|

L AR > 1 ¥ ) FUNDAMENTALS OF -S).ﬂIm -
or the rectangular population (%), .a.J. order stat Ay ERENCE— . - -
i i "1 Ay, 1sti Y o>r_zm variables assume a particular se
o Ovmozmroa.w\.. is:g)=n- (Fy. )} Ay, ©), 1 E.m _m~~ u...)._._ma_ elative Enm_maoom EMWHM_MmHW w“n ..., X,, L becomes a function of the
x *1 .o theT jven X2/
e F(x,0) =P(X <) u._. o\?v&: u<— o9 M , rp_mMmm mx: X oo Mﬂmmmnn. o findi stimator for the
vay. the par . ‘elihood consists in finding an e t
W bgdt -1 <mnuu_m > inciple of maximuf rwwpwrmw%\ which maximises the likelihood function
e %Qv ":A v TR w: sOM%A@ gmﬁﬂa anHQ“AQu\QN\...\ k) ' r >I-> ® mvmogmﬂ
0 e on %—902&- ﬁwnma et ie. we wish to find 6 = (81, 0,,..., 6,
P A S L i.e., .
. n [ +n-1 ner for variations 4 o L va =SupL(®)VOe O.
Ty = = “ldy =19 L(6) A 0) voe O,i.e.,
e ow«.mc\v&\ 2 L ) L(8)>H A_8 ) of the sample values which
ion® = 0 (x1, X2, -/ Xn il
i 9 o2 . ists a function® = : Y 1L
Taking r = 1 and 2; E(Y,) = :M 1’ E(Y,) = ==+ 5 Thus if there me&mmobm in 0, then 8 is to be taken .mm an mmab”,m?ﬁ. of 6. 0 Mm usually
wf maximises L for L ikelihood Estimator (M.L.E.). Thus 6 is the solution, if any, o
1 imum
Now E A: M 1 S.v =B “ E(Y,) =6 o called Maximm - i www o i)
N DXL i s 20 vbiaped ssnptor of 6 i ” d w.o g function of L ; L and log L attain their
: \ i on-decreasin ;L anc
n+1 +1)2 n+1)? - eL>0, mnm_omhumw:. ; ;
<m—.A - K:v - A :: v . Var (Y,) MA n v {EY,2 - (EY,)3 Since b e (maxima of minima) at the same value of . The first of the two
2[ ne? 292 mx:mﬂmum,wﬂ (17-54) can be rewritten as :
=(n+1 *3 n M|®~”A=+C~ w 2 equatio 3 log L
= e Nz = -1} = __98 1 oL 28 >_ ), ...(17-54a)
A n v n+2 (n+1) n(n +2) :?/‘_éAm M.mduo = 3
N . . . m . a
= <E.A n “ 1 wsav <1 \ ~ n mA %m_om \v v - Hence(n + 1)Y,,/n is an MVUE aform which is much more convenient from practical point of view

Remark. This example illustrates that if the regu

inequality are violated, then the least attainable va
lower bound.

17-6. METHODS OF ESTIMATION

So far we have been discus
briefly outline some of the
Commonly used methods are :

(1) Method of Maximum Likelihood Estimation.
(ii1) Method of Moments.
(v) Method of Minimum Chi-square.
In the following sections, we shall discuss brie

larity conditions underlying Cy,
riance may be less than »TM D.mm“““

sing the requisites of a good estimator.

S Now we g
Important methods for obtaining suc

h estimaty

(i) Method of Minimum Variana
(@) Method of Least Squares.
(vi) Method of Inverse Probability
fly the first four methods only.

timation. From theoretical poinl
known is the method of Maxim

define Likelihood Function.

Likelihood Function. Definition. Let x,, Xy, ..., X, be a random sampl
from a population with density function f(x, 8). Then the likelihood function © 4
sample values x;, x5, ... usually denoted by L = L(8) is their joint density funct

. n I
givenby : L=ft0,0)fx3,0) ... fix,, 0) < T fx, 0). =
i=1

A A A A 5 . .
If @ is vector valued parameter, then® = (01, 02, ..., 6y), is given by the solution
of simultaneous equations :
9 : 0)=0;i=12..k
B L=—IlogL (64,6, ..., 6 p
2, log L.=255, 08~ ™1 o
The above equations (17-54 a) and (17-54 b) are usually referred to as the Likelihood
Equations for estimating the parameters.

...(17-54b)

Remark. For the solution 8 of the likelihood equations, we have to see that the second
derivative of L w.r. to 0 is negative. If 8 is vector valued, then for L to be maximum, the matrix of
9
3,96,

Properties of Maximum Likelihood Estimators. We make the following
assumptions, known as the Regularity Conditions :

log hv . Should be negative definite.

derivatives A
6= 0

. . L .
(i) The first and second order derivatives, viz., mlwwmlhmbﬂ %lm_wmnmlmxuma and are

continuous functions of  in a range R (including the true value 8, of the parameter)
for almost all x. For every 0 in w‘_ mm'o log L _ < Fy(x) and _ m_om H._ < Fy(x) where
Fi(x) and Fy(x) are integrable functions over (= oo, o).

?

063
Where EM(x)) <K, a positive quantity.

P

26°

(i7) The third order derivative

log L exists such that .logL _ <M (x),

"
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: RENCE— T fficient estimator exists or not.
(iii) For every 6 in R, i ;q_mq_oz. INFE is quite helpful in finding if a suffict v o ol
3 o A\ & log hv L dx =1(8), is finy 5 «. This theorem e, as a function of a statistic and parameter alone,
E Au 0 log wv P ®ang ty, P omer™ ressed in the for™ (17:56). 1€ P)
ion is i nt of 6. But if A an be &P : ter. If — log L cannot be
(fv) The range of integration 15 5@%3% o5 detsendl the fanga of ; 9 jogL° sufficient esHmator of the parameter. If ~¢ g
depends on 6, thenf(x, 6) vanishes O mﬁ 95@ g 5»»93 th statistic is —.mmmacm asa t estimator exists in that case.
i iation under the i . e : cien . .
This assumption is to make the differentia integra] SIgn vy L the form (17°56), "0 w&ma lation with paf. fix, 6), an MVB estimator T exits
Under the above assumptions MLE. possesses a number of impory, 4 ressed ™ 5.7 45, 1ffor a 1068 PHICL i opual to the estimator T
_ which will be stated in the form of theorems- , Py ﬂﬁﬂm&% ood equation will ﬁ No_. of 6, we have [cf. (17-40)]
. “With probability a . ot i . es g
Theorem 17-11. An‘wam?wg Theorem) . |4 o Y §§§5w §_f for poof. SinC e Tisan z_<mm o T-6_ -6 A®
s, the likelihood equation =g log L = 0, has a solution which converges in 3&&5 ps °8L=%0) .
’ : | . . :
m true value 6,”. In other words M.L.E.s are consistent. o i the solution © ¢ the likelihood equation
) Remark. MLE’s are always consistent estimators but need not be unbjaseq. Forg, MLE for 3oy @ - T, as required.
sampling from N (i, o) population, [c.f. Example 17:31), ay 2 g . Lo
x ich is both unbiased and consi PROPERTY OF MLE). If T is the MLE of 6 and () is
MLE(k) = (sample mean), which is both unbiased and consistent estimaty Theorem 17-17. :z§a>2nmr MLE of W(6)
. . : . . T) is the S . ;
MLE(c?) =" sample variance) which s consistent c&. ot unbiased an.sgé one to one function b “ﬁ‘_«a.u&oa sampling from normal population N(u, 0?), find the
Theorem 17-12. (Hazoor Bazar’s Theorem). Any consistent solution of the Iy Example ‘M..mmum. aﬂ tors for
- likelihood esti

