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Po|
from the analysis of a sample drawn from that ﬁo.ﬁ:_m:o:. Two Important vva_."
in statistical inference are (f) estimation and (i) testing of hypothesis.

The theory of estimation was founded by Prof. R.A. Fisher in , Setigg
fundamental papers round about 1930.
Parameter Space. Let us consider a random variable X with gy
f(x, 6). In most common applications, though not always, the functional form oy
population distribution is assumed to be known except for the valye of
unknown parameter(s) 6 which may take any value on a set ©. This is expressd)
writing the p.d.f. in the form flx, 8), 0 € ©. The set ©, which is the et of all posi
values of 0 is called the parameter space. Such a situation gives rise not oy
probability distribution but a family of probability distributions which we wrik
{f(x.0),0e0), eg., if X ~ N (i, 0?), then the parameter space © = (i1, 67) - ~w <pas
0 <0 <o)
In particular, for 62 =

|

?

17-1. INTRODUCTION .
One of the main objectives of Statistics is to draw inferences about a

1, the family of probability distributions 1s given by :

(NWw1);pe ©), where @ = {1 : - = < s < o |
In the following discussion we shall consider a general family of distributions
. ﬁkw.\.orow..:e—.vum..m @L.u_swt.:»;.
et us consider a random sample x,, x. ; St
L . + X2 -, Xy Of size 1 from a population ¥
probability m::ncob\a..« 781, 6y, ..., 6), where 0,6, ..., 6, are the ::r-m:.‘a: popub¥
parameters. There will then always be an infin;
values, called statistics, which m
parameters.
Evidently, i
’ . ¢ one that falls nearest to the true value®’
parameter to stimated. In other words, the statist .7»« distrib®
concentrates as closely as possible near the t e ose i’
regarded the best estimate. H ic ropr.2lue of the paramefel gy
ence the bagjc rob] ) . F o
case, can be formulated ag follows : problem of the estimation in th¢

‘We wish to determine the functi
by ctions of the sam

the best estimate would b,
be e

A
N..u = ®~ AHT X2 wees .H:v ’ N..N = Qm A».T X, ..:..:V o Ty = m\wz .
such that their &mﬂvmmoz is concentrage, 85 clon k=0 (2, xp, .., x,), 3
the parameter. The estimating functions ape Em:owm mM 3s possible near the true
Ired to as estimators.

%\5&?3&3 of the random sample x,, Xo, it
) is called a statistic. Clearly, a statistic is a random variable. If it is
tor. A |

w\.\blr\\:so:. An estimator T, = T(x;, X, ... , x,) is said to be an unbaised estimator
... (17:1)
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]
+ X that are being observed, |

, X2, -oor Xn . . . Ay .
?Qa.awﬁn an unknown parameter 0 of the distribution, it is called an estiam
|

say Tn
-+ » Xp) is called an estiamte of 6, |

to es i
Fam% st DL
pa We shall, however, use the terms estimator and estimate , somewhat loosely, their

actual implications being clear from the context.

17-2. CHARACTERISTICS OF ESTIMATORS.
The following are some of the criteria that should be satisfied by a good estimator.
(i) Unbiasedness, A..c. Consistency, (iii) Efficiency, and (iv) Sufficiency

We shall now , briefly, explain these terms one by one.
17-2-1. Unbiasedness.

|

of

E(T,) = 16), forall 6 € ©

0 if

We have seen in chapter 13 that in sampling from a population with mean p and

variance 0%, E(X) = p and E(s?) # 02 but E(S2) = 62 Hence there is a reason to prefer

n
x )3, to the sample variance s uw T (xi-x)2
i=1

1 m Ah“l

2
St i=1
Remark. If E(T,) >0, T, is said to be positively biased and if E(T,) < 0, it is said to be

negatively biased, the amount of bias b(8) being given by b(0) = E(T,)-v(0),0e © ...(17-1a)
Example 17-1. x, x,, ..., x, is a random sample from a normal population N(u, 1).

.

1 . . .
Show that t = L x2, is an unbiased estimator of 12 + 1.
i=1

Solution. (a) We are given :
Now E(x?) = V(x) + [E(x))2 =1 + p2
= -r 1 il 2 1 u 2\ — 1 “ 2y — 2
EW=E(, X x})=13% Ex?)=5 X (1+ph)=1+p

i=] i=1 i=1

(M)

E(x)=p, V(x)=1Vi=1,2,..,n
(From (%))

Hence t is an unbiased estimator of 1+ 2
= Example 17.2, If T is an unbiased estimator for 6, show that T2 is a biased estimator for

Solution. Since T is an unbiased estimator for 0, we have EM=06
Also  Vvar(T) = E(T)-(E(MP=ETY)-6 = ET) =0+ Var(T), (Var T > 0).

