1

1 T)2 -2l — = 2 2
E(S?) = +=u|NmHMAk~|kv + ~MQ~ ¥) u S mam-2 mT:. 1) Sx* +(na— 1Sy _
1 2 - 2l = 1 — 2 2l =52
u=_+=~-~?:-: ESA + (- DESA] = ;= ltn-D e + -1 o?] =0
2. An important deduction which is of much practical utility is discussed below :
ant to test if : (@) two independent samples x, (i =1, 2, ..., n}), and

Suppose we W
yiGi=12 .. 1y), h
sample means x and y differ significantly or not.

ave been drawn from the populations with same means, or (b) the two




FUNDAMEITTZ A ST%.
ve been drawn from the PoPulatioy

W 16-19
les B2 7 iemificantly, the seae. Ui y BUTIONS)
16-18 . H, that @) samp'e o not differ significantly, © Statistic. 'EXACT SAMPLING DISTRIBUTIONS-II (t, F AND z DISTRI
null hypothesis 0 < 4nd y \ iet B
st mple me? Diet A D
., Hx = by, o7 (b) the 50 = iy, under Hol “f 7 y-y”?
e e x-y b=t 4 x x-x (x-XR y y-y 196
CTTEN , 25 -3 9 e 2 16
s (:— + ;,;) Student’s t-distribution with (n, + =24 s :;g ; 12 - - ) 068
1
in (167a), follows _ Here we make the folloy,; 34 6 36 10 -20 589
here symbols are defined difference of means " 24 -4 16 47 117 1
W.
jon of t-test for 14 -14 19 31 66
3. On the assumpfw:s f’f have been drawn are normally distry, 32 4 16 20 10 1 o
fundamental assumPﬂO -fmm which the samples e, G2 = 0y = 2 (sa ) 24 -4 16 30 g 4
(i) Parent populations, are equal and unknown, 1.€ Ox== Gy V) Wheny o H 5 % o e
. 1 S Jo
(ii) The population variance ¢t of each other. 35 7 49 18 —_13 81
D random and independen i . : 25 -3 9 gé & 25
(#ii) The two samples are ne the equality of means it is theoretlcally des 5 1
ing t-test for testing the equaliy o' B § 16:6:1) If the variapg,, " 29
before applying lying F-test. ( es dy, s i
t:e\:u:my of population variances by'a}:,F;&’d and in that case Behren’s ‘d’-test basg 22 -
K in . . g - TR
come ot 1o be ey tﬁiﬁiﬁ?ﬁlismems, however, the assumptions (i) and (i) yy 2x=3% Bx-¥)=0 F(-3'=380| 3y-450 Tr-7)-0 Z(y77-1410
fiducial intervals is - ror
Snted; t us now consiq, $=336_ 0 —_450 _ 2_ 1 -2+ 3I(y-5)? | =716
Y4 "5.33. Paired Hteat for Difirence of hll_o:?;ylieand o Sonsider t;x;s § TR B =09 L [5G35 -]
¢ y ; ual, i.e., ny=ny = b . . d n1=12,n,=15
w}:ep g)epﬂ:\;:ﬁltplﬁflzﬂiz z:gle observations are paired together, ie., the and m 2
not

ions (x;, ¥;), (i =1, 2, ..., n) corresponds to the same (ith) sample unit; Under null hypothesis (1—1_0) 3
;l::s;:;t;:rt\: test 1yf' the sample means differ significantly or not.

xX-y
t=—-—— 4 -
i f a particular drug, say "y 4y
le, suppose we want to test the efficacy o ap y, 11
mdu?;;:gg Let x,PaP;\d ¥i(i=1,2,...,n)be the readings, in hour§ of sleep, on | s? ("—| + "2)
individual, before and after the drug is given respectively. Here Instead of a ) 2830 5
the difference of the means test discussed in § 1632, we apply the paired t-testgy . b= — 2830 = 0-609
below. /71‘6 ( 1,1 ) v
Here we consider the increments, d; = x, -y, (i =1, 2,...,n). 12715

Under the null hypothesis, H, that increments are

due toﬂuctuati(ms ofsa’"p[ing’u Tabulated to.05 fOI' (12 +15- 2) =25 d.f. is 206.
the drug is not responsible for these increments, the stat

L d Conclusion. Since calculated | ¢
1stic : t=

I is less than tabulated t, Hy may be accepted at
=S N ---ﬂf% level of significance and we may conclude that the two diets do not differ
- Lo ignificantly as regards their effect on increase in weight.
where d= n iz:] di and 2 e §1 (di-d)? w Remark. Here X and ¥ come out to be integral values and hence the direct method of
follows Student’s t-distribution with (n-1)dy °MPputing ¥(x —x )2 and ¥(y ~¥ )?is used. In case > and (or) ¥ comes out to be fractional, then
5 gxample 16-10. Beloy are given the ga
and B,

in in weights (in k ¢s.) of pigs fed on two dihe step deviation method is recommended for computation of ¥(x-x )2and Iy-y)2