equation provides a maximum of the likelihood with probability tending to S:.@E__: maxi

size (n) tends to infinity.
Theorem 17-13. (ASYMPTOTIC NORMALITY OF MLE’S). A consistent Solution

likelihood equation is asymptotically normally distributed about the true valye Oy .;a,
. 1
asymptotically N| 6, —), as# — eo.
A xoavv
A
Remark. Variance of M.L.E. is given by : V(6) = mwlvu L
2
* E A.. %u log L
Theorem 17-14. If ML.L.E. exists, it is the most efficient in the class of such estins
. Theorem 17.15. If a sufficient estimator exists, it is a function of the M
Likelihood Estimator.

Proof. If t = {(xy, x,, ..., x,) is a sufficient estimator of 8, then Likelihood F
can be Sw_zmb as .An.& Theorem 17.7): L= 8(t, 8) h(xy, x5, X3, ..., Xy | 1), Srmaa_
the mmbm_Q function of ¢ and 6 and h(x,, X3 ..., X, | t) is the density functiond
sample, given ¢, and is independent of .

log L =logg(t, 6) + log h(xy, x,, ..., x, | 1)

dlogL_3 -
» 3 log g(t, 8) = w(t, 6), (say

Differentiating w.r. fo 6, we get: ) A

which is a function of t and § only.

M.LE. of 8 i gi dlogL _
E. of 8 is given by Junamllo S w6 =0

A
,, B W = :awu Some function of sufficient statistic

= = 8) = Some functj
Hence the theorem. ction of M.L.E.

and

(i) pwhen o is known, (ii) o2 when p is known, and

(iif) the simultaneous estimation of pand .
Solution. X ~ N (1, 0?), then = = N
m— 1_ox ﬁlFle.ltY:uAllo.wllv exp *1 )X Ak_.ltv \NQN_
" e 7w bl 20 2n i=1
n
n _n 2_ 1 Y
logL =-7 log (2m) -7 log @ 202 ~.M.~ (xi =)

Case (i). When o2 is known, the likelihood equation for estimating p is :
n

-L 3 2(m-w(-1)=0

d
—logL=0 =
on & 20%i=1

n A n
= 2 (-p=0 = p=13 x=% o (®)
i=1 =1
Hence MLE. for 1 is the sample mean X.
Case (ii). When | is known, the likelihood equation for estimating 6% s :
? 1.1 <
2 = e Ay —n)=
do? ogL=0 = 2702 * 204 muMH (xi=py =0
n
= -1 )2 = o ;
. qn_.W (xi-pR=0 = o?= wmm (2 — )2 (")
se (ifi). The likel; . . B
) X e likelihood equations for simultaneous estimation of L and ¢? are :
—1 L= 9 -
o 285=0 and o log L =0, thus giving m =X [From ()]

: (% = Xx)? = 52, the sample variance.

>~ Hx >
QH! M R‘lnl.—
: muHT 5 lm_.

"M

=y T
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17.34 F Imzﬁ_oe, d NFERENGE—! (THEORY OF EST!
i t 9 7_ 0>_| X e m .. X =
Important Note, It may be pointed out here that though sTATIST! 5 ..mz =E “- (- wm: =RE@= [ E(¥)=A
A 9 (=n+— =
NADVHMAMVHt\mAQ~v"mAmNVﬂQN “mﬁlmyA " A
. y A
Hence the maximum likelihood mmﬁ_Bm_oMm gﬁw\ww..mm.v Need ngy neg V(A)=A/n .
unbiased. Another illustration is given in Example : . %y .<on distribution with parameter A, we
Remark. Since M.L.E. is the most efficient, we cO nelude that in Sampling ¢ (b) For the poisson™_ Z_1) = y(%, ), afunction of x and A only.
population, the sample mean x is the most efficient estimator of the Populatioy, :s“,: 3 gL = e \:y\m - =A Ml Hv =y(x, M),
imum likeli : N o o
Example 17.32. Prove that the maximum likelihood estimate of y,, P A Theorem 17-15), % is sufficient for estimating A

(cf wmu.“_._nhm Xy, Xz ---s Xy denote random sample of size n from a uniform
le 17-34. 1 22 e

2
population having density function : P (@-x),0<x<a,forq sample of , Hence 4 ) B<wm
fix,0)=1;6-35x50+3.

o it g,
x being the sample value. Show also that the estimate is biased. % Examp thpdf
o . . . 1 1 A
Solution. For a random sample of unit size (1 = 1), the likelihoog population ¥

e
U i MUL.E. for 6. 1 1
hAQvu\Aa,nvu%Apuavn0AaAp Obtain MLE-f 1,0-35x50+;

L= N\AQ\. X1, X2 <or R:v = ‘ O\ elsewhere

o p d Solution. Here

Hselipodizqation gives da log L= dot :om 2-2logay log (@~ Vo fxx y s X(n) 15 the ordered sample, Eoﬂ

s IW+~|HQ = 2a-x)-a=0 = o=2y e @lW.MREMR@M...MREM®+.~.
o oa-x : imum if

Hence MLE of a is given by : a=2x. e M WMM_M:E mm“wx Xm <O +W = 0sxy+ W and X |W <8

mumﬁ.r Hence every statistic t = }(xy, Xy, ..., X,) such that
2 3

1

[+ 4
E@=EX) =2 xfinadrs L [* s (o-nyar =4
%= St (X1 X -y Xz) SX) +3, provides an MLE. for 6.

o? ol

Since E (8) # o, & = 2x is not an unbiased estimate of o

Example 17.33. (a) Find the maximum likelihood estimate for the parames|
Poisson distribution on the basis of a sample of size n. Also find its variance.

