Shared Memory Model

Shared memory emphasizes on control parallelism than on data parallelism. In the
shared memory model, multiple processes execute on different processors independently,
but they share a common memory space. Due to any processor activity, if there is any
change in any memory location, it is visible to the rest of the processors.

As multiple processors access the same memory location, it may happen that at any
particular point of time, more than one processor 1S accessing the same memory location.
Suppose one is reading that location and the other is writing on that location. It may create
confusion. To avoid this, some control mechanism, like lock [semaphore, is implemented to
ensure mutual exclusion.

Processor 1

'y
L

[Y
L

Processor 2

| Shared
I Memory
|

L J

Processor n [*

Merits of Shared Memory Programming

o Global address space gives a user-friendly programming approach to memory.

e Due to the closeness of memory to CPU, data sharing among processes is fast and uniform.
e There is no need to specify distinctly the communication of data among processes.

e Process-communication overhead is negligible.

e [tisvery easy to learn.
Demerits of Shared Memory Programming

e Itisnot portable.
e Managing data locality is very difficult.

Message Passing Model

Message passing is the most commonly used parallel programming approach in distributed memory systems.
Here, the programmer has to determine the parallelism. In this model, all the processors have their own local
memory unit and they exchange data through a communication network.

Memory Unit 1 Memory Unit 2 Memory Unit n

A A A

Processor 1 Processor 2 Processor n

A A A

Communication Network

Processors use message-passing libraries for communication among themselves. Along with the data being
sent, the message contains the following components —

e The address of the processor from which the message is being sent;

e Starting address of the memory location of the data in the sending processor;

o Data type of the sending data;

o Data size of the sending data;

e The address of the processor to which the message is being sent;

e Starting address of the memory location for the data in the receiving processor.

Processors can communicate with each other by any of the following methods —

e Point-to-Point Communication
e Collective Communication
e Message Passing Interface

Point-to-Point Communication
Point-to-point communication is the simplest form of message passing. Here, a message can be sent from the

sending processor to a receiving processor by any of the following transfer modes —

e Synchronous mode — The next message is sent only after the receiving a confirmation that its
previous message has been delivered, to maintain the sequence of the message.

e Asynchronous mode — To send the next message, receipt of the confirmation of the delivery of the
previous message is not required.

Collective Communication

Collective communication involves more than two processors for message passing. Following modes allow
collective communications —

e Barrier — Barrier mode is possible if all the processors included in the communications run a
particular bock (known as barrier block) for message passing.

e Broadcast — Broadcasting is of two types —

o One-to-all — Here, one processor with a single operation sends same message to all other
processors.

o All-to-all — Here, all processors send message to all other processors.
Messages broadcasted may be of three types —

e Personalized — Unique messages are sent to all other destination processors.

o Non-personalized — All the destination processors receive the same message.

e Reduction — In reduction broadcasting, one processor of the group collects all the messages from all
other processors in the group and combine them to a single message which all other processors in the
group can access.

Merits of Message Passing

e Provides low-level control of parallelism;

e Itis portable;

e Lesserror prone;

e Less overhead in parallel synchronization and data distribution.

Demerits of Message Passing

e As compared to parallel shared-memory code, message-passing code generally needs more software
overhead.

Message Passing Libraries

There are many message-passing libraries. Here, we will discuss two of the most-used message-passing
libraries —

e Message Passing Interface (MPI)
o Parallel Virtual Machine (PVM)

Message Passing Interface (MPI)

It is a universal standard to provide communication among all the concurrent processes in a distributed
memory system. Most of the commonly used parallel computing platforms provide at least one implementation
of message passing interface. It has been implemented as the collection of predefined functions
called library and can be called from languages such as C, C++, Fortran, etc. MPIs are both fast and portable
as compared to the other message passing libraries.

Merits of Message Passing Interface

e Runs only on shared memory architectures or distributed memory architectures;

e Each processors has its own local variables;

e Ascompared to large shared memory computers, distributed memory computers are less expensive.

Demerits of Message Passing Interface

e More programming changes are required for parallel algorithm;
e Sometimes difficult to debug; and
e Does not perform well in the communication network between the nodes.

Parallel Virtual Machine (PVM)

PVM is a portable message passing system, designed to connect separate heterogeneous host machines to form
a single virtual machine. It is a single manageable parallel computing resource. Large computational problems
like superconductivity studies, molecular dynamics simulations, and matrix algorithms can be solved more cost
effectively by using the memory and the aggregate power of many computers. It manages all message routing,
data conversion, task scheduling in the network of incompatible computer architectures.

Features of PVM

Very easy to install and configure;

Multiple users can use PVM at the same time;

One user can execute multiple applications;

It’s a small package;

Supports C, C++, Fortran;

For a given run of a PVM program, users can select the group of machines;
It is a message-passing model,

Process-based computation;

Supports heterogeneous architecture.