Example 16.11. Samples of two types of electric light bulbs were tested for length of life
Gain in weight 1d following data were obtained :

Diet A :25,32,30, 34 24,14,32, 24,39, 3 35,25 Typel Type I1

Diet B : 44, 34,22,10, 47 3 o Sample No. n =8 ny =7
oSt i the wo diets diffy g "7 %0130.32,35, 18 57 35 29 5 | - ’
SOIl’lﬂon Null " % ngnlﬁcantly as regards l‘heir w‘ect on increase in n’aghf_ Sample Mea)"lS Xy = 1,234 hrs. ;2 =1,036 hrs.

mean increase in e I{f ;:‘hefm, Mo b= py, Le., there js significant difference betwl]  Sample S.D.’s 51 =36 hrs. $2 =40 hrs.
1 € to diets 4 g0 B. &n Is the difference in the means sufficient to warrans that type | is Superior to type I1
Alternative hypothesis, Hypy e Ky (two-taj) d4) garding length of life 7 P
ed), |

- = 7 ‘
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MATHEMATICAL ¢,
A
16-21

16.20 H . p,x = pY’ i,L'.I
('SiSl 0 : t . - _
Solution. Null Hypo!h e type] ;s superior to type Il X =A+ % =68 +0 =68 y =B +§‘,5—) =66 + %g SIS
are indentical. : ux > By ' e . — 2 _ S D)?
Alfemahvf Hy‘patdhcs’;} Htlhe”ltest StaUSth ® ¢ and }:(x -X )2 =3d? *(L’E)— and Z(y - y)z =Y D2 - LE)_
jstic. Under 7or 77 _ =Hha,
TestStahH xl—.l': ~ '"14"2‘ =60-0=60 =186—%4"=153'6
t
1,1 2 —__ 1 = = 1 -
$? (E * "2) 5] § =i Ze =32+ 3y - )2 = (60 + 1536) = 15-2571
1__[stn- )P+ 22 ¢ = 68 - 67-8 _ 02 — 0099
where §* =pwng-2 1 [8x(36)2+7x(40)2] V5555 (1. 1 1/2—\/—_
1 (msi2+ mst) = 13 =l 152571 (g + ﬁ) 15:2571 x 0-2667
= 1
Tm +"22;4_ 1036 = —’—-—ng‘“_ = 9-39 Tabulated ty5 for 14 d.f. for single-tail test is 1-76.
t — 1659-08 x 02679 Conclusion. Since calculated t is much less than 1-76, it is not at all significant at
165:)-08 (l+ 7) 5% levels of significance. Hence null hypothesis may be retained at 5% level of
s o, level of significance for right (Single). significance and we conclude that the data are inconsistent with the suggestion that
at5% lev the sailors are on the average taller than soldiers.

Tabulated value of ¢ for 13 d.f. for 13 df. from two-tail tables given at the o

test is 1-77. [This is the value of tg.10 10!
the chapter.] culated
Conclusion. Since calculate of élec
significant and H is rejected. Hence the two types
Further, since ¥, is much greater than %
to type II. '
Example 16-12. The heigi
69, 71, and 72. Those of 10 randomly ¢
73. Discuss, the light that these data throw on the
taller than soldiers. .
Solution. If the heights of sailors and soldiers be re

we conclude tha

and Y respectively then the Null Hypotlesis is, Hy : jx = Hy, i.e., the sailors are nolg

average taller than the soldiers.
Alternative Hypothesis, H, : jix > py (Right-tailed).

hts of six randomly choscn sailors are (in inches) : 63 ¢
hosen soldiers are 61, 62, 65, 66, 69, 69, 70,713
suggestion that sailors are on theq

| Example 16-13. To test the claim that the resistance of electric wire can be reduced by at
least 0-05 ohm by alloying, 25 values obtained for each alloyed wire and standard wire

‘¢’ is much greater than tabulated °r, i“'“'guroduced the following results :

tric bulbs differ signifig
Lis defini b Mean Standard deviation
ttype Lis definitely gy, Alloyed wire 0-083 ohm 0-003 ohm
Standard wire 0-136 ohm 0-002 ohm

Test at 5% level whether or not the claim is substantiated.
Solution. Null Hypothesis Hy : p; — u, > 0-05, [i.e., the claim is substantiated]
Alternative Hypothesis Hy : p; — p, < 0-05 (Left-tailed, test)

presente d by the vari Test Statistic. Under H,, the test statistic is :

t= (21‘?2)—(111—112) ~ N(O, l)

s(L41)
noon,

isticis: f= x-y ~ - m15) + 15,2 25 x (0-003)2 + 25 x (0-002)2 0. .
Under Hy, the test statisticis: t= T t“]+ -2 = by where S2= —,:11—_“;23—5 = ( 25)+;5 _; (0.002) =2 000222; 00001 0-0000067

2(L 1 . 0-083 — 0-136) — 0- .