Remark. This example illustrates that M.L.E. for a parameter need _..5~ be unique.
Example 17.35. Find the M.L.E. of the parameters ocand A, (A being large), of the

A
. distrbution s fix; 0, ) ==~ (2) e M/ 0110 < x < o0, 150
(b) Show that the sample mean X, is sufficient for estimating the paramete Ii ) ‘o
Poisson distribution. You may use that for large values of A,
Solution. The probability function of the Poisson distribution with parané v(d) = ml»w log I'(A) = log A~ Ml» and  y1(A) = w + mwm e (®
= . -A Ax .
givenby PX=2)=fx,3) = nu_ x=0,1,2,... Solution. Let xy, x,, ..., x, be a random sample of size n from the given

Likelihood function of random sample xy, x,, ..., x, of n observations f® P opulation.

n n n
. " e Then [ = sy =( ) (M) ety . a1
population is : hu.:_\?.‘»vuu _mu»_w. _ n mmgsﬁa_\a\y.v A_ng .AQV .mva Q..W Bv._.m (x)
i= 1° XX, !
n n
. i, " log L =-71log F(A) + mA(log % - AS x -1 2 logx,
K _omnu;=»+§_om»:M log (x; ! e 8 T'(A) + n\(log A - log o) a..Wx.i v_.i 0g Xj
i=1 is th i
The likelihood equation for estimating }, is ; e Bomb: O 51Xy v 3 then
- —O O"WM , — : X
3 g log x = nlogG= X logx,
%—OWNHO = l=+=lvmqﬂo - A3 Lt g Xi og oot g Xi
- lo L=- A -
. o g n1og T(A) + nA (log A — == -
Thus the M.L.E. mE.»_mEmmmEEmEmm:m The variance of estimate i 8" where G i (log A - log a) o+ (h=1).nlog G,
1 { S Independent of ), an ¢
5ot 2 ‘
v U g \o8
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17.37
i O RY OF ESTIMATION)
; us estimatj g—I (THEO ; e
The likelihood equations for the simultaneo On of ¢ ang ) % STICAL |NFERENC x. bea random sample from the uniform distribution
2 1ogL=0 (2 . 17.37. (a) Let Xy X2 227 70
2 logL=0 1) and 5 ) Example 6> 0
* Ao 14X A withp4f-* w\cQAx‘ >
n - - == -
(1) gives ..|p|+w.m.=x..o ~ & = Us} fix, & 0, elsewhere
. *) . . Q
i large values of ), on using () . likelihood estimator for 6. -
(2) gives (for larg; 0 & optain he mazimum i nd B for the rectangular population :
=A._omw|$+=T.A_om»|_om8+?w :npm+=_omn,c sowsﬂ.i:mz.rmm.\i oa H ,
R W 1 aexs

x . = E -

= P+T|_om9+_ommlwv =0 fix; o P 0, elsewhere
2

7) = n 11 w. - W n 3 A.-v

= H+Ni_omm|_omx\w ’ ] jution. (@) Here L= ,_._\?.éum.m.:c Aav
x Sol . i=
- W = O = v< = IIH/
= 1-2 _omA nv 2log (x/G) ) log L =0, gives
: .M s A Likelihood equation, 71z, =

Hence the ML.E. for c and A are givenby:  a=% and )=

Toin
. o 2log(yg
Example 17-36. In sampling from a power series distribution with pdf .
fix, 0)=a,6"/y(6); x=0,1,2, ...
where a, may be zero for some x, show that MLE of 8is a root of the equatign :

X= els,% = W(6), where 1(6) = E(X).
Solution. Likelihood function is given by :
n LY\ n MH..
L =TI fix, 0= TT (22 - 8
..u_.hk ) _.m A€§v A._uum nR_.v [w(®)]"
= logL =

n n
.M.~ loga +log6. Ma xi-nlog y(8)
I= 1 i=
Likelihood equation for estimating @ gives :

d M..x ny’(@ - . .
ZlogL =0=%%i_ny'®) _Lx ¢ o) _
% 8 8 Tye T X === ), ()
Hence MLE of 8 is a root of equation (*). We have
EX) = T xfx0)= 3 ;faz
- x=0 x=ol Ly
Zfx0) =1 5 3 4

=1 = ¥ g, 0:=y(@)
x=0

}

. . . = O €A°v
| Differentiating w.r. to 6, we get

WTx.x?L_ =y o

0.y’(6)

v(6)

X

X

zor

le
70

MAVO = _._.AGV = MN.
as required.

"_-0 or m = oo, Obviously an absurd result.

WTiomsuo = o

we locate M.L.E. as follows : We have to choose 8 so that L in (*) is
In this case L.E. as follo ‘
maximum. Now L is maximum if 0 is minimum.

Let X, Xy, ---» X(ny be the ordered random sample of n independent observations
e GV\ A YIRXRY] .
from the given population so that 0<x;)<xp<...<x,; <0 = 02 X(n)
Since the minimum value of 6 consistent with the sample is Xy, the largest
A
sample observation, 6 = x,). .
M.LE. for = x(,) = The largest sample observation.

(b) Here L Aulwlpv._ = logL=-nlog(B-o)

The likelihood equations for o and B give
d

oo

(™)

n
B-a
9 -n
op B-a
quations gives B-o=0oo
by some other means,

logL=0=

and logL=0=

Each of these e . ) .
an obviously negative result. So, we find
MLESs for a.and yneg
Now Lin **

Possible valye and

Xy ..., X(n) is an ordered random

sample from this population,
S X < B Thus

. B 2x4) and a < x;. Hence the minimum
E:m_mﬁmsﬁ With the sample js X(m) and the maximum possible value
© sample is x. Hence L. is maximum if f = x(, and & = xy).
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17.38
- L FERENCE—! (THEORY OF ESTIMATION)
ML, for and p are 6V % ; TiSTICAL IN ) imum likelihood estimate of 6inf(x, 6) =(1+ 6) x,

a ample observatia a .39. Obtain maxi ize n. Examine whether this estimate is

o =xq) =The smallest samp n E"'mp;esed 0: n independent sample of size n. Lxa

2 le observation, 1, ba

Example17.38. State as precisely 45 pOssivie 1he PIOPETLcs of ey off =M pme-a+or( 1 x)

i=1

M.L.Es. of q.and B for a random sample from the exponential population . 'E'% Solution: L(x8

flx; 0 B =ypeta=e, asx S f>0 and yobeingacoygy

Solution. Here first of all we shall de?ermlne fhe Constap, ,
consideration that the total area under a probability curve is unity,

Jog L =nlog(1+9)+9- El log x;
yo&% = .
=4 Y logx=0 = 11+9'Zlogx,'+,210gx;=0

0 $x-0) 2
yoj exp [-Bx-a)]dx = Yo ,,___p_aﬂ = -%(0‘1%1 " Slosl =" 5
a -n
fe;0,B)=Be P9, 0 x<eo 3 & "-” 1= —-1 (?
If x,, X, ..., x, is a random sample of n observations from this popu]aﬁon,u\ ,El log x; log ( il='[1 x,-)
n

Lzl.I:-Ilf(x""a’ B) = prexp [—B El (x,-—a)] =fpn exp[ -n o =[(1+9)”.( iljll x;9~1] ( '_1:11 x,)

n A
Factorisation theorem, T =( I x,-) is a sufficient statistic for 6, and

|
log L =nlogB-np(x-0) Also

The likelihood equations for estimating & and B give

9 Hence by o
_IOgL=O=nB B N ) | )
da yeing a one to one function of sufficient statistic (11;11 x,'), is also sufficient for 6.
a TUT H x> : . . . B . .
and 5ﬁlog L=0= B n(x-o) . Example 17-40. (a)Obtain the most general form of distribution differentiable in 6, for
vhich the sample mean is the M.L.E.