Since E(T?)# 62, T2 is a biased estimator for 62,
Example 17.3. show that [ Z5i (2 - 1] is an unbiased estimate of 62, for the sample x,,

n(n-1)
=+ Xn drawn on X which takes the values 1 or 0 with respective probabilities @ and (1 - 6).
mo-ssoa. Since X1,

X2,
X2 .., Xy is a random sample from Bernoulli population with

Parameterg, 7= 5 , _ = E(T)=n8 and Var(T) =6 (1-6)

1=1
d

B(n, 8)

}

nr-1

Ix, (3x,- 1)
nn-1)

n(n-1)

1
} = gy (B - ()

d

'
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74 2 E(T _ Y maﬁ_ﬂ ntinuous function, for every € > 0, however small, 3 4 positive number
- A\wd [Var(T) + {EMI- anct ") mw w M._w (T,) — WY ®)} | <&, whenever IT,-y(6) | <¢, e,
nn- 02 (1 tha B )
1 H..S+=Nm~|=3u=|=c%~./c:uo~ gy such IT,-Y®) I <& = Tw(T)-y{y®) | <g ()
“nm-1) ?2 . £ 62 m<m:$>mbmm,m A = B, then
(Zx, (Zx, - 1)} / {n(n - 1)}isan unbiased estimator of 64, For tWO = P(A)SPB) or P(B)2P(A) ()
U i (2 . in the Poisson form with paramete, 0 AcB
Example 17.4. Let X be distributed in the | )= (-0 that Ty o Shoy, ey and (), we get
only unbiased estimator of exp {~k+ 1)6), k> 0,is T(X) = >0 55 Fro w— ly(T,) - wiv®)) | < m__ 2P — IT,-y0)l < m_
and H«HvAQ@«.H is odd. - Amno ORV ﬁH_A\AH,:vlp_\sAQ: | AmL NHI.: ;Van2m WCmSWAJH
— X r—
Solution. E{T(X)}=E :.. »3\ k>0= xmc -k x! = ) P v {¥(6)), asn — e~ or Y(T,) is a consistent estimator of y(6).
T, ! .
i > v itions for Consistency.
o [k 0 ,-ko_ ,~(1+ke nt Conditions
o Mo ~ ¢ L _V ~ =e0. e ko= mcaonwa 17-2. Let {T,} be a sequence of estimators such that forall 9 € ©,
= Theor: ¥ . o
= T(X) = (- k)X is an unbiased estimator for exp T (1+k) 2\ ksq (i) Eg(T,) > Y(6),n > e and (ii) Varg(T,) =0,as n — oo,
7 sist Then T, is a consistent estimator of Y(6). .
17-2.2. Consistency We have to prove that T, is a consistent estimator of (6)
Definition. An estimator T, = T(xy, Xy, ..., X,), based on a :S%S sample of size p, itq Proof. We )
to be consistent estimator of y(6), € O, the parameter space, if T, converges to y(y, e T, —> Y(8),as n — oo
probability,ie.,  if T, LN Y(6) as n — e, In other words, T,, is a consistent estimaty, 5 . P H IT,—70) | < m_ >1-n;Vn2m(e,n) .(17:3)

Y(6) if for every € > 0, 1> 0, there exists a positive integer n >m (€, 1) such that

w\_ﬁ_nie_ <e)slasnoeo = w?ﬁni@ | Am\lez\. Vinam.
where m is some very large value of n.

N
Remarks. 1.1f X,, X,, ..., Xn is a random sample from population with finite m
EX; =1 <, then by Khinchine’s weak law of large numbers (W.L.L.N), we have

X,

13 p
=02 X —E(X) =}, as 11— co,
i=1

Hence sample mean (X,) is always a consistent estimator of the population mean ()

2. Obviously consistency is a property concerning the behaviour of an estimatort

indefinitely large values of the sample size n,ie., asn — oo, Nothing i rded off
behaviour for finite 1. P ! othing is rega

Moreover, if there exists a consistent estimator say, T, of infini 4
. ’ ’ ’ ’ ~m~ BN:
estimators can be constructed, eg., 7 % GEYE) then infinitely i
1-(a/n)

‘= n-a = 14
r=( =-L ﬁ-ﬁ 1- (o) T,_iﬁ_lnv ¥6), asn —
and hence, for different values ofaand b, T’

: n iS also consistent for y (0).

Invariance Property of Consistent Estimators,

Theorem 17.1. If T, is a consistent estimat, "
) . or o s a conf!

function of y(6), then ¥(T,) is a consistent estimator o\\_\\ﬂwm\mﬂ:n _\3\3::.»

mgm~0~. Om .X@v\ N..:IE]V <A®v asn — =, n..m.\

2 (g, M) such that
ﬁ?ﬂ:limv | A&VHI«T(RNE

Proof. Since T,, is a consistent est

fi
everye>0,1>0,3a positive Eﬁmmmn n

where £ and 1 are arbitrarily small positive numbers and m is some large value of n.
Applying Chebychev’s inequality to the statistic T, , we get