§ (nl * nz) e[S { 1% -0% . ‘0902)831 =-145.07

| Soldies \/{ 0-0000067 (% + %)]
Y I'D =Y-B | D

| =Y-66 | .  The (critical) tabulated value of t for 48 d.f., at 5% level of significance for left-
61 _5 jitailed test is — 1-645.
62 —4 Il Conclusion. Since calculated value of ¢ is much less than tabulated value of ¢, it
65 -1 Ifalls in the rejection region. We, therefore, reject the null hypothesis and conclude that
66 0 g‘the claim is not substantiated.
69 1 . . . . . ¥
€ f‘;' ﬂxthefjlf)?oﬂplie 16-14. Ablci’r;mn slmm{us administered to each of the 12 patients resulted in

K & g increase of blood pressure :
;? 4 4 528 -1,30-21,5 0, 4and 6
7 '(5’ %  "Can it be concluded that the stimulus will, in general, be accompanied by an increase in
>’ #blood pressure ? ) ’
&) 7 | LaOoRP
To 1% :
— otal 18 -




in blood pressure, le,

‘h’
%y

ts . 16-23
16-22 .ven the il en no significant diffe R | EXACT SAMPLING DISTRIBUTIONS-!I (1, F AND z DISTRIBUTIONS) £
ution. Here we aré 81 ie., there 15 the drug. In other Wop & . f
Sol 1y = s d after N[ rmia Food B -
thesis, Ho: PX." 4 fore an ling) and not due ¢ the N | ood - .
e Hypdt;ngs of the Pa"“;] sctuations of-"ampul resultsin an ;. N X d=X-50 | g2 Y D=Y-52 I | ]
ressure reas i l ance ( 3 sh'm us H\(}ea - T 0
'Pl;\crements are just by o Hy: px <Py 6 the } 49 | -1 1 52 0 T &
Alternative Hypothesis, Fi - ’ 53 3 9 55 g 0
s pm e~ by 51 1 1 52
pressure. H,, the test statistic 15 : =5 Y 52 2 4 53 ! 1
Test Statistic. Under Ho, 5 0 ? 47 3 9 50 -2 ’
3 o 2 1 ‘3 50 0 0 54 2 4
5 2 8 -1 1 25 0 16 3 | 54 2 4
d 9 0 4 I . 52 2 4
s 4 6 1 cap] G 53 3 9 53 1 . S
: 258 and & =_Ll.[):d‘— " ]=TT[185‘ 127]%% [ Total 7 37 - | 7 =
d=-3d=2 n- T T
n

4 _258xV12 _ 258x3464 _ 5 g9
“s/n o532 : _
Tabulated tyqs for 11 d.f. for single-tail test is 1{-8'1(:,9[:;:5 ::r ]e value of fomh
d.f. in the table for two-tail test given at the end o pter.

1 i Hy is rejected at 5% Jeve] of signg
Conclusion. Since calculated t > to4.3, Ho
Henc: ':ve conclude that the stimulus will, in general, be accompanied by N
in blood pressure.

Example 16-15. In a certain iment to compare tuo tvpes of animal Frods
the following results of increase in weights were observed in animals

"X
t

and

s2

Animal number 1 2 3 4 5 6
Increase 52 47 50
weight in Ib 52 53 50 54

@) Assuming that the tux sumples‘
B is better than food A >

50 +

Tabulated tq s for 8+8-2)
Conclusion. The

less than -1.76, Hy is rejected at 5%
foods A and B

7 =50875 y=52+%=52875

}

- - (zDy
La-%p =y G -9 =xp2 -5
49 49
=37 —F =23 - i
=30-875 = 16-875

=rems [Ee- 5P v -y 7]
(p—— 1.3 A

Vs (52)

50-875 - 52.875 _

Vhaep)

=14 d/f. for one-tail test is 1-76.
critical region for the left-tail test is t <

-217

differ significantly as regards th

Further, since y > ¥, food B is superior to food A.
Sont when the same sot of eight animals pere used in both (i1) If the same set of animals is used in both the cases,
denmzd ubc;n.XNa::\Ifi Ii resh:lsech f:z l If me increase in weights due to foods Anl :Se‘ ir:;t lx;\dependem but they are paired together and we
ifference i ; Y, then ‘M SHy, e, th 1S no i d
cem.mcmase‘“welghtsduetodms,q and B. ' == 3 Under Ho:px =y, the statisticis : f = =~ Koy
Alternatipe Hypothesis, Hyipy < Hy (Left-ta: | — _— — %_S-/f','w‘-w —
) If the two sampjes of animaje tailed). | X I 52 a7 s 52
apply t-test f°rc"ffel'21'\ee of meang to test 1 ed to be independent, thﬂ! [ PO r' T T o U -
Test Statistic Under Hy:py, -, the tees N | B L N T R,
: . N, .= 7 —
’ t criterion i N | d=x-y | =3 22 -1 -1 -3 -4 -2
t= X~y 4 ‘\N D I
2( 1 men o -— — —_———
s (~+L) r~2
™ om,

14 (30875 + 16.875) = 3.41

-1:76. Since calculated ¢ is
level of significance. Hence we conclude that the

eir effect on increase in weight.

then the readings X and Y
apply the paired ¢-test for

Total

16

44
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256\ _ 1.
16-24 @‘l’]=1(44‘75')‘1714
1 . __L_ 2112 -n 7
<_2d_-16_ 5 and $t=u1
=W 2__-432
1dl 2 — = 0460
Lt =T57m "N/ tail test is 1:90-
_1)=7df foron® 4 is significant at 5%
il oe % 1 ) the (iserved value of t(: f::); l}j ° level of
: SO . ior .