Equation (**) gives B = 0, which is obviously inadmissible and this on substi ; istributi 1
(“T) gives & = =, a nugatory result. Thus the likelihood equations fail to giv::;ﬁ () Shou.) t}tuz 6 Ehe aisfneg::f);atlh: g:rgn;;(;gs iSETROEOR:for phich the MALLE. o 8
estimates of a.and B and we try to locate M.L.Es. for o and B by maximising Ld,-,:’“'“'"eter B1s the geome i p

L . . -} 3 e'
is maximum = log L is maximum. fix, 6) =( %) %exp {w6) + &x)),

_ _From (_"), log L is maximum (for any value of ), if (¥ - ) is minimum, whidi
if ot is maximum. where Y(6) and &(x) are arbitrary functions of 6 and x respectively.
Ifxq), x), ..., X(n) is ordered sample from this population then a xSty

n n
< X(n) <o, 50 that the maximum value of o consistent with the sampleisz, Solution. (@) Wehave L =[1f(x, 0) = logL = 3 logf(x, 8)=3 logf, [f=f(x, 0)]
i=1 i=1 X

A
smallest sampl ion, i = i

ample observation, l'le" a iu)_ ) he summation extending to all the values of x = (x1, Xz, ..., X,)in the sample. The

Consequently, (***) gives ~=¥-q=%-x el lon | : :

: =¥-xy o B=- elihood equation is : —logL=0, ie. =
p x-x % 8 ik ae(xZ(Ing) 0
Hence M.LEs. for 0. and B are given by : " Bl 2

y: (l=X(1) and B-_-_ = i1 = 3 : X
X -xy x 00 gf=0 = xzf'86=0 0

Remarks 1. Whenever the given ili ion i ]
" " probablhty function involves a constant and the .
the variable is dependent on the Pparameter(s) to be estimated, first of all we should deted We are given that the solution of (”) is: 6= —1 Yx = no = = (x - 9) =0 (“)
Yx x§ e

th t i ", . i
e c;)n; ant bti ta:untg ::,e total probability as unity and then proceed with the estimationf Since this js true for al va]
. From it .
€ fast two examples, it is obvigys that whenever the range of the Vﬂ; 1 ¥ Vvalues of x and 0, we get from (*) and ),

involves the parameter(s) to be estimated, the likelj ve U
. S , the likelihood t fail to give "™ == - ..
estimates and in this case M.L.Es are obtained by adopting So;g l;:hl:]:ppmach of mad® f o A(x-), where Ais independent of x but may be function of 6.

L or log L directly.

P
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; bitrary function
R = y(6) is any ar of g
Let us take 4 =2 , where ¥ W

%logf = %:%(x—e)-
Integrating w.r. to.  (partially), we 8¢t
N_Jf’!(-l) d6 + &(x) +k,
logf =(x-6) ol
where &(x) is an arbitrary function of x and ks arbitrary constan.

logf =(x—e).-§§+w<e)+§<x>+k

o)
Hence f = const. exp [(x- 6) » v(0) + &(x),
which is the probability function of the required distribution.

articu weta L -
Remark. In particular, if we take. y(8) =5~ and §(x) = _xzz , then
.
f =Const. exp {(x-9),0+%__’:‘2}

= Const. exp {— % (x2+ 02— 20x)} = Const. exp [

which is the probability function of the normal distribution with mean @
(b) Here the solution of the likelihood equation

d d
— =Y Zlogf=0
aelogL ‘Z og f

is 8= (%, xp, ..., x )/ =

X

Since this is true for all x and all 6, we get from (*) and (**),

g—elo’g f=(log x-1log 6) A(0),

where A () is an arbitrary function of
Integrating w.r. to ¢ (partially),

log f=log x [A0)de -JA(6)log 8 de + E(x),

where &(x) is an arbitrary function of alone,

If we take [ A(6) d6 = A1(6), then

8 and is independent of x.

log =10g.x. 4(0){ A0 g - [ 4. %dﬁ] &)

_ A
410 10g (¢/0) | 20 4o 1 gy
Let us take A,(6) = eg—‘;’, (

function of 6 alone.

AN

T,

o

and ““it"ilizm

where k is a constant w.r. to 4, b, c and 62. The M.L.Es, fora, b, c and g2

=1 . stimating 4, b, c and 02) :
loge-anlogx or X (log x-logf)s

3 ;
jz(xll a5+ xy

suggested by the answer), where y = y(0) o

=

STIMATION) 17.41

EORY OF E
1 GAL INFERENCE ! =
STATIS j N 1 + E(x)
log f =eg'g‘l°g (w/0)+ | 5990+5

x)o % 9
- egﬁg.log (x/6) + (8) + &(x) = log [(e) } + () + &(x)

o3 :
£ = 8)=(%) - exp (v(®) +5@)

Hence ize n is drawn from each of the four normal populations
le of size n is dra i 7
xample 17-41- r/?mi‘;:”zg_ 7fhe means of the four pc;pg;a?tzons area +b+c,a+b -,
ohich has the 5“": Za What are the M.L.Es. fora, b, ¢, an !
a-b-c
j-b+c an

i dbyx;i=1,2,34j=1,2..,n
bservations be denoted by ij :
Solution. Let the far‘l;:; the four normal populations are independent, the
since the four Saﬁipoi all the sample observations xj, (i=1,2,3,4,;j=1,2,...,n),
2 tion

ikelihood fun€ an 1 ﬁ 5 (r o2
= _l_) .exp 1= —— & & (xi-w),
L—(@ro 20%i=1j=1
1,2, 3,4) is mean of the ith population. Therefore

is given by :
where t;, (i=

L _(._1_)4". exp[—’l;{z,:(xlj_ul)z)+Z(x2i"u2)2+§(x3j‘u3)2+12(x4j"“4)2}]
“\Y2ro 20° ]
1 —a—b-c)2 —a—b+c)2
N logL=k—2nlog0‘2-£;{§(x1; a-b=cP43(xy-a-b+)

+ Z(xsj—ﬂ+b-0)2+2(x4,—a + b+c)2},
j j

are the
iolutions of the simultaneous equations (maximum likelihood equations for
2logL=0 ¢)) 10 L=0 @)
o) o 25108
2 L=0 d
P ~(3) S 10gL=0 (@)

(1) gives : -21? {‘]\:(xl,- —a-b-c)(-2) + IZ(xz,- —a-b+c)(-2)

+ 3:("3:' ~a+b-0)(2) + Z(xy-a+b + c)(—2)} =0

+X4) +n [(‘ﬂ-b—c)+(-a—b+c)+(-a+b—c) +(—a+b+c)]=0
nooy
i§1(i§1xij)+n(~4a)=0 2=4l~§. i Xji=Xx
n. =

L]

(2) gives : 1

1j=1
‘Z\(ﬂ{lZ(xlj—a-b_

€) (<2) + jZ(xz,- —a-b+c)(-2)