Message Passing Process Communication Model

Message passing model allows multiple processes to read and write data to the message
queue without being connected to each other. Messages are stored on the queue until their
recipient retrieves them. Message queues are quite useful for interprocess communication

and are used by most operating systems.

A diagram that demonstrates message passing model of process communication is given as
follows -

Process P1

Process P2

Message Queue

m1 | m2 mn

Kernel

Message Passing Modal

In the above diagram, both the processes P1 and P2 can access the message queus and
store and retrieve data.

An advantage of message passing model is that it is easier to build parallel hardware. This is
because message passing model is quite tolerant of higher communication latencies. It is
also much easier to implement than the shared memory model.

However, the message passing model has slower communication than the shared memory
maodel because the connection setup takes time.

Shared Memory Process Communication Model

The shared memory in the shared memory model is the memory that can be simultaneously
accessed by multiple processes. This is done so that the processes can communicate with
each other. All POSIX systems, as well as Windows operating systems use shared memaory.

A diagram that illustrates the shared memory model of process communication is given as

follows:
Process P1 D
Shared Memory

C Process P2

Kernel

Shared Memory Model

In the above diagram, the shared memory can be accessed by Process 1 and Frocess 2.

An advantage of shared memory model is that memory communication is faster as compared
to the message passing model on the same machine.

However, shared memory model may create problems such as synchronization and memory
protection that need to be addressed.

Introduction

O In this chapter, we outline the basic
concepts in message-passing computing.
B We introduce the basic structure of message-

passing programs and how to specify message
passing between processes.

B Wediscuss these in general, and then we outline
two specific systems, PVYM and MPI

B Finally, we discuss how to evaluate message-
passing parallel programs, both theoretically and
in practice.

1. Basics of Message Passing
Programming

0 1.1 Programming Options

B Programming a message-passing
multicomputer can be achieved by
O 1. Designing a special parallel programming
language

O 2. Extending the syntax/reserved words of
an existing sequential high-level language
to handle message passing

O 3. Using an existing sequential high-level

language and providing a library of external
procedures for message passing

1. Basics of Message Passing
Programming

B We will concentrate upon the third option.
Necessary to say explicitly what processes are
to be executed, when to pass messages
between concurrent processes, and what to pass
in the messages.

B Two primary methods are needed in this form of
a message-passing system:

O 1. A method of creating separate processes for
execution on different computers

O 2. A method of sending and receiving messages

1.2 Process Creation

®E MPMD model

Source Source
file file

Compile to suit
processor

Executables

— —

O O

Processor 0 Processor p- 1

1.2 Process Creation

B SPMD model

O Different processes
are merged into

Source

one program. i
Within the Basic MP!w ay

Png ram are Cnrnpilemmt
control statements pracessor

that will customizeExecutables| | __.

the code; i.e.

select different

parts for each

process Processor Processorp-1

1.2 Process Creation

®E MPMD model

Sepa rate programs Process 1

for each processor. S

One prDCESSDr : Start esecution
Elpaw:'n'::l s of process 2 p

executes master
process. Other e
processes started
from within master ;
process - dynamic —_— 5
process creation. : N

rocess 2

1.3 Message-Passing Routines

[0 Passing a message between
processes using send() and recv()
library calls:

Process 1 Process 2
Sox Y
: , Movement
sendl{sx, 2); \wtf]\[
'Iecviag:r, 1),

Generic syntax (actual formats later)

1.3 Message-Passing Routines

0 Synchronous Message Passing
B Routines that actually return when the message
transfer has been completed.

Synchronous send routine

B Waits until complete message can be accepted by the

receiving process before sending the message.

Synchronous receive routine
B Waits until the message it is expecting arrives.

O Synchronous routines intrinsically perform two
actions: They transfer data and they synchronize
processes.

1.3

Message-Passing Routines

O Synchronous send() and recv() using 3-way protocol

Time

Time

1.3

4 coentinue

4 CO ntinue

Process 1 Process 2

Request to send

Suspend
process
Both processes

Acknowledgrment

(a) VWhen =end() ocCCUrs before cecvr i)

Process 1 Process 2

w==wlls | suspend
4| process

Both processes

(b} When zecri) 0CCUrs before sendi)

Message-Passing Routines

OO0 Asynchronous Message Passing

Routines that do not wait for actions to
complete before returning. Usually
require local storage for messages.

More than one version depending upon
the actual semantics for returning.

In general, they do not synchronize
processes but allow processes to move
forward sooner. Must be used with care.