Conclusion. Her:nf:‘lude that food B is SuPe". dent estimates of q :
significance and W © boratories carry out mdeP"". taken from each batp;"hcwﬂ'

Example 16-16. T;ngulc{:'d oby a certain firm. A san;;;’::) :’51 o date is obtaired ch, hay

: o medzlcmeq};nt to the two laboratorics. The fo &

and the separate halves s 10

No. of samples _— 0.6

Mean value of the difference of estima . 5

. ns) 0
Sum of the squares of the differences (from their mea

Is the difference significant ? (Value of tat 5% level for 9 d.f. is 2:262.)

Solution. Let d stand for the difference between the estimates of the chep:
between the two halves of each batch, and d the mean value of the difference
estimates. In usual notations, we are given :

n =10, d=06, (d-d)2=20
Null hypothesis, Hy: 1 = 1, i.e., the difference is insignificant.
Alternative hypothesis, Hy : 1 # |1,

Test Statistic. Under Hy, the test statisticis: ¢t = d

~ l -
VSI/n 10-1
where S2= LZ(d . 2)2 =20 _ 2.22 . p=__06 __06 _.
n-1 : Vi22/10 0471 1274

level for 9.d.f, is 2.262 (given).
Conclusion. Since calculated

L value of ¢ js less th b i i
significant. Hence, we an tabulated value of , it isn
{ f'ls not significant. Tay accept the null hypo

thesis and conclude that the different
) 7 16-3.4. t-test for Testi i
Y it il T ng the SIgnlﬁcance of

The tabulated value of tat 5%

=0,ie., Population corr’ Ith e'n ot cioper S, thest undn

e pe elation coefficient is zero, the statisit

o s | \(\(1 =5 (n-2) L6l
ent’s t-distribution with ‘

If the valy, . o

e of t comes out
to be sipnif:
onclude that P%0 i Bnificant, yye rej
e, s Nt eject ignifi
R tlf Fcomes out to pe Sign.e., T35 significang éf co}r{roeall;ttihe l.evte}l1 of S‘g‘r:ll:é?:
at variableg - Hicant, on 0 the po
may be regarded o “ncorrelated ir:’ t;lih’-ly be accepted and l;,ep conclud
€ Population,

f (cf R
adopted and ¢ g Skt § 16-4).

N\ »

16-25
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1l
i tions from a nornis
Example 16-17. (a) A random sample of 27 pairs of observa . thi

i sionifi corr
population gave a correlation coefficient of 0-6. Is this sig nificant of
population ? ) ) bi-variate n
(b) Find the least value of r in a sample of 18 pairs of observations front a

population, significant at 5% level of significance. ) erved sample
Solution. (a) We set up the null hypothesis, Ho : p = 0, "Ie't’io:?e obs

correlation coefficient is 1ot significant of any correlation in the population.

ormial

ry(n-2 . t_0-6\127—2 - 3 _ 375
UnderHo: t="g= ~tu-2 =G _caey  Joes

Tabulated tg.5 for (27 — 2) = 25 d.f. is 2-06. ok a ien o
Conclusion. Since calculated ¢ is much greater than the tabulated ¢, 1tlls dselgtli\llif‘ltci‘;‘ -
and hence H, is discredited at 5% level of significance. Thus we conclu
variables are correlated in the population. i
(b) Here n = 18. From the tables tg.g5 for (18 — 2) = 16 d.f. is 2-12.
UnderHy:p=0, f= '\I__“(l":r;")~ tn-2= e

In order that the calculated value of t is significant at 5% level of significance, we
should have

r—(——2“"‘2|>t r V16 l>2-12

Na-m 00 Na-7

= 167> (212)%(1-12) or 20493:2>4493 or 12 > 223 — 02192
Hence | rl >0-4682.

Example 16-18. A cocfficient of correlation of 0-2 is derived SJrom a random samplc of
625 pairs of observations. (i) Is this value of r significant ? (ii) What are the 95% and 99 %
confidence limits to the correlation coefficient in the population ?

Solution. Under the null hypothesis Hq : p = 0, i.e., the value of r = 0-2 is not significant,

o =
the test statistic is : t = = tho
= 02xV(625-2) _ 5.09

V@ -004)

Since d.f. = 625 — 2 = 623, the significant values of t are same as in the case of
normal distribution, viz., to.os = 196 and t.¢; = 2-58. Since calculated t is much greater
than these values; it is highly significant. Hence H, : P = 0is rejected and we conclude
that the sample correlation is significant of correlation in the population.