+¢?.:(3€3,--11+b—c) (2)+§,(x4j—a+b+c)(2)} =0
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1743
- 24 ESTIMATION)
o Syt IoT )Z.ij 33?‘41 . \ o \FERENCE—"! (THEORY OF
g +n[(_a_b—C)+(—a- +c)‘(‘u+b\c) ATIST! M”O'Maﬁdo%
- = S 6 = 346 .
Sy + Tag= Y3~ X 4nb=0 | Yoo robability cannot be negative. Hence,
= 1 A ing the P A
1 gy, ; eing . —-0. -
3—1(12x1;+%2"”7m’ ) = bagy,, B0 MLE. of 8is givenby 8 =026 %)
“4\n Y. . \ .0, we get
h sample. A ating (1) again partally w10 O, WE
where ¥; is the mean of the A = = .= = pifferentid (n+1ny) M
: 1 e C=(x1—x2+JC3—X4)/4 3’21/055__,:&1_-_-—2’12"‘62'
Similarly (3) will give 5 e+ (-9
m, 1 {Z(x--a‘b‘c)2+2(x2'~a~b E(n,) + E(n3) _ E(14)
. =120 = \*2 + E(m) 22T o3, 2
(4) gives: 2 20 : j cR _E ( %'L) - (,2_:;72 T 1P P
+2(X3i—a+b-cpy n n2+6) n(l-6) nd
' Fy R o oy e
A A A A2+Z(x 2 g+’c‘)2 | (2+6) (1-96)
1 _h- ;- -
&:E{:);(xy—a b-c) 2 % - o, s n=Yn;=173.
A B 4 2
+Z(x3j—a+l/7\~g)z+ & 42+6) 2A1-6) 486
. N Tl 1,1l )30
Example 17.42. The following t;zble gives p:oléal;z.htz:s :z:ed observeg g =173 (4_5-27; 2 X074 | 4x026
classes AB Ab, aB and ab in a genetical experiment. Lstimate the pargmey,,
maximum likelihood and find its standard error. Oty S.E 6) =116 = 3(:1 - = 0:0576 [cf (17-55), Theorem 17-13)
Class Probability Observed frequency e
AB l(z +0) 108 17-6-2. Method of Minimum Variance. (Minimum Variance Unbiased
¢ stimates (M.V.U.E.)}. In this sec‘tion we shall look for estimates which (i) are
Ab 41( 1-6) 27 nbiased and (i7) have minimum variance.
4B 1 1-9) 30 If L = I1 f(x; ©), is the likelihood function of a random sample of n observations
4+~ i=1
; 1 Xy -, X, from a population with probability function f{(x, 8), then the problem is to
ab 29 8 nd a statistic t = ¢ (x}, %, ..., X,), such that
Solution. Using multinomial probability law, we have E®) = }:,. tLdx=y0) = j - {t-v0)} Lax=0 ..(17557)
- _ n! ) » o
b O T P PR Spel B VO =gt~ EorLaxd "
. t-E(t =| = 2
= logl =C+mlogp +nylogp, +n, log p3 + n4 log py, A~ EOP L dx .[ [t YOF Lax -+-(17:58)

s minimum where
where C=1Io n! .
8 n1n, 'ny Ty, T |18 @ constant. J“ p
_ _.. #xrepresents the n- i i T N
O8L=C+m10g (240 /4) 41 log (1-0 /) g Lo (1-0/4 1 erioldintgraton [~ [* . [ asde.. i,

Likelihood equation gj other word, ..
gives: S, We have to minimise (17. . »
dlogL n " ~ For detaileq discussion of thj; e (17-58) subject to the condition (17:57).
g ae& - m _ ﬁ S M _ 0 lao I“equah'ty (§5177) s method see MVU Estimators (§ 17:5-2) and Cramer-
- . = ( 1-6 ¢ K‘7.6-3. Mefhod of Momen's
m = ";;"3) +1 g ¥ Xarl Pearson This method was discovered and studied in detail
-6 ¢ Letf(x. g
Taking n; = 108, =27 1, = 97+ +§‘aramet Wy O, 6;) be the dens; .
2544 n3=30and n, = 8, we get 108 _ iﬁl i €156,,0,, ..., 0. If 1, denotese?}flty function of the parent population with k
= 1086 (1-9 2+6 ¥ e rth moment about origin, then
- )-576(2+9)+8(1_9)(2+e)=0 R 1736“1
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° 17-45
" N y NCE— (THEORY OF ESTIMATION)
B g dr, (r=12 k) {CAL INFERE ' |
W = j X flx; 8y 0y, .- O B2 $TATIS o d 6 m, whete m;’ and m;’ are sample moments.
r = - 00 1 - . , _ ’
o iy e Wi > f“:mCﬁO“ e rom g % b Hence a= m My distribution :
general [y, Hy, ..., Pk 1e of size 1 from the g - "4 - bl Posson it '
. B s - .44, For the
Letx,i=1,2,..,nbea rando

method of moments consists in SO

lving the k-equations (17:59) for g p(’PW gxample 6

m X
emmyt 1 €72Mg

L+ ] ,'x=0,1,2,...

. " =P(X=x)='2" X! 2 x!

ot s ing these moments k3 7 =1,2, . p oy p(x) N ey
of py', 1y, ..., i and ihen l‘elilaCTg ﬁ =8y s ey Ythe%; s for iy and by the method of moments are : i’ £\ g’ = i’ =y’

TR =Y; ’ A B tima :
moments,  eg., 0;=6;(k1, M2 hd = ) Ly, that the €5
foin i e. koW
where m/ is the ith moment about Ong,\m N e sag\p th k solution. We have emm 1y emmt L % my o (®)
..., 0y are the requj X - 1 RALLL R ST =2

Then by the method of moments 1, 82/ k quired eg p2 3 xp®) =3 ,Eo TS i _ T :
8y, ..., B, respectively. . Moy nd summations are the means of Poisson distributions with

Remarks.1. Let (x, 1, ..., x,) be a random sample of size n from 5 POPulaiy ;1 ce the first and seco
fx,8). Then X, (i=1,2, ...,n)are iid. = X!, (=12, ..., n)are iid Hency;, ™

then by W.L.L.N., we get ,

’
n ’ )
LS woE@n = miow
i=1 4
Hence the sample moments are consistent estimators of the c°"°5PONdingM
moments.

2. It has been shown that under quite general cor}ditions, the estimates bt
method of moments are asymptotically normal but not, in general, efficient.

3. Generally the method of moments yields less efficient .estimators than theg
from the principle of maximum likelihood. The estimators obtained by the methog iy
are identical with those given by the method of maximum likelihood if the P
function or probability density function is of the form :

flx, 0) =exp (by+ byx + bx? +...)
where b's are independent of x but may depend on 6 = (8,, 6,, ...).

(17-61) implies that : L (x;, x,, ..., x, ; ) = exp (nb, + b,Tx, + bXx?+...)

= %logL=a0+a,2x,-+az£x,-2+a32x,~3+...

d . ob
where a = ﬁ(bi), (i=1,2,...) and ay= n;:’

Thus both the methods yield identical estimators if MLE’s are obtained as linex#0babilities

of the moments.