1.3 Message-Passing Routines

O Blocking and Nonblocking Message Passing

B Blocking - has been used to describe routines that
do not return until the transfer is completed.

O The routines are "blocked” from confinuing.

O In that sense, the terms synchronous and blocking were
SYNnonymaous.

B Non-blocking - has been used to describe routines
that return whether or not the message had been

received.

B The terms blocking and nonblocking redefined in
systems such as MPI:

1.3 Message-Passing Routines

[0 How message-passing routines can return
before the message transfer has been

completed

B Generally, a message buffer needed between source
and destination to hold message:

Time

Continue
process

Frocess 1

senﬁ{:l; —

Message b uffer

_"ED\

Frocess 2

[~ recvi);

Read
message buffer

1.3 Message-Passing Routines

B Once local actions completed and
message is safely on its way, sending
process can continue with subsequent
work.

m Buffers only of finite length and a point
could be reached when send routine held
up because all available buffer space
exhausted.

m Then, send routine will wait until storage
becomes re-available - i.e then routine
behaves as a synchronous routine.

O Message Selection

B Message Tag

O Used to differentiate between different
types of messages being sent.

O Message tag is carried within message.

O If special type matching is not required, a
wild card message tag is used, so that the
recv() will match with any send().

O Example:

B To send a message, X, with message tag

5 from a source process, 1, to a

destination process, 2, and assign to y:

Process 1

f —

Maovement
of data

)/

send {&£x, 2, 5) :\’*

Process 2

i ¥ i

reu:v{&y:, 1,504

Waits for a message from process Twith atag of £

O “"Group” message passing routines
B Have routines that send message(s) to a

group of processes or receive

message(s) from a group of processes

m Higher efficiency than separate point-to-
point routines although not absolutely

necessary.

B Broadcast
O Sending the same message to all the

processes concerned with the problem.
O Multicast - sending the same message to a

defined group of processes.

Action

Code

Process 0

Process 1

date dzte

— jl
buf :L_’_, ________fﬂ"’
b:as::-_ ;]:::.as::-_ 1

Process p—1

Hm Scatter

O Sending each element of an array of data in
the root to a separate process. The
contents of the jth location of the array is
sent to the ith process.

Process 0
s {data %
Action ; :
+ but
Code 3cattF:[];
N
B Gather

Process 1

(data Y

,—'—'_'_'_'_'_F_'_-D
e —
,-'—"'"'_'_'_‘_'_'_

3catﬁE:[];

S

Processp— 1

{data i

l—=-

3cattE:[];

N

O Having one process collect individual values
from a set of processes.

Process 0 Process 1 Process p -1
fdata | {data | {data |
O e d
-
Action {ﬁ;ﬂf
baf EII::I] .
Code gat:?:[]; gat:?:[]; gat:?:[];
B Reduce

OO0 Gather operation combined with a specified
arithmetic or logical operation.

O Example, the values could be gathered and

then added togeth%r by 1the root:

Process 0

fdata |

Action

=

D*__T______{:}éiji

red:ée[]:

Code

oCess

fdata |

J

.

red:ée[]:

{f)/

Process p—1

fdata |

3

red:ée[]:

Leader-Election algorithm

What is Election? |

“*In a group of processes, elect a Leader to
undertake special tasks.

“*What happens when a leader fails
(crashesf

“*Some (at least one) process detects this (how?)
**Thenwhat?

“*Focus of this lecture: Election algorithm

1. Elect one leader only among the non-faulty
processes

2. All non-faulty processes agree on who is the
leader

System Model/Assumptions |

“+* Any process can call for an election.

“* A process can call for at most one election
at a time.

“* Multiple processes can call an election
simultaneously.

+*All of them together must yield a single leader only

“** The result of an election should not depend
on which process calls for it.

“*Messages are eventually delivered.

Problem Specification |

At the end of the election protocol, the non-
faulty process with the best (highest) election

attribute value is elected.

“+Attribute examples: leader has highest id or address.
Fastest cpu. Most disk space. Most number of files, etc.

“**Protocol may be initiated anytime or after
leader failure

“* A run (execution) of the election algorithm
must always guarantee at the end:

» Safety: V non-faulty p: (p’ s elected = (q: a particular non-
faulty process with the best attribute value) or 1)

» Liveness: V election: (election terminates)
& V p: non-faulty process, p’s elected is not L

Algorithm 1: Ring Election |

*+*N Processes are organized in a logical ring
%+ p; has a communication channel to Pi+1) modn
4+ All messages are sent clockwise around the ring.

“+ Any process p; that discovers the old coordinator has failed
initiates an “election” message that contains p; ' s own id:attr.
This is the initiator of the election.

“*When a process p; receives an election message, it compares
the attr in the message with its own attr.
%+ If the arrived attris greater, p; forwards the message.