Vary (T,) (174
l_ﬁ-ma@_m&wT% (17-4)
We have
IT,-Y(6)| = I T, - E(T,) + E(T,) = ¥(©)| < |T,—Eg(T,) | + | Eg(T,)—Y(6)! ...E.MV
Now IT,-EoT,)| <8 = IT,-y0)! <5+ | Eg(T,)-1O)! ...(17:6)
Hence, on using (***) of Theorem 17-1, we get
P{IT,~¥(6) | <8+ |Eq(T,)=v0)1} 2P {IT,~Eq(T,) | <8}
>1- iamNE [From (17-4)] (17:7)
Wearegiven:  E,(T,) »>Y(0) VO e Oasn o
Hence, for every §; > 0, 3 a positive integer n > 1, (3;) such that 7
| Eg(T,) —¥(6) <&,V n2ng(8)
Vary (T, ’ ..(179
Also <mnoﬁ.=v —0asn — o, (Given) .. %m n,Vn2ny (n), 179)

&
Where 1 i arbitrarily small positive number.
Substituting from (17-8) and (17:9) in (17.7), we get
15#@ 1<8+8] 21 -n;n2m(d,n)
PlIT,-y0) | <e] 21-n;n2m,
max (ng, ny’) and e = § + 8, > 0.

=
Where », -

) ’
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= T. L5 y8) asn == E&g gTATISTICAL |
) e ot estimator of 10)- ! ample 17-6. If X1, Xy, ..., Xy are e:%.i %%é:.:.azm on a Bernoulli variate X taking
A T, is a consisten ma N(u, %) population, the Sy QMM ¢ 1 with probability p and the value 0 with probability (1 - p), show that :
h the

Example 17.5. (a) Prove that in sampling fro

is a consistent estimator of |1
(b) Prove that for Cauchy's dis
consistent estimator of the population mea
Solution. In sampling from a N(u, 69 population, the Mmm:n_m Msmm: Fisal,
normally distributed as N (1, 6%/ n), i.e, E( 7)=p and V(x)=0%/n
E(%)=p and V(X)=0
consistent estimator for .
TNU—.:Q EOROD .

tribution not sample mean but sample Meg
|

Thus as n — o,

Hence by Theorem 17:2, X is a
(b) The Cauchy’s population is given by the pro
18 e<x<e

dF(x) =1 T @-pp
The mean of the distribution, if we conventionally agree to assume that it exig

at x = . If ¥, the sample mean is taken as an estimator of |1, then the samy

distribution of x is given by:
;- <X <00,

because in Cauchy’s distribution, the distribution of x is same as the distributiong

Since in this case, the distribution of x is same as distribution of any single say
observation, it does not increase in accuracy with increasing n. In other words ,

E(x)=p but V(x)=V(x)#0, asn >

Hence by Theorem 17-2, x is not a consistent estimator of 1 in this case.
non.wﬁmamoa of symmetry of (*) is enough to show that the sample median}¥
an unbiased estimate of the population mean, which of course is same a!
population median. Therefore E(Md) = p. f
. .mon large n, the sampling distribution of median is asymptotically normal?
is given by dF o< exp {(-2nf;2 (x - p)}dx,
where f; is the median ordinate of the parent population. i.e.

dF o - E r

&p ~ :n,ﬂi o

But f= Median ordinate of (*) = Modal ordinate of ) [Because of sy
=)o =1

Hence, from (***), the variance of the sampy};
pling distribution of median is
V(Md) =1

== 2
4nf? =

1
n(1/n2~ g > lasn oo

Hence from (**) and (****), using Theor oo
distribution, median is a consistent mmmBmSH.mmaH_.w.N\ e sonclude Mat e A

A

n
since Xy, Xy, .-, Xq are i.i.d Bernoulli variates with parameter v,

w A 1- .M«l_v is a consistent estimator of p(1 - p).

Solution:
T=2X x;~B(np) =ET)=np and Var(T)=npg v (1)

i=1
[From (i)]

<mnAHvH=MM.<NHAdHW&.IvOmm=Iv8. [From (1))

n

Since E (X) - pand Var Q.o —0,asn— o} X is a consistent estimator of p. Also
I A 1- MM\_V = X(1 - X), being a polynomial in X, is a continuous function of X.

n
Since X is consistent estimator of p, by the invariance property of consistent

estimators (Theorem 17:1), X 1- Mv is a consistent estimator of p (1-p).