)

_wh
Example 17.43. Estimate o and B in the case of Pearson’s Type III distribufity,,

method of moments : fix; o, B) = il xlePx 0<x <o
(o)
Solution. We have

=E—_— = I

TR B jnx'x“‘le‘p‘dx B No+r) _T(a+r)
]‘(a) Bu +r I‘(u) Br

' =r((1+1)=g, 2;=r(u+2)=(a+1)a

Ma)p B (o) p? p2 >
W’ a+l 1 7 B
., ST—==+ -_HK oa__H—
(he O a 1 = 0=—- p=—=

.
My — W kh

ce jf 13 (xﬁparameters my

robah]',:

ere N is a known number and o, 0 are unknown parameters. If 75 independent observations
X yielded the values 0, 1, 2 with

and m, respectively).

W = X xz_p(x)=%{é;oxz.(e‘":!ml’)+x}:::,oxz.(f_'%ni)}

i+ i)+ n2 4 )

{
{(my + o) + (me? + mz?) (")

’

W =

= % {2y’ + ma? + 21 = ma)?) [Using (*)]

= % (2" + e + 441y + my? = 4y py’)

py =y +md 207 = 2u'm = my? = 2mypy’ + (2017 + Wy’ - 1) = 0

’ 2 _ ” ’_ ’ , ’ -
< 2 +Vap, 42(2u1 Ll il ) BTN eI

Similarly on substituting for m, in terms of m; from (*) in (**), we get
mp? = 2maly” + (2142 + Wy’ - W) = 0

A

ma =y’ £V Hy =y’ = 1y
Example 17.45. A random variable X takes the values, 0, 1, 2, with respective
1 LAY

Sod(i-8) e 8-2) By T3(r ),

Solving for m,, we get

e method of momory. frequencies 27, 38, 10 respectively, estimate 6and o by
Solution,
EX) =0.[—1+ 1-8 } [i o] 6 0 1-o 0
N W)+t m*z(l‘N)}”{m*T(l"ﬁ)}

1
%* 1‘%) [%*F(l-a)]

(®)
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1746 AT]Q EORY OF ESTIMATlON)
o o 0 )} +22. [_9_ +1-0 Y L|NFEF‘ENCE" (TH tic ¢ from a given sample, the problem is,
ER) =12 [ N7 (1 N ANT T3 (1 N %) ATISTICA od the value of the ;;la'ttl;::atements about the unknown parameter
. t: in obabill ” s ti i
o) [Era2t-0)= 2s(y AT e ome esson e e as been d e vo Npeioidhtns gl
o -0)| = 55 9 : ; e
(-5 W 1-y) (23 s option o L o Conerce teral
) gin d by the .
9 swere %) or 1%) and then determine two
3a(1-5 ell 21 lue of o (5% or 1%
= My’ =2"'2—N"2a( N) :elo\h“ choose Once for alg‘t’:‘i small va P(c;<08<c I h=1-a -.-(17-65)
: tribution is : o such that: idence limits or
The sample frequency distribution i t;\ts say, c1and &2 d ¢, so determined, are kr}o}v\vrt\hzs x:lx\\ekrfg:;rﬁn e e
m | 0 1 2 ns . quanti(fieii Ctlhi;nint:;val [c1, €2) wit}ﬁmdvtvhl"\alcconﬁdence intoroal SR ot
: n ie, is calle
f 1 27 » o 1 iducial l": paraameter is efoCted to lie, s ¢
’ 8, =lype_l Jatio cient. . . e
u = 7]\7 Y= 71—5 (38 +20) =7 W =y 2fxl= 75 (38 4 40) % P:E:d the confidence coeﬁ;i) 06 (e 0T 08 shall get 95% (or 99 /Z)h ct(;\r;ftldence limi
. TRo¢ . eo =V ot
Equating the sample moments to theoretical moments, we get A Thus if we tdal: and ¢, ? Let Tyand T be two statistics su -~
P t fin 1 ees
1 a(l 3)‘§§ = %(1-%)= ‘%=% o P(Ty>8) =0 ..-(17-66a)
- E B N/~ 75 = .
P(T, < 6) =02 b bined
: . . (17-66) and (17-66a) can be combin
ituting in (** t 2 e 3% .78 = 6 =R and e constants independent of 8. ) ...(17-66b)
Substituting in (**), we ge IN 7575 %N where 04 and 02 2T P(T,<0<T)=1-1,
. . : g 7-66a) may be taken as
N o _42)_17 A to give ot and T, defined in (17-66) and (1
- Substituting in (*), weget (1 - 75) 75 = 0= % where @ ; (;'1 +§ fns(tla;lg;l)cs " 2 th d
A efine ulation with mean p an
17-6-4. Method of Least Squares. The principle of least Squares jg ™ c;and Czex ample, if we take a large sa{nple from a normal popula
curve of the form: y=fx,a0,ay, ..., a) For

where a/’s are unknown parameters, to a set of # sam

of 1 e oy
i=1,2,...,nfrom abivariate population. It consists in mini

mismg the sum i

n
of residuals, viz., E=X {yi-fix, a0 ay, ..., a,)}2
i=1

subject to variations in ag, ay, ..., a,.
The normal equations for estimating ag, a,, ..., a,
oE

—=0,i=1,2,..,n "
oa;

are given by :

1. In chapter 10, we have discussed in detail the method of least sy

regression (§ 11-12:1).

2. If we are estimating f(x, a,, a,,
the x’s being known given values,
Y’s will be MVU estimators,

17-7. CONFIDENCE INTERVAL AND CONF

' Letx;, (i=1,2, .., 1) be a random
involving a single unknown parameter
of the parent distribu

+@,) as a linear function of the parameters 4
t square estimators obtained as linear fundit

IDENCE LIMITS

sample of 1 observations from a]"’f;‘;l
) 8, (say). Let f(x, 8) be the probabil
tion from which the sample is drawn and let us supp
“+ Xy),@ function of the samIr"le,Vahlé
meter 8, with the sampling distributi®

distribution is continuous, Let t=#(x,, Xy,
estimate of the

g(t, 6).

population para

s o -
| population mean and the interval (x - 196 Nl 1.96

Z =_1'_—_E_ ~ N(O/ 1)

s n
standard deviation G, the o~

P(-196<Z< 1.96) = 0-95 (From Normal Probability Tables)
and -196=4 =
= o - (o]
x= ~196 L < p<x+196-2) =095
- p(-196< ;N‘% <196) =095 = P( %192 < p 4;1)

Thus ¥+1:96 —_ are 95% confidence limits for the unknown parameter y, the
n

%) is called the 95%
n

confidence interval.

P(258<Z<258)=099 or P(-258< —\j‘i <258) =099

T -
Also o/\n

¥-258 L <pn< %+258-2 ) =099
P(x 258 T <ps ¥+ W)

- c
Hence 99% confidence limits for pare: x*258 N and

LI

99% confidence interval for pis ( X-258— , X +2.58 l).
" n N

is not known and its unbiased estimate S? obtained from tt

samples, is used, However if n is small, Z = x-p

S/n

ined by using Student’s ‘t’ distribution.