%+ If the arrived attris smaller and p; has not yet forwarded an election
message, it overwrites the message with its own id:attr, and forwards it.

+* If the arrived id:attr matches that of p;, then p;’ s attr must be the greatest
(why?), and it becomes the new coordinator. This process then sends an
“elected” message to its neighbor with its id, announcing the election
result.

“*When a process p; receives an elected message, it
%+ sets its variable elected; < id of the message.
%+ forwards the message, unless itis the new coordinator.

Ring-Based Election: Example |

In this example, attr:=id) ST~ nitiator
4 / \

In the example: The election was 24
started by process 17.
The highest process identifier)
encountered so far is 24.

(final leader will be 33) 1
The worst-case scenario occurs 15 //
when the counter-clockwise AN =
neighbor (@ the initiator) has the S~
highest attr.

Ring-Based Election: Analysis |

+*#The worst-case scenario occurs BTN 17

when the counter-clockwise neighbor

has the highest attr. 4 \
24

In aring of N processes, in the worst

case:

** A total of N-1 messages are 1

required to reach the new

coordinator-to-be (election
messages). 15\ /

+* Another N messages are required

until the new coordinator-to-be ~ —
ensures it is the new coordinator
(election messages — no changes).

s*Another N messages are required
to circulate the elected messages.

+*Total Message Complexity = 3N-1
*»*Turnaround time = 3N-1

Assume — no failures happen during the run of the
election algorithm

- Safety and Liveness are satisfied.

What happens if there are failures during the
election run?

Example: Ring Election

Election: 4

o

2. P2 receives “é[ecﬁon" e :
] ; * 143 Election: 4is
1. P2initiates P4 dies 2
election after old forwarded for ever?
leader P5 failed

May not terminate when process failure occurs during the electionl
Consider above example where atir == id

Does not satisfy liveness

Algorithm 2: Modified Ring Election |

**Processes are organized in a logical ring.

“* Any process that discovers the coordinator (leader) has failed
initiates an “election” message.

¢+ The message is circulated around the ring, bypassing failed
processes.

+* Each process appends (adds) its id:attr to the message as it
passes it to the next process (without overwriting what is
already in the message)

“* Once the message gets back to the initiator, it elects the
process with the best election attribute value.

“*Itthen sends a “coordinator” message with the id of the newly-
elected coordinator. Again, each process adds its id to the end
of the message, and records the coordinator id locally.

“+ Once “coordinator” message gets back to initiator,

%+ election is over if would-be-coordinator's id is in id-list.
%+ else the algorithm is repeated (handles election failure).

Example: Ring Election |

Election:

Coord(4): 2,3 -~~~

2. P2 receives “éiecﬁon”
i [* A 3. P2selects 4 and
P4 dies announces the result

Election:

Election: 2 Coorcl[3]-2

2. P2receives “Coord™, | Election: 2,3 Covrapy 23—
butP4is notincluded —I 5. P2 re-initiates elecnon I_ | 6. PJis finally elected

Breadth-First Search

Breadth-First Search (or BFS) is an algorithm for searching a tree or an undirected graph
data structure. Here, we start with a node and then visit all the adjacent nodes in the same

level and then move to the adjacent successor node in the next level. This is also known as
level-by-level search.

Steps of Breadth-First Search

= Start with the root node, mark it visited.

= As the root node has no node in the same level, go to the next level.
= Visit all adjacent nodes and mark them visited.

8 (o to the next level and visit all the unvisited adjacent nodes.

= Continue this process until all the nodes are visited.

Pseudocode
Pseudocode

Let v be the vertex where the search starts in Graph G.
BFS(G,v)

Queue Q := {};

for each vertex u, set visited[u] := false;
insert Q, v;

while (Q is not empty) do
u := delete (;

if (not visited[u]) then
visited[u] := true;
for each unvisited neighbor w of u
insert Q, w;
end if

end while

END BFS()

Data Parallel Model

In data parallel model, tasks are assigned to processes and each task performs similar types of operations on
different data. Data parallelism is a consequence of single operations that is being applied on multiple data
items.

Data-parallel model can be applied on shared-address spaces and message-passing paradigms. In data-parallel
model, interaction overheads can be reduced by selecting a locality preserving decomposition, by using
optimized collective interaction routines, or by overlapping computation and interaction.

The primary characteristic of data-parallel model problems is that the intensity of data parallelism increases
with the size of the problem, which in turn makes it possible to use more processes to solve larger problems.

Example — Dense matrix multiplication.
Data

Stream 1
Processor 1 |« >

Data

Stream 2
Processor 2

Instruction Data
Control Unlt Stream Processor 3 Stream 3

Memory
| Unit

Data
Stream n

Processor n

