
Merits of Shared Memory Programming

• Global address space gives a user-friendly programming approach to memory.

• Due to the closeness of memory to CPU, data sharing among processes is fast and uniform.

• There is no need to specify distinctly the communication of data among processes.

• Process-communication overhead is negligible.

• It is very easy to learn.

Demerits of Shared Memory Programming

• It is not portable.

• Managing data locality is very difficult.

Message Passing Model

Message passing is the most commonly used parallel programming approach in distributed memory systems.

Here, the programmer has to determine the parallelism. In this model, all the processors have their own local

memory unit and they exchange data through a communication network.

Processors use message-passing libraries for communication among themselves. Along with the data being

sent, the message contains the following components −

• The address of the processor from which the message is being sent;

• Starting address of the memory location of the data in the sending processor;

• Data type of the sending data;

• Data size of the sending data;

• The address of the processor to which the message is being sent;

• Starting address of the memory location for the data in the receiving processor.

Processors can communicate with each other by any of the following methods −

• Point-to-Point Communication

• Collective Communication

• Message Passing Interface

Point-to-Point Communication

Point-to-point communication is the simplest form of message passing. Here, a message can be sent from the

sending processor to a receiving processor by any of the following transfer modes −

• Synchronous mode − The next message is sent only after the receiving a confirmation that its

previous message has been delivered, to maintain the sequence of the message.

• Asynchronous mode − To send the next message, receipt of the confirmation of the delivery of the

previous message is not required.

Collective Communication

Collective communication involves more than two processors for message passing. Following modes allow

collective communications −

• Barrier − Barrier mode is possible if all the processors included in the communications run a

particular bock (known as barrier block) for message passing.

• Broadcast − Broadcasting is of two types −

o One-to-all − Here, one processor with a single operation sends same message to all other

processors.

o All-to-all − Here, all processors send message to all other processors.

Messages broadcasted may be of three types −

• Personalized − Unique messages are sent to all other destination processors.

• Non-personalized − All the destination processors receive the same message.

• Reduction − In reduction broadcasting, one processor of the group collects all the messages from all

other processors in the group and combine them to a single message which all other processors in the

group can access.

Merits of Message Passing

• Provides low-level control of parallelism;

• It is portable;

• Less error prone;

• Less overhead in parallel synchronization and data distribution.

Demerits of Message Passing

• As compared to parallel shared-memory code, message-passing code generally needs more software

overhead.

Message Passing Libraries

There are many message-passing libraries. Here, we will discuss two of the most-used message-passing

libraries −

• Message Passing Interface (MPI)

• Parallel Virtual Machine (PVM)

Message Passing Interface (MPI)

It is a universal standard to provide communication among all the concurrent processes in a distributed

memory system. Most of the commonly used parallel computing platforms provide at least one implementation

of message passing interface. It has been implemented as the collection of predefined functions

called library and can be called from languages such as C, C++, Fortran, etc. MPIs are both fast and portable

as compared to the other message passing libraries.

Merits of Message Passing Interface

• Runs only on shared memory architectures or distributed memory architectures;

• Each processors has its own local variables;

• As compared to large shared memory computers, distributed memory computers are less expensive.

Demerits of Message Passing Interface

• More programming changes are required for parallel algorithm;

• Sometimes difficult to debug; and

• Does not perform well in the communication network between the nodes.

Parallel Virtual Machine (PVM)

PVM is a portable message passing system, designed to connect separate heterogeneous host machines to form

a single virtual machine. It is a single manageable parallel computing resource. Large computational problems

like superconductivity studies, molecular dynamics simulations, and matrix algorithms can be solved more cost

effectively by using the memory and the aggregate power of many computers. It manages all message routing,

data conversion, task scheduling in the network of incompatible computer architectures.

Features of PVM

• Very easy to install and configure;

• Multiple users can use PVM at the same time;

• One user can execute multiple applications;

• It’s a small package;

• Supports C, C++, Fortran;

• For a given run of a PVM program, users can select the group of machines;

• It is a message-passing model,

• Process-based computation;

• Supports heterogeneous architecture.

Leader-Election algorithm

Data Parallel Model

In data parallel model, tasks are assigned to processes and each task performs similar types of operations on

different data. Data parallelism is a consequence of single operations that is being applied on multiple data

items.

Data-parallel model can be applied on shared-address spaces and message-passing paradigms. In data-parallel

model, interaction overheads can be reduced by selecting a locality preserving decomposition, by using

optimized collective interaction routines, or by overlapping computation and interaction.

The primary characteristic of data-parallel model problems is that the intensity of data parallelism increases

with the size of the problem, which in turn makes it possible to use more processes to solve larger problems.

Example − Dense matrix multiplication.