Remarks 1, Usually o2

isnot N (0, 1) and in this case the confidenc
limits ang confidence intervals for W are obta

L_



1748 FUNDAMENTALS OF ATHEM ’

AMig 17-49
ist more than one ORY OF ESTIMATION)
2 Itcanb that in many cases there exis set Y g —I (THE .
with the same z::g: . n:e gefﬁciz'nt. Then the prob}em arises ;s to wh; p:“flq \ (CAL |NFERENC e largest observations L of a sample of n observations from
regarded as better than the others in some useful sense and in gy, - ) Q"}\B jo 1747, ShoV tht;f !stty function
shortest of all the intervals. g y Wel ‘ Exﬂmlpr distfib“twn with aen
Example 17.46. Obtain 100 (1 - @)% confidence interyg, for g \yrectans®’ 1 0<x<0 ()
(a) 6and (b) 02 | distribution : e
and (b) 62, of the normal di 1 (x ) e) p%‘ fix, 0 = 0 I
1 - - oo 1
f(x,e 0')=-‘_‘r——exP[ 6 ]’ <X<o L_" 4&[051‘56
Solution. Let X, (i=1,2 % n) be a random sample of jstribution o) =n( e) o 1
olution. p=1,2,.,1 S S . . =ny™l, <
n. Let X; (i n 12& 1 fro " s the & sistribution of V = L/@is given by p.d.f'. h(v) =nv™1, 0 SV '1
fix;8,0)andlet: X= % T X, s= —. (X -Xp, sz = { n ot ghow that the for @ corresponding to confidence coefficient aare
i=1

limits
T2 that the confidence
LS 0‘1 Hence dedc® L and L

— i
(a) The statistic t—7f follows student’s t-distribution With (, _ (1-a)

, X, be a random sample of size n from the population (*)
freedom. Hence 100(1 - )% confidence limits for 8 are given by: d‘m solution: Le)t( X1)’( i(z n)" The distribution of L is given by :
and let L = max v F() is the distribution function of X given by :
PUtIsty=1-a = P(I X-01s Tn ta) “1og B oy dlFI ) e ()i

L _L ik o<L<o
(X by —fse<x+t F) F(L) =] fx, e)d"‘e Leth "(e)

of transf()[ |||atiOIl 1S 9. HEIlCe p.d. . h . Of V 1S ¢
‘Nhere t "Q ‘y e the lacoblan f )

H 1_ | =no™1,080<1,
required confidence interval for 8 is : (X ta _ X+t \r) hw)=no*tg 1]
N0 L dent of 6. )
) Case 0 i ko and el (s whxc;i ‘S:::i:\p:‘e confidence limits for 6, with confidence coefficient a, let us define
IXi-W?  ns? 00
e o = r;iz ~ xz(n) vy such that ~ )
. - Plog<V<1) =o = L h(v) dv =a (%)
If we define X2 as the value of X such that P(y2 > Xol) I PO =g b
= 1 g . Vo = (1 __a)l/" _“(tu)
where p(x?) is the p.d 2 distributi . = nl vrlidy =a = 1-v/'=0 = .
intorva) l;‘g)wen byp f. of x2-distribution with n df., then the required confg N

- = - /n = ‘1 -
P < F **) and (***), P{(l a)l/n<V< 1} a = P {(1 on<e =< } N
{%21 ~@2S2<x, /2} = rom (**) Le

2
* = P[le-(ﬂlz)s%gxza/z}ﬂ-a

L
ns? P [L <0< ] =a
Now ‘@<xan = <ot ang Crenss = @s il
a2 o? Y Hence the required confidence limits for @ are L and L/(1 - o)!/.
Hence (**) gives : P [ xzsz <ot s } t1ig ] Example 17-48. Given a random sample from a population with p.d . :
2 P ’ . fix, ©) =1 0sx<6
where 12/, and y2, . '
~(a/2) are obtained from (*
Thus e, 95% config ()by using n d f. show that 100 (1 - 0)% confidence interval for O1is given by R and R/y , where y is given by
o ence interval for g2 jg P ( rzns <ol< r;s2 )= % ¥ n-(n-1)yl = o, and R is the sample range.
X o025 X o975 Solution. The joint p.d 1
O 5 Af of x,x,, ..., : =—,0<x<0
Case (ii). 8 is unknown. In this case the statistic (X X7 _ ns? o It FIpA ol Sy o tulo gventy " T
=1 7 ==~ .
Here also confidence intepen] o " o Xy X@) .., X(y) is the ordered sample then the joint p.d.f. of x() and xyy is :
2 ime Or 0% is given by (*** wXﬂ ~nn-1)
significant value of *2 [as defined in () for (n 81) i aty &Se Sl) gnv:/ftl\:;c:;)evel 8lxqy , () o [x(m xm] ,0<xq) Sx;) <0

e k

TR, o=

B —
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To obtain the distri :
tril le ran;
of vatiibles : istribution of the samp ge R, let us Make ALR}
R = x4y —xq) and ¥ = Xq) = Dy tr% 4 1GAL INFEHENCE——l (THEORY OF ESTIMATION) 17.51
i Tt = IS
The Jacobian of transformation is | J 1 =1and the J'Oin:";, d? Se. yTA 71 conndonCe Intervclzlls :ow tLgrg,; Stqmplfe:ixlt lhas b_et;n proved that under
- ' 7-7-1- =" -ons, the first derivative © e logarithm of the likeli
h(R,v)= ﬂ(ﬂ’n—R"-z ,0<v<0O-R of R ang lin reglﬂanty condition 5 ' . e likelihood
Th ) 0" V) ertd top arameter 0 viz., s log L, 1s asymptotically normal with mean zero and
e marginal density of R is given by : ton W-r " ( 5 )2 ( 2
ok . V. 2 1ogl)=E —log L —E(- Z10gL
Hi = J -1 grrgy ="=DRTO-R) ,asiance 81VE" by : ar(ae 4 ) a0 202 8 )
0 on on 0< 3
*USR —loglL
Bt eialiidret b g B NGO (17.68)
- for large ™/ , .17+
hy(u) = hy(R , dR|_n(n—1) R*? ©6-R) o _ Hence 3
1(R) du —————/e” .0 =n(n-1)u2 - 1), 0< e Var (30 log L)
100 (1 — )% confidence interval for @ is given b TRl btai fidence interval for the paramet 0i
: bles us to obtain con \ P eter O in large
- g ) y:P(WsUs<1)<q_ The rgli:lltse;‘:r large samples, the confidence interval for 8 with confidence
where vy is obtained from the equation j hy(u)du = o « samples: . (1‘1 o) is obtained by converting the inequalities in
0 coefflCIen P (l A M) =1-0 (1769)
= n(n— 1)I Yurrl-wdu=o = [l 1 IM (-2/2) du=1-0 [17-69(a)]
0 -(n- v L T exp \ - =1- ...[17-69(a
e n-1 o u",o:‘l Where)’“ﬁglvenby Von J -2 ] o
From (*), we get yrl{n—(n- Dy}=a Example 17-50. Obtaint 100 (1 — @)% confidence limits (for large samples) for the
’ i istribution :
parameter Aof the Poisson distrivu .
;x=0,1, 2,...