95% Confidence Linits for p (population correlation cocfficient) are :

r+£1:96SE.(r) = r+1.96 (1-r2)/\Vn [Since n large]

o = 02+ (196 % 0-96/+/ 625) = 0-2 + 0-075 = (0-125, 0.
P /99% Confidence Limits for p are : ( S

t

0-2+2:58 x 0-0384 = 0-2 +0-099 = (0-101, 0-299)
16-3-5. t-test for Testing the Si nificance of 3
Coefficient. Here the i g ampie (o sorved Regression

) sample (x;, vy , (i = N
variat 1 lati y ich ir Vi), (i X, 2; 0, n) has
onXisfB &

ression coefficient of y




My
16-28 %)
dr__[1+7=
/
L ar =2 Ja/ﬂ( L i
dr n-
377
gt =Nm-2 X a-r
= — oo tO °°-
/ rr.‘mﬂes 5 t
_1to1, from () d it transforms to
As rmnges from £ % is given b}’ (16'12) et Mn3/2 df
When p =0, thep'd'j: o ,, (Il"‘)/z)(l - r‘)
et
1 n=2
B 2"; 2 1
N
_ _/L.,——;— 2 )(n—l)/7 IF%'
mn(zl%) (“n-z
1 ,—o00 <t <oo
NN S0 g -2 072
-2 PrL I
V(n-z)B(zl,-'!T) (l+n—2

which is the p.df. of t-distribution with (n -2) df
r
t =/—

= Vii-2) ~ tw-2
va-r)

Example 16-19. (a) If (x;, y;) is a random sample drat
jon of :

normal population, derive the distribut
X — x) Wi= y) :
r= |
S -2 -y ) j
(b) Further, whenn =5and if P( 1 r 1 20) =@, show that C is a root of the equatigy

CV(I-C)+sin1C+ "“’;" V.

——=0
Solution. (a) c.f. § 16-4, page 16-26.
® P(lrl2C) =1-P(1r1<£C)=1-P(-C<r<QC)
C
=1-2P0<r< C)=1—2[f(r)dr "
o |

[ fir) is symmetrical about r = 0] ‘
1'

Hence
o from an uncorrelgteq bi"i

Whenn=5 f(r) =—1 (1=r2)/2
B zl,zé [ef. Equation 16-12, page ]626]!;;
P(lrlzq=1_2&j‘c j;{
r1/2r@y2) , (1-r)124, - 1

c

[-.-r(zl ). G]

=1-2x 1_[1
L2 r(l—r2)1/z+zlsin_lr}
0 |
|

=1_.4. lc
1-C2n 1
lico Y2+ 2sin1] < N
(Given)

1_3[ 7
nC(l‘Cz)2+Sin"C]=a -
Cl-c2z x g
+sm‘1C+(a_1)—-=0;’
2 =
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EXACT SAMPLING DISTRIBUTIONS-II (t, F AND z DISTRIBUTIONS)

16-5. F-DISTRIBUTION
Definition. If X and Y are two independent chi-square varia

respectively, then F-statistic is defined by
- XN ...(16-13)
Y/VZ
square variates
Snedecor’s F-

In other words, F is defined as the ratio of two-independent chi-
follows

divided by their respective degrees of freedom and it
distribution with (v, v,) d.f. with probability function given by :

%
M)? L
flF)=—22 . F J0<F<oo
@8 (o)
V2

Remarks 1. The samplin,
parameters and depends only on the degrees
2. A statistic F following Snedecor’s E-distribution with (v;,

F ~ F (v, V2)-
16-5-1 Derivation of Snedecor’s F-distribution.

chi-square variates with v and v, d.f. respectively,
function is given by :
Y (R S /21 [ 1
,Y) = —x/2 x| ———exp (-y/2
fix, y) (2,1,2 /2 exp (-x/2) x } 7 T(v/2) p(y/2y

of freedom v; and v,.

(v2/2)—1}

_ 1
204+ %2 ry 2) T(vy/2)
Let us make the following transformation of variables :

v
x =—Fu and y=1u

F=1Vland u=y,sothat0SF <o, 0<u <o &,
.‘//Vz Vi
—:1 u O
Jacobian of transformation J is given by : J= oY) _ : _h
d(F, u) v v,
—F 1
\¢)

Thus the joint p.d.f. of the transformed variables is :

1 u Vv,

= expi{—5(1+-LF

Qv+ w2 r(vm/2) T(v2/2) p{ 2 ( Va )}
X(ﬁFu

Va

exp {-525(1+€—‘ F)}
2

O<u<eo,0<F<oo

8(F, u)

/v
+v)/2 F(v,/2) F(vz/2)
x uI(V.+ v)/2)-1 F(v,/Z)—- 1;

2("|

g distribution of F-statistic does not involve any populat

v,) d.f. will be denoted by

tes with vy and U2 d.f.