17.2-3. Efficient Estimators. Efficiency. Even if we confine ourselves to unbiased
estimates, there will, in general, exist more than one consistent estimator of a
parameter. For example, in sampling from a normal population N (i, 62), when 62 is

known, sample meanX is an unbiased and consistent estimator of p [cf Example

17:5a].
From symmetry it follows immediately that sample median (Md) is an unbiased

estimate of 1, which is same as the population median. Also for large 7,

V(Md) = N=H|>M [cf. Example 17:5(0)]
Here fi =Median ordinate of the parent distribution.
= Modal ordinate of the parent distribution.
= llil..— —(x-1)2 2 2 E = |H|
ﬁ mamxm; (x-wy/20 v - o\2n
1 2
ViMd) = o 2162 = m
Since E(Md) =
and V(Md) »0[ +38" 7

median is also an unbiased and consistent estimator of J1.

b Thus, there is a necessity of some further criterion which will ena choc
%_M,Ew: the estimators with the common property of consistency. Such a criterion
ch is based on the variances of the sampling distribution of estimators is usually

known as efficiency.
I, of the two consistent estimators Ty, T, of a certain parameter 6, we have
V(Ty) < V(Ty), foralln

ble us to choose

...(17-10)
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then Ty is more efficient-than T, for all samples SIZEs. STA -
. . (o N
We have seen abo"e: o Usmg(’ (VX + VXD + VX + V) V) =30
-, 0 , V(M) = 5-=157 = VR 1 3
Foralln, V(7)=5 and _forlrge H o " V(f)s%‘V(Xl)‘rV(Xz)}«*V(Xa)’§0’+0”§o’
: 5
Gince V(3) < V (M), we conclude that for normal distribution, Vit = L aVX) + V(X)) =5 (40?4 @) =gt (A =0)
‘cient estimator for ji than the sample median, for large sampieg y ™ IS - timator (in the sense of least vari
moreMefh;:1 ;n!ﬂ:;mf Estimator. If in a class of consistent cstimators for g Since V() 15 feast. 1 2 n"‘: :’es ‘ esnmdom sample of size 3 fr:r:s a Va"‘?":") . “"
oe . suc ] , Xp, Xp and Xzisa § )y s1ze 3, population with
less than that of any such cstimator, ity oyl Example 178 2 are the estimators used to estimate mean value u";:lr:

nd pariance o T,. Tp Ty |
- Xy, T1=2X‘+3X3—4x1, and T,:i(u‘§x2+x:‘)/3‘

unbiased estimators ?
of A such that Ty is unbiased estimator for ju

exists one whose sampling variance is
cient estimator. Whenever such an estimator exists, 1t provides a cnt P, PP

of efficiency of the other estimators. - T,=X+X:
Efficiency (Def;mon) If T; 15 the most :ziamf r;#::y;:*r :l'ﬂfx ‘vwv"; (i) AreTyand T
any other estimator with variance V', then the eficiency ot T 1 defined as (ii) Find the value

4 (ifi) With this value of Ais Tya consistent estimator ?
v £ (o) Which s the best estimator ?
i i le from a population with mean g and
‘ fy. Solution. Since X, Xy X, is a random samp pop
Obviously, E cannot exceed unity. ~ variance 0%, E(X,) = W, Var (X)) =0? and Cov (X, X)) =0,(i#j=12,..n) e

s O ) and P.’,‘" t '
T, T, Ty ..., T, are all estimators of ¥(6) and Va IS Minimum, by () We have [On using ol

efficiency E, of T;, (i=1,2, u.\,yn);s defined as E(Ty) = E(Xy) + E(X) - E(Xy) =@ = T,isan unbiased estimator of u
ar .
E = VarT /'™ 1,2,...n £ E(T,) = 2E(Xy) + 3E(Xy) - 4E(X;) =p = Tyis an unbiased estimator of u
Obviously E;<1;i=1,2, ... n Forexample, in the normal samples, sinem (i) We are given : ETy=p = i {u(xl) +E(X) + E(Xﬂ] B
mean x is the most efficient estimator of p [¢ £ Remuari 0 Fuample 17 31] the i . "psp+ep)=p = A+2=23 = A=l
E of Md for such samples, (for large n), 15 : 1 1 — , .
Ve o/ 2 (i) With A = 1, Ty = 3 (X, + Xz + X3) = X. Since sample mean is a consistent
) = i
E= g = o om m 063/ estimator of population mean p, by Weak Law of Large Numbers, Ty is a consistent
e estimator of 1.
Ex_ampl_a 17-7. A random sample (X,, X,, Xy X, X.) of size 5 15 dnawn fromi® (iv) We have [on using (*)] :
population with unknown mean 1. Consider the followmy estimators to estimabe g Var(T,) = Var(X,)  + Var(X;) +Var(X;y) =3¢
X1+ Xp+ X+ X, X s 2x, + 4 :
() =Moo X ek B VarTy = 4 Va9 Var(Xy) + 16 Var(Xy) =290
: ’ (-h=1)

where A is such that ty s an unbiased estimator of u Var(Ty) = (1) [Var (X,) + Var(X,) + Var(X))] = 102