P(\Vs—g——sl)=1—a = P(RSQS%)=1—Q fooN="71

I;ence t;1e required limits for 6 are given by R and R/ vy where v is gj Solution. We have . \
xample 17-49. Given one observation from a population with p.d.f. : 8iventy 2 jog L = 9 {—nk +( Ii) log A — 21 log (x,-)} =1 + %= " (i B )
. A i=a i=
f(x,9)=§(e—x), 0<x<6, oA a . i e )
obtain 100 (1 — )% confidence interval for 6. Var (%log L) =E (— ;ﬁilog L) =E ( —ﬁ)= 2 E(x) =% [-E(x)=M
Solution. The density of u = x/8 is given by : (£-1)
al=- '
A - .
g(u) =f(x, ©) , é”% = (%(e —x).0=2(1-u), 0sus<1 z =,,;—=\/ /) (x=0) ~ NO, 1) [Using (17-68]
n
u s:;‘;zt?n 100 (1 — o)% confidence interval for 6, we choose two quantitiess Hence 100 (1 —0)% confidence interval for A is given by (for large samples)
2 a Puy<usu))=1-o p{lﬁn‘/';,)(;_x)l <A =1-
and P(u<uy) =Pu>uy)= % o Hence the required limits for A are the roots of the equation :
INa/A(z-0 | = 2 = a(F-M2-A.Na=0
= 2\2 _ )2
22 (2§+2‘:——2)i{(2§+2}1"—) —-4x2}
= 7»2—1.(2§+—’-1°-‘-)+§2=0 = Ao -

o “
P(u<u1)—2 = 102(1—u)du=‘21 = 1112---2ul+2g
. 1 1 o
and Pu>u)=50 = ju22(1—u)du=2—- = u2—2u +(1~ g“)=0 ; i
For example, 95% confidence interval for A is given by taking Ay =196 (), thus

From (*), we get P(u1s-35uz)=1_a Y P( £<9<5_)=1_a giving :
u, -~ _ 1/2 — )
. . x=1(2;+3.84) i(3-8‘1:3(_'_3-69) - x+1.96 ¥/n , to the order n"1/2.
Hence the required interval for 6 is( X, i) . where u; and uz aré given” 2 " " "
U " i Example 17-51. Show that for the distribution : dF(x)=0e0;0<X <
central confidence limits for large samples with 95% confidence coefficient are gIUeN by

and (***) respectively.
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TIMATION)
17.52 Tiey . nGE—1 (THEORY OF ES
g i ' el i i ean |, the sample mean
0= (1 t \n ATSTICA e bl2 e of size n from a population with mean
n Fillin dom sample .
n »
=0"exp (—9 )X x,) @ 2 ra estimate of - . te for the mean of normal population
SORHion: Hiere o =1 (x)is ;:-nple median s - esﬂm: is said to be unbiased if...
‘ i) Thes eter 0 is . ) i
) = 2.3 %= n( 1_ ?c) (if) ostimator 8 of a parameter™ nis a ... estimator of population variance 6%.
9 logL= 4 (nlog6-0 Ix)=¢9 i=1 0 (i) AR ce 5% of a sample of size oot e 1 eetaos
» » ? (iv) The vagss ¢ estimator exists, it 152
[ = - — fficien i ¢ &
and 02 logL= _en—z— = Var (a—elog L) =E ( 36 108 L) = % ) If ;T:mate may not be umquehiCh is unbiased for a parameter 6 but #* is not
06? - tw

Hence, for large samples, using (17-68), we have

l—_
z=i(Lf_ ~NO,) = Vn(1-0%)~ N@, 1y
n/e?

Hence 95% confidence limits for 0 are given by :

P[-1:96 <\n (1-0%) < 1.96] = 0.95

9%\ 1
Vn(1-6%)s19% = (—%"-)Ese

_ 1.96) 1
and 196sVn(1-6%) = 0s(1+ Wt)i
Hence, from (*), (**) and (***), the central 95% confidence limits for areg;

9=(1:t17'_i—6)- %

Craprir conceers Quiz

1. Comment on the following statements :
() Inthe case of Poisson distribution with

@) If (X, X,, ... X,) be a sam
distribution on (6, 6 + 1), th

parameter A, x is sufficient for)
ple of independent observation from thes

en the maximum likelihood estimator of iss
(i) A maximum likelihood estj

mator is always unbiased.
(iv) Unbiased estimator is necessarily consistent

(v) A consistent estimator is also unbiased.

(vi) An unbiased estimator whose

. : variance tends to zero as the sample sizei®
1S consistent.
(vii) Iftis a sufficient statistic for

(vii)) If t; and t, are two indepen,
both t and ¢,

O then f{t) is a sufficient statistic for f{6).
dent estimators of 9, then by + by is less efic?

. istent &7
arameter @, consistert
of a8 + b, where g and p are congtants. O henal +bisa
(x) If xb 11 ‘;_he number of Successes in p independent trials with 2 %
probability p of success in each trial, then x/n js 5 consistent estimator 0

7.

(vi) -

ive exam .
(a) Give . hich is not unbiased.

:2ged for timator w )
ur)\bc';ze example of an ML esti he population mean y, state which of the
®

-, "
) If x is an un®
(‘)llowing are unbiase \
2 ) 7 -2 (0% is known/unknown)

@ %, )X -3

ple of a statistic

biased estimator for 2t
d estimators for pu°:
fo

iti der which

;mum likelihood estimator for 0, state the condition un

: axi: . .

(i) Ireis 'the “:he maximum likelihood estimator for f(6) sbin vasiarice.of
ol e the condition for the Cramer-Rao lower bound for the

" ite down

(m’) Write

- ttained. ) - . ic.
the esnmatort}t‘o :z:eral form of the distribution admitting sufficient statistic
. ite down the
(i) Write

1
i i —+ A random
riable X takes the values 1,2, 3 and 4, each with probability 2
ndom va

x i ian of this sample.
values of x is taken,x is the mean and m is the median ol pdgn tp} ¢
e thfe:_ and m are unbiased estimators of the mean of the population,
Sh;:l ;?f?ctile’:: tlfan m. Compare their efficiencies.
m

ple of estimates which are (i) Unbiased and efficient, (ii) Unbiased and
Give an exam

Ara

inefficient. | y
Mark the correct alternative : e
20 Let T, be an estimator, based on a sample x,,%,,... , X,, of the parameter 6
N .
is a consistent estimator of 9 if
(@) P(T,-6>€)=0V e>0, (b) P(1 T,-61 <€)=0,

© mP(IT,-01>€)=0Ve>0, (d) lim P(T,-0>€)=0 Ve>0

n=poee
noe

(i) Let E (T,) = 6 = E(T,), where T, and T, are the linear functions of the sample
observations. If V (T,) < V (T,) then:
(@) T, is an unbiased linear estimator.
(b) T, is the best linear unbiased estimator.
(c) T,isa consistent linear unbiased estimator.
(@) T, is a consistent best linear unbiased estimator.

(iil) Let X be a random variable with E(X) = p and V(X) = o2 Let X be the sample
mean based on a random sample of size n, then Y is:
(@) the best linear unbiased estimator of .

(b) an unbiased ang consistent estimator of 1.

L;
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