...[16:13(a)]

Since X and Y are independent
their joint probability density

exp (- (x + W/2) xxD7 1y YD1 05 (x y) <o

(v/2)-1
) WD

ion



Y SR e
16-30 ge 010> the pd.f. of becomes :
the ran,
Integrating w.r. fo u OVer - # Yip } I, «
<y (v/v)("‘/z)lf'("'m-1 X[ o, FRT2 (1 ® v ) “
2,
&P = — /2 T/
2 1 2/

Ty + ¥2)/2]

va/2) 1

B \)I'AT.IS}b

EXACT SAMPLING DISTRIBUTIONS-

q ey

= —1

Tl =n 4
B(ﬁ ﬁ) IO (1+y)(v|/2)+r {(05/2) -1} y
22

16-31
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l/r +(v/2)-1

/) g/
__(_‘1&)__'_5—!_——72;" " v,F)]("‘”’V2 ,
= e v)/2 Vi 1 — Y AY Vv, V. j -14
2092 r(n/2) T [2(1+Vz —(7:) . v11 o .B(r+7‘,72—r),Vz>2' -(36-14)
/21 B(T' 2—)
/v o _,._FLL—’—,OSF«»
si(p) = (V l,l) : (1 i F) (e o2 Aliter for (16:14). (16-14) could also be obtained by substituting " F = tan? 0 in (*)
B(3, T 2
2’2 V2
.t . . . . ®/2 , +1 g+1
which is the required probability function of F-distribution with (v1, v;) 4.5 and using the Beta integral ; 2 jo sin” 8 cos? 8 d0 = B ( =it )
_x/v r = (V) Tlr+(v,/2)] (v,/2)-1] . <n = v,>2r ...(16-15)
Aliter. By H (vl) T/ T2 2 :
. dent chi . In particular
% F = ;-‘ being the ratio of two independent chi-square varige, Wiy wy = Y2 T+ /Nv/2)-1) _ v, V> 2 ... (1615q)
) ) v W X . ) v '(vi/2) T(v,/2) v,-2
V; and v, d.f. respectively is a [32( 7‘-, El) variate. Hence the probabxhty func'qon pos [T = (- 1) M 1)) .
is given by : Thus the mean of F-distribution is independent of v,.
gl y P
(Vl r) /-1 W = ( 3)2_ T/2) + 2] I(v,/2) - 2]
ap( _ 1 Vz d( v F) Vi [(vi/2) T(v,/2)
B “B(ﬁ Vz) '(] v F) R R vy - (_v_,)2 [(n/2) +1] (v/2) __ Wn+2) v, > 4.
272, T Vil /) -111(v/2)-2] ~ v(v,-2) (v, - 4)
/ , > VA(v; +2) v,2 2v2 (v + v, - 2)
v \"/2 My = Py —p2=—2" - = FV2>4 ... (16-15b)
. 72') Fr/a-1 S ViL-2D(m=4)  (m-27  w(vu-2%(v,—a) 2

T <
B(3 ) (1+"1F)("H's)/2 Sl
272 v

2
16.5.2, Constants of F-distribution,

K’, (about origin) = E(Fr) = I

OF’f(F)dI-‘
ST

Fr F%/2)-1
h oy
B(z 'T)

—_—
" (e tip)eeen
To evaluate the integra], put:

6]

AP
v, ~Y.sothatgr =Edy

v
W = v/ v,)%? J‘" (VL: y) (/22 !
- S
) (2)a

1 +yym+wr

Similarly, on putting r =3 and 4 in K, we get uy’ and M4'respectively, from which
‘ the central moments p; and K4 can be obtained.

. Remark. 1t has been proved that for la
j{ NI[1, 2 {(1/v)) + (1/w,)}] variate.
1 16-5-3. Mode and Points of Inflexion of F-distribution. We have

log (F) =C+{(vi/2)- 1) log F—( %) log {1+ (vi/v,) Fl,

| where C is a constant independent of F.

rge degrees of freedom, v: and v,, F tends to

9 —(n_ 1 _n+w) 1 oV
o o8 AEN =(3-1) . 2 (142 %
\¢]
7Ey — 9 _ -2 vin+vy)
f(P)—BFf(F)_O = 2F 2(V2+V1F)—0
_vn-2)
Hence ™ (2+2)

It can be easily verified that at this point f”(F) <0. Hence mode = Y2("1~2)

Waray (1616)
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LI - “b
. depe t, X2 \
4 e lnd(-_PCndel‘ ’ 1° ~ 2
_—— yand Xz ~ N©1 arof F-statistic, X Ang EXACT SAMPLING DISTRIBUTIONS-II (t, F AND z DISTRIBUTIONS)
1" Gi ~ N(0, 1) ant aition ¢ !
(c) Since X ; 3 (d ent. Hence bY defit o
2 are also indepen ’ X2 -
X*ay N > Xg’ ~ Fan
)—(:’!/‘1 ~ F(l, 1) A depeﬂdent Standard normal Vi
: . io of tw0 n Ay Critical value
being the rat! §
(d) X1/ X2, Rejection
region (o)
Acceptance
region (1-u)
»2

standard Cauchy variate.
F-DISTRIBUTION
Fo. (04, 1)