Find & Are t, and ty unbiased ? State giving reasons. the estimator which 8% Since Var(T,) is minimum, T, is the best estimator of i in the sense of minimum
ty, taand t;, v variance.
Solution. We are given : Definition., Minimum Variance Unbiased (M.V.U.) Estimators.
Ifastatistic T = T(x), x,, ..., x,,), based on sample of size n 1s such that -
: (1)Tis unbiased f;
5 or A 6), forall 6 € Oand
) E¢t) =1¥ pxyol ] 3
() SIH,E(‘\')‘R X H=z.5u=p = ¢ 15‘munbusedt§’€_ ("””WSUltsmallnlwrmcznmg!kchssofallmwdmm”d’mz;’g‘

|

E(xl) = “v Var (x,) = c:' (Sa‘v) ; Co\. ('x,’ x’ =0 (12 = l, :‘ ‘.”‘:;
5

) Ety <1ex . x et : o | Tis called the minimum variance unbiased estimator (MVUE) of 16). .
2 =: ]*-”2)*5.\' == . — 7 . o
L Mo;m N Xd=J@+p+p=2p More precisely, T is MVUE of v (8) if o
2B un ot 1713
i xasz;d estimator of j1. i Ef(T) = y(8) forall6e © 714
W=k = JE@X+ X+ 0%y =y where T"is any othe Varg(T) < Vary(T") forall 8¢ © o
T unbiased estimator of y(8).

(- ty1s unbiased estimator of W)

ZE(X1)+E(X2)+A,E(X‘) :3‘1 :u’u*;-u:?u — ,_;‘,“
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if a most efficient estimator 4 and a less effig il
end to joint normality  for large sq

Example 17.11, (a) Show that
estimator B with efficiency e t
B ~ A tends to zero correlation with A.

is an estimator of a parameter 6, based on a sample xy, Xy, .., Xu |
e ¥T= xx&_”w.@:\ ..:Ex%e: with density f(x, 6) such that the conditional distribution of x;, |
(b) Show that the error in B may be regarded s composed (for large Samples) of too of size P\Mﬂ: T, is independent of 6, then T is sufficient estimator for 6. ,
which are independent, the error in A and the error in (B -A), g fuas tration. Let Xy, X2, ..., Xx be a random sample from a Bernoulli population
llus - 1,ie
(€) Show further that V(A - B =( L _1)y(a), ith parameter p’, 0 <p<1.te,
fu A p v (A) with p ¢ 1, with probability p
Solution. (a) We have to prove that r{A, (B - A} =0 = Cov(A,B-A)=0 Ti=10, with probability g = (1 - p)
Cov (A, (B =A)}=Cov (4, B)-V(A) = POAGE - G2, T=t(x, X3 o, X)) =Xy + X+ ...+ X, ~ B(n, p)
Wwhere p is the correlation coefficient between A and B. Then
o Pr=k=(}) P A-prtk=012n
If we take Oa =0, then Op=— and p= a\M (¢.f Theorem ) 2 i Tis:
e 4 The conditional distribution of (xy, xy, ..., x,) given Tis:
. T = k)
“ Cov(A,B-A)=+e. e w02 - i i R AA A
( )=Ve.o O 0. Hence (B - A) has zero correlation with A Py Ny | T=K) = P(T = k)
(b) We have B=A+(B-4) _pa-pt 1
VIB) = VIA + (B~ A)] = V(A) + V(B - 4) + 2 Cov (A, B-A) A n vn.: _py a
=V(A)+ V(B-4) (Using part (g =
= m:.ol:wumﬂo~5>+mﬂo::€n>v

n
0, if M X # k
and since A and (B-A) are independent, [c.f. part (@) viz., r(A, B~ A) = 0 and A and o
tend to joint normality], the result follows.

n
. : ‘», T= » 1s sufficient for ‘p’.
€©) V(A-B) = V(A) + V(B)-2 Cov (A, B)=0p2+0p2-2p g, O Since this does not depend on ‘p’, T .m_ X, 18 P
: . The necessary and
cq2. O o _of 1 heorem 15.7. FACTORIZATION THEOREM (Neymann). Tl .
=0 e -2 AM. Q.ﬂ.u MuQN uA e _v o m&:..n.mgn condition for a distribution to admit sufficient statistic is provided by the
Example 17.12.1f T, ana T, are two unbiased estimators of ¥(6), having the factorization theorem' due to Neymann. —
variance and p is the correlation between them, then show that p > 2¢ - 1. :sma eisth | StatementT = H(x) is sufficient for 0 if and only if the joint density function L (say), g
efficiency of each estimator. the sample values can be expressed in the form : (17.29 vm
Solution. Let T be MVUE of y(8). Then since V(T,) = V - L = go{t(x)].h(x) el diedd]
. b 1) = V(Ty), the effici ed is |
each estimator is given by : e=Y(M _ V(N ency (¢ |where (as indicated) g, [t(x)] depends on 6 and x only through the value of Hx) and h(x) is |
) <AH..V <:-uv _ERMNW:.@_MQQIIIKI o ) L S )
Consider another unbiased estimator of Y®) viz, T, = W (Ty+Ty) Remarks 1. It should be clearly understood that by ‘a function Emmvﬁ.aa:. of 8" we _.._i
= V(Ty) = m [V(Ty) + V(T) +2 Cov (Ty, Ty) only mean that it does not involve 8 but also that its domain does not contain 8. For example,
’ . 1 —o0 < f) < oo
the function flx)=:-,a-0<x<a+0,-m<
S ORI 7w “
..; e +Lnb+~n lmwlmb_ (From (*))