16-6. APPLICATIONS OF . cations in statistical theory.
istribution has the following applicatio :
E-distribution i+ of TWO POpula.ﬂon variances. Suppos, 3
& " 16:6-1. F-test for Equality population Yariancos, Sup s,
\;est 0] wh.ether two independent Salgp uiati(;,ns with the same Va;ija nc; ;2 7
ormal pop tes of the population varj (s‘)uPPer and lower o-significant points of F-distribution :
ang Fo(ny,m)=—>1 = Fy (113, 1) X Fy _q (13, 11y) = 1

the n ¢
have been drawn from t i
(i) whether the two independent es
Fi_ q(nym)
The critical values of F for left tail-test H, : 0,2 = 0,2 against H, : 6,2 < 6,2 are given by
- 2

- homogeneous or not.

nder the null hypothesis (Ho) ' : -
o 4 Fy, 1, n,-,(1-0), and for the two - tailed test, H, : 6,2= 0,2 against H, : 6,2 # 0,2 are given
byF>F, 1, _1®/andF<F, . _(1-0a/2)[For details, see Chapter Eighteen.]
1 d 1 * 72

Fig. 16:3 : Critical Values of F-Distribution
From the Remark to Example 16-23, we have the following reciprocal relation between the
(™)

that (i) ox? = oy? = o2, i.f.’., the Populatiy,
tes of the population variance are honwgem% F <

are equal, or (ii) Two independent estima
statistic F is given by :
_5¢ Example 16-25. Pumpkins were grown under two experimental conditions. Two
TS A random samples of 11 and 9 pumpkins show the sample standard deviations of their weights as
1 1, _ ;'0-8 and 0-5 respectively. Assuming that the weight distributions are normal, test the
o 'E vi-y)? (l‘ hypothesis that the true variances are equal, against the alternative that they are not, at the
AL 110% level. [Assume that P(Fyg, g > 3-35) = 0-05 and P (Fy, 19 >3-07) = 0-05.]
Solution. We want to test Null Hypothesis, Hy : Gx? = Gy? against the

n, _
where Sy=—1-% (y-%)? and Sy’=
1 i=1
4 are unbiased estimates of the common population variance 62 obtained frog
independent samples and it follows Snedecor’s F-distribution with (1, v)dfy Alternative Hypothesis, H, : 6x? # 62 (Two-tailed).
Yi=m-landv,=n,~1. Wearegiven:n;=11,n,=9, sx=08 and sy =0-5.
Under the null hypothesis, Hy : 62 = 62, the statistic :

_sz_ n 1,
Proof.F_s—z_[nl_ls ]/ [nz—l 5)2]

Y

2
F= ?% follows F distribution with (1; — 1, 1, — 1) d.f.
Y

7)o =(1) x 095 <070

1552 1 2 {
=[§’;.("1_1]/[nzsy,l\ (..0— 2=0’y2=0'2und1
Oy 1—1) 0,2 (~1) - Ox , nysy?=(n;—-1)Sy?2 = Sx2=(
. 1552 2

Since X MaSy” . .

( o2 and o2 T€ independent chi-square variates with (-l Similarly, Sy?= ( ',‘,znfl )Sy2 = g—) x(0-50> =028125
2~ 1) d.f. respectively, F fol] ’ .

(cf §165) Y. I tollows Snedecor’s F-distribution with (11,1, -1l F =0—2,:% =25

Remarks 1. In (161 f’ The significant values of F for two-tailed test at level of significance o = 0-10 :
numerator and n, corres 0171)& 8reater of the ty,, variances S,2 and S.2 is to be takétl gl are :

By comparing 11 POnds to the greater Variance, X Y F> Fio,3(0t/2) = Fy44 (0-05) } .
samples, with the gbufat?dk\:glated fvalue Of F obtained by using (16-17) for the i/ . F< Fis(1-a/2) = Fiy5(0:95) =)

R . ue of F f, d 0.