V

depends on g, .
igi le X = (X, X,, ..., X,), 1s always a sufficient

Sae (+142p)= E ma.hn.hw should be noted that the original sample v Xy

Since V(T) is the minimum variance, V(T,) = (L +9) . V(D)

3. The most general form of the distributions admitting sufficient statistic is Koopman's \Sﬁ MMM.

. 2% 2V = p2(2e-1 Biven by : L = L (x, 8) = g(x).h(8). exp (a(8)y(x)} 30)

.LSQ. Uwa:n,:o.: From (17.25), Page 17-11. f Ty and T, have sam®  where h(g) ang a(8) are functions of the parameter 8 only and g(x) and w(x) are the functions of

variances/efficiencies ic. ¢, = e, =, (say), then (17:25) gives : the sample observations only. «

oy, aepsee o9 Equation (17.30 exponential family of distributions, of which most of

- 30) represents the famous expo L A

g g A estimator is saig to be mﬂmw.mw ) if & the common a._uicczﬂvnu like the binomial, the Poisson and the normal with unknown mear
contains all the information in the sample regardin utlicient for a parameter, and

Variance, are the members.
8 the parameter.
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4. Invariance Property of Sufficient mﬂ“ﬁn.sa%\ q. _w wa mzﬂM«:» estimatoy for the Ty m4>dm4_o>_. |NFERENCE—I (T
. g : T, then y (T) is sufficient for X Fi
@and if y (T) isa one to one function of T, e . . 1 \" 1 _ 2 b
5. Fisher-Neyman nna%:.ﬁiwwm w:n »mv m@..&nww whmmams estimator of pere 8o [t = A Nav exp |- 35 {200 - 2ut100 + me2} |,
: ) ikelihood jon (joint p.d.f. of the ssed as : W oV
if and only if the likeli . function (joint p. 2 oy Hx) = {t,00), £, (X)) = =x;, 2) and h(x) =1
L = A:&#\ 0) =81 (t1, 0)-k (o Ty -oos X 0 Thus f(x) = Zxiis sufficient for p and t,(x) = 3x2, is sufficient for 62.
1= i o u )
where g, (1,0) is the p.d.f. of the statistic ty and k (X1, X, ..., %n ) is @ function of sapy, obsn, Example 17-15. Let X1 Xa, -, X,, be a random sample from a distribution with p.d.f. :
h xa

only, independent of 6. ) ]
Note that this method requires the working out of the p.d.f. (p.m £) of

\esmvnm-Q-s\eAxAxhlsAaAS

¢, = #(xy, X, --., X), which is not always easy. the Stat Obtain sufficient statistic for ©.
Example 17-13. Let x,, Xy, ..., Xy be a random sample from a unifory, Popul Solution. Here
(0, 8]. Find a sufficient estimator for 6. Hion n m_“ A i - sw e Al W xv X exp (n6) *
{ W\OMRNMQ L "..Mn\.ﬁk.?@vl..un € - mV i=1 ) P
{ jon. i : X;) = s
Solution. We are given: fo(x;) 0, otherwise Let Yy, Y2, -or Y denote the orderstatistics of the random sample such that
. t observation Y, is given by :
p o Lifash " _ kO, x) k(x, 6) Y < Y2 < ... < Yn The p.df. of the smallest obse A, c% y
Let  k@b) = ospf” en fy(x;) = ) , g1 (1, 8) =n[1 - Fy)I" ' f (41, 0),
# # k(0, min x;)-k(max x; 0) where F(-) is the distribution function corresponding to p.d.f. f(:).
L= I fyx) = T1 —Io\x_.;?;cv._ _ 1sisn 1si<n " x e x-O)x
L Sl = 1 0 N o = 8o (H(x)} h(x) Now F(x) u‘_.amnnnxs&xn =, =1—e&-9
_ kt(x), 6}
where 8olt(x)] = ~gn /¥ =max x and h(x)=k0O, min x) -1 1 -9 “n(y1-0), O<y; <o
1sisn 1Sisn g1(v1, ©) =nle®- J (arall HT_N 0 otherwi
Hence by Factorization theorem, T = max x; is sufficient statistic for 6, s otherwise
. hisn Thus the likelihood function (*) of X3, X, ..., X, may be mxm%wmma as
Aliter. We have L=1T1I f(x;,0) = % ;0<x;<0 A - v exp (- .MH x))
i=1 n ) =1
L =®exp (- 2 x;)=nexp{-n(y;-0) L=
It t=max (x;, x,, ..., x,) = Xy then p.d.f of t is given by : i=1 ) nexp (- nyy)
8(t,6) = dm?_:i S & . “ exp (-X x) u
We have F(x)= P(X <x) u_ fix, 0) dx L. Lo x =& min % O e T min =)
0 08 e Hence by Fisher-Neymann criterion , the first order statistic Y; = min(Xy, Xz, ..., X»)
£ 0) =nl Xa|""1(1 P is a sufficient statistic for 0.
0.0 =n{ (1) < [, o ol .
. n-1 Example 17-16. Let X4, X5, ..., X,, be a random sample from a population with p.d.f :
Rewriting (*), L=nlxal 1 -1
"k _._-_u%?wv. h(x1, xp ..., x) f(x,8) =6x""";0<x<1, 6>0.
Hence by Fisher — Neymann criter; ) .
for 6. criterion, the statistic ¢ = X(ny , is sufficient estim? Show that t; = II X, is sufficient for 6.
. i=1
m.khsn\o 17. 14. Let ..X.ms X2, vin, X TN i | r r
Sufficient estimators for pand g2, " - "endom sample from N(u, 0%) population: Solution. L (x,6) = Il fix;,68)=6" I (x°-1)
Solution. Let us write ¢ = W, 02 ; i=1 i=1
’ 7 —%0 A : A 8\ o N o n °
Then L=T fo(x) 1— L L.. ) A = m‘_A I a..v = g(ty, ). b (1), Xpy s X, (S2Y)-
p 1) =) —— 1=
i=1 ovar] - €XP ﬁlmwmw.u Akmlt.vww A_.Mﬂ k_v
- Ao)w.l v " exp “l -AIA M:u 2 Hence by Factorisati Th m.— i fficient estimator for 6
2n 202 — x?-2u¥x; + :tnvu Y Factorisation Theorem, ¢; = Ak (X;), issu -

= 8o [(X)]. h(x)
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Example 17-17. Let Xq, Xp1 eeer Wn_ be a random sample from QEQ@ .j
=1, jm0<X< o) —0g g
fix, 0)=7 1+(x-0? N

Examine if there exists a sufficient statistic for 6.

n 1 i 1
Solution. L (, 6) u‘m fixi &) =35 _.m T +(xi- QL 8t 0). ey,

p OPulpy; ATISTICA
:9_. sT

differentia

—_—
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no:&ao:momcamonﬁno=<mnmm=nmom53m~&mm8mmzmmmmmoEm:
(4) ;Moﬁ under the integral sign is valid.

2
)16)= m: mwnm log L(x, 8* _ » exists and is positive for all 6 ©.

.. ) ¢ X be a r.0. following the p.d.f. f(x, 8) and let L be the likelihood function of the
Hence by Factorisation Theorem, there is no single statistic, Whigy B:%\Vma sample (X1, X2 - x,) from this vav&w:o? Then
sufficient estimator of 6. a_s;; L=Leoo)= 11 fix, 0
However, L(x8)=k (X1, X5 ..., X 0). k2 (X3, X;, N &) i=1
= The whole set (X;, Xy, ..., X;) is jointly sufficient for g Gince L is the joint pd.f. of (xy, xp, ..., Xy), _. L(x,8)dx=1,
17-3. CRAMER-RAO INEQUALITY Jhere [ax=[]...[ dx dx, ... dx, .
. jati .r. to 8 and using regularity conditions given above, we get
Definition. If t is an unbiased estimator for (6), a function of parametey 6t Differentiating w.r. to g regularity m
T xin e _wgﬁo u:w_oﬁvgxno = mA Mamhvuo ... (17:33)
™ “(0)12 39
Var(t) 2 Mo 7 = A,M.MMV: j Let t = £ (X3, X2, .-, Xy) be an unbiased estimator of Y(8) such that
z (173 =R
Ag log wv ! Ef) =7®) = Jt.Ldx=y0) .(17:34)
where I(8) is the i i i o, 3 o
; oEM ( :ma “\exas:m:m on 6, supplied by the sample. Differentiating w.. to 8, we get h ;. o ix =y0) = TA 8~om rvn dx= ()
other words, Cramer-Rao inequality provides a lower b ’
the variance of an unbiased estimator of y(6). ound {y’ (8)/ 1), ¢ . E T 9 log & ) ...(17:35)
Proof. In proving this result, we assume tha i %
ar ’ t there is only a single 3
Mwﬂ:aanJEm:_.w:ncmﬂsmmbinm NWM_ ”mmeEm case of continuous 7.y, The nmmmmvwm MMMMM Cov Aw W_om hv =E T. wmm_om rv -E(1). mA wm_om hv
ealt with simil : Lo
appropriate multiple sum imilarly on replacing the multiple integrals by =7’ (6)
We further make the mozosh:m assum [From (17-33) and (17-35)] ... (17-35a)

conditions for Cramer R ~=3§=@. ptions, which are known as the Regulariy

(1) The barameter space @ s 5 non

R! (= o0, ), -degenerate open interval on the real line

(2) For almost all x = (x,, X2 s Xy), and for allg e

exceptional set, if any, is independent of

(3) The range of integration ;
‘ : atio i
differentiable under Emmm“h mmm”.a i

P
©, = L(x, 6) exists, th
= (x, 8) exis

€Pendent of the parameter 8, so that f{x, 6) is

Al [y
e T = \ 61 %1 £, 02
0

3 [ b
= g |, .
% \ = \ (075 sincef(q,6) g =f(b,0)

We have : frxn) <1 = covx 5% < Var (X). Var (Y)
_no< A_.u W_om hvwn < Vart. Var Aw_om hv
= {y' @k m<m:TAW_om &NlTA W_om h:J
= {y’ §_~ < Vart.E : W_om nvnv [Using (17:33)]...(17-36)
= Var (f) > F ...(17-36a)
E * Aa —Om FV ﬁ
Which is Cramer-Rao Inequality.