H, is either rejected or accepteq. or (ny, n,) df. at certain levfl of significance (5%‘{. We are given the tabulated (significant) values :

2. Critical valyes of F-distripy; :

b , P (Fyo5 2 3-35) = 0-05 Fio,5 (0-05) = 3.2 .
sﬂd of the chapter) give the crrlit:lc’:]»: "fhe available F-tabjeg (given in Table II-A and 118! (Fros ) = 108 (0:05) = 3.35 ()
termi ° ) alues n in Table II-
and (ny ey it tail areas. Thug g1 1 e right tailed tes, 1., thecdtill  Also  P(Fy102307)=005 = P (ki < 3b7) =005
, f. €rmine by: ificant value . 1.C., . 8, J
P(E~ F, (”:;2;,,(:3 1) at level of sig = P (Fi9,§<0326) =005 = P(Fy9,4>0-326) = 0-95 e ()

as shown in the diagram on Page 16.37,



1€

gt

Ll S Q'Th
1

| values for testing Ho: g2 _
ti

16-38 +) the critica jven by :
from (*), (**) and (* )'ce a=010are 8’
Hence from ,l o Sigmflcaﬂ 4 F< 0326 = 0-33

e
H,: 0,2 # 0y’ atlev e, 335 an r

f F
Since, the Calculated Valuzﬂc:esis of equ

cignificant and hence null VPR

accepted at level of significanc f 8 obse : h I
Example 16:26. In one sample 9 was 84-4 and in the other sample of 10 y

le mean WE> .
the sample values fr ”’;‘,’,”fhs;"z ce is significan

was 102-6. Test whet r
cent point of E form =7 and nz "
=10and X(x—%¥

lies between 0-33 angd 336 .

9 degrees of free
=844, Z(y— ¥)*=102¢

Solution. Here m =8, 1 7)2 =844 =12.057
S =g X 7
102:6 _ 1.4

S¢ =m0’ =7

Under Hj: ze = =0
homogeneous, the test statistic 1s :
o Sx2 _ 12057 _ 1.057

=52 114
Tabulated Fy .5 for (7, 9) d.f. is 3-29.
Since calculated F < Fy.s, Hy may be accepted at 5% level of significance, *
Example 16:27. Two random samples gave the following results :

Sample Size Sample mean Sum of squaresg
deviations from the
1 10 15 90
2 12 14
Test whether the samples come from the same normal population at 5%

3-10 (approx.) and t005(20) = 2.086, t,4(22)=

62 To test if two inde o wa batameters, iz, mean  and vé
pf)pulation, we have
(ii) the equality of Popula
Null Hypothesis .
Population, i, The two Samples haye been ¢
——— bii=p, oan 2raWn2 from the same®
(o) meansWﬂlbet O, = Gy“. \ i
be tested by applyin F-te ‘eSted by applying ¢ i ancé
and then ¢-test, [, usEal n Stt. Since t-test ass st tze st and equality of varian®
Otations, we 476 givene.s %1 =02, we shall first applf P
El =15, }2 =14

1 =10, ny;=12;

Z(x] = ;1)2 = 90' z(xz —Ez)z 3 lm

ality of population variance's“
|

roations, the sum of the squares Of%

t at 5 per cent level, givey, H::t'%
dom is 3-29. t

: 2 o
6y2 = 02, ie., the estimates of 62 given by the samp

16-39
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F-test : Here

pvs 1 2T AVC.
S2= S -%pR= P =10, S2=5En-X’=T

1
n -1
Since $,2 > S,2, under Ho : 6,2 = 052, the test statistic is

2
p=s_l~p(nl_1’n2_1)=F(9,ll)
[

S _ 10 _ .
F=s—27_ 585 = 1-018

: it i t
Tabulated Fgg5 (9, 11) = 2-90. Since calculated F is less than tabulated F, it is noO

i i i be
significant. Hence null hypothesis of equality of population variances may
accepted.

Since 0,2 = G,%, we can now apply t test for testing Hp : l1 = Ha-
t-test : Under Hy' : u; = |15, against alternative hypothesis, H," : i1 # Ha, the test

statistic is :
t = XI = xz ~ tll] + "2—2= t20
1 1
/5 (»T,* n—,)
1 - = _1 _ Q.
where s = m[ﬂxl =31)2 + Z(x; — X2 )?] = 55 (90 + 108) = 99
15-14 _ 1 =—L1 _ - 0742)
_\/ T g _\/99x11 V1815
*9 (ﬁ + ﬁ) 60

Tabulated to¢5 for 20 d.f. =2:086.Since | t | < ty¢s, it is not significant. Hence the
hypothesis Hy’ : i; = p, may be accepted. Since both the hypotheses, i.c., Hy : 1, = M,
and Hj : 6,2 = 6, are accepted, we may regard that the given samples have been
drawn from the same normal population.

108 ;7[-,416-6-2. F-test for Testing the Significance of an Observed Multiple

Correlation Coefficient. If R is the observed multiple correlation coefficient of a
variate with k other variates in a random sample of size n from a (k + 1) variate
population, then Prof. R.A. Fisher proved that under the null hypothesis (Ho) that the
multiple correlation coefficient in the population is zero, the statistic :

R? —k-
RE T oy ! ...(16-18)

| conforms to F-distribution with (k, n — k — 1) d.f.

16-6-3. F-test for Testing the Significance of an Observed Sample
Correlation Ratio nyx, Under the null hypothesis that population correlation-ratio is zero
the test statistic is : .

"  N-h

“1-q h-1 T FR-1,N-h) ...(16-19)
where N is the size of the sample (from a bi-vari ; .
neraye. ple ( 1-variate normal population) arranged in I

|
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