Corollary. I t is an unbiased estimator of parameter 6, i.e.,
E)=6 = y(®)=6 or Y(O)=1,
then from (17-36a), we get
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H =~ where [&)=E[{ 5578 L “ RENCE—! (THE STIMATION) )
Var () 2 l\ﬂl\\ﬂ. 1(6) v 2% ° v TATISTICAL INFE
:Q.M log N.v ~ : . ..e__, ’wn 0 _ A =\(6),
is called by R.A. Fisher as the amount of itformabiort on 6 supplieg i 2581

i i 11/1(6), as the information limit to the v, .
Xy .. 1) and its reciprocal 1/1( Variance aMz; i a constant independent of (1, % ..., x,) but may depend on 6.

t=Hxy, Xy - Xp)- § of (6) for which C R Eg@ﬁ 3 —
Remarks.1. An unbiased estimator £ 0 / ramer-Rao oy, , ZlogL=—""=|t-v0)] A8), :
attained is called a minimum variance bound (MVB) estimator. " boung in :V&_ ’ %0 A®) [t-r0] 4 A ()
2. We have: N . ,a\rmnm A= mAMv wm H.\ ?NASH_MM@\.S o
_ d =—E log L  a necessary and sufficient condition for an un estimator t to attain the lower
16) = m~ﬁa_om hv “ Aau. o8 v , Q:RWMMMM pariance is N~§ g (17-40).
Py 2 o oy Further, the C-R minimum variance bound is given by :
and b(() ua?m_om\? & nl& u@lom\v 3 2
(g Var (t) =[Y©)R/ mA &_om hv ...(17-41)
Proof. We have proved in (17-33), E A mm log hv =0 3 ) 5
“(3ut E AwI@ log & =E[A@®). (t-16)}] [From (17-40)]
ww =9 9 w 0 oL 2 2 2
(est)t =5 { (1ost) 1} - ( Zros1) v -{a@) Elt-v@) ={a@) var@y
2
d « P ‘ P 2 L __re}
=2 (Liogr).L} - (2 Substituting in (17-41), we get  Var (f) =— - —
% A & v A% log mv L {a@®) . Var ()
Integrating both sides w.r. to x = (x;, %, ..., x,,), we get (0
2 2 oo Tl WEE = Var () = |X ©) _ _ Y/(6).M(6) _ ...(17-42)
E(Z 9 (2 9 2 3.\ A(®)
mon~omh nl.mAl_olemAI_omhv =-E Al_omhv _
2 20 d0 20 (Using Hence if the likelihood function L is expressible in the form (17-40) then
_ d 2 > (i) tis an unbiased estimator of ¥(8),
. I60) =E (—logL) =-E (<L
Am@ & V E Aw% log hv g (#) Minimum Variance Bound (MVB) estimator (t) for Y(6) exists, and
a form which is more co i i ; g
nvenient to use in Ppractice. ()  Var(t) = ,Mﬁ%v - _ v(6) M6) _
Also 1) ={(2iog 1) [ 5 2 N . o
a9 J - Py’ Mm_om\ (x; 6) The importance of this result lies in the fact that C.R. inequality, in addition to
" ) , B ?MM if MVBU estimator for y(0) exists, also gives us the variance of such an estimator,
=E M X *l_om\aa av* * 0 P) : which is given by (17-42).
4 4 + X 14 . 9 .0
i=1100 | i#j=1 Amo Hom\ (xi, 6) v A 20 _QMN@. Vv Remarks 1. If y(6) = 6, i.c., if ¢ is an unbiased estimator of 6, then (15-40) can be written as :
d 2
=n.E{ = o
£ *8 logf(x. 6) “ [On using (), since x/5; i =1,2, ..., n are i1 SlogL= 152 -(17-43)
17.3.1, i . . ’ .
H:~ OO.H_QEO:“ for the Equality Sign in Cram er-Rao Inequality. Hence if (17.43) holds, then ¢ is an MVB estimator for 8 with
proving (17.32) we-used [c.f (17:36)] that Var(f)=11(6) 1 =1/ 1 A®) | +<(17:43)
o 5 , i 2. We have seen in (17-40) that MVB estimator exists for ¥(8) if
TOFSElt-yor. £( 210g1) 2 Flog L= 10 (1 y@)). 1, where A=(0), say. )

4

20
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