
DBMS - Architecture 
 

The design of a DBMS depends on its architecture. It can be centralized or 

decentralized or hierarchical. The architecture of a DBMS can be seen as either 

single tier or multi-tier. An n-tier architecture divides the whole system into 

related but independent n modules, which can be independently modified, altered, 

changed, or replaced. 

In 1-tier architecture, the DBMS is the only entity where the user directly sits on 

the DBMS and uses it. Any changes done here will directly be done on the DBMS 

itself. It does not provide handy tools for end-users. Database designers and 

programmers normally prefer to use single-tier architecture. 

If the architecture of DBMS is 2-tier, then it must have an application through 

which the DBMS can be accessed. Programmers use 2-tier architecture where they 

access the DBMS by means of an application. Here the application tier is entirely 

independent of the database in terms of operation, design, and programming. 

3-tier Architecture 

A 3-tier architecture separates its tiers from each other based on the complexity of 

the users and how they use the data present in the database. It is the most widely 

used architecture to design a DBMS. 



 

• Database (Data) Tier − At this tier, the database resides along with its 

query processing languages. We also have the relations that define the data 

and their constraints at this level. 

• Application (Middle) Tier − At this tier reside the application server and 

the programs that access the database. For a user, this application tier 

presents an abstracted view of the database. End-users are unaware of any 

existence of the database beyond the application. At the other end, the 

database tier is not aware of any other user beyond the application tier. 

Hence, the application layer sits in the middle and acts as a mediator 

between the end-user and the database. 

• User (Presentation) Tier − End-users operate on this tier and they know 

nothing about any existence of the database beyond this layer. At this layer, 



multiple views of the database can be provided by the application. All 

views are generated by applications that reside in the application tier. 

Multiple-tier database architecture is highly modifiable, as almost all its 

components are independent and can be changed independently. 

 

 

Centralized and Client/Server Architectures for 

DBMSs  

1. Centralized DBMSs Architecture  

Architectures for DBMSs have followed trends similar to those for general 

computer system architectures. Earlier architectures used mainframe computers to 

provide the main processing for all system functions, including user application 

programs and user interface programs, as well as all the DBMS functionality. The 

reason was that most users accessed such systems via computer terminals that did 

not have processing power and only provided display capabilities. Therefore, all 

processing was performed remotely on the computer system, and only display 

information and controls were sent from the computer to the display terminals, 

which were connected to the central computer via various types of communications 

networks. 

  

As prices of hardware declined, most users replaced their terminals with PCs and 

workstations. At first, database systems used these computers similarly to how they 

had used display terminals, so that the DBMS itself was still a centralized DBMS 



in which all the DBMS functionality, application program execution, and user 

inter-face processing were carried out on one machine. Figure 2.4 illustrates the 

physical components in a centralized architecture. Gradually, DBMS systems 

started to exploit the available processing power at the user side, which led to 

client/server DBMS architectures. 

  

2. Basic Client/Server Architectures 

                    First, we discuss client/server architecture in general, then we see how it is 

applied to DBMSs. The client/server architecture was developed to deal with 

computing environments in which a large number of PCs, workstations, file 

servers, printers, database servers, 

 



Web servers, e-mail servers, and other software and equipment are connected via a 

network. The idea is to define specialized servers with specific functionalities. For 

example, it is possible to connect a number of PCs or small workstations as clients 

to a file server that maintains the files of the client machines. Another machine can 

be designated as a printer server by being connected to various printers; all print 

requests by the clients are forwarded to this machine. Web servers or e-mail 

servers also fall into the specialized server category. The resources provided by 

specialized servers can be accessed by many client machines. The client 

machines provide the user with the appropriate interfaces to utilize these servers, 

as well as with local processing power to run local applications. This concept can 

be carried over to other software packages, with specialized programs—such as a 

CAD (computer-aided design) package—being stored on specific server machines 

and being made accessible to multiple clients. Figure 2.5 illustrates client/server 

architecture at the logical level; Figure 2.6 is a simplified diagram that shows the 

physical architecture. Some machines would be client sites only (for example, 

diskless work-stations or workstations/PCs with disks that have only client 

software installed). 

 



 

Other machines would be dedicated servers, and others would have both client and 

server functionality. 

  

The concept of client/server architecture assumes an underlying framework that 

consists of many PCs and workstations as well as a smaller number of mainframe 

machines, connected via LANs and other types of computer networks. A client in 

this framework is typically a user machine that provides user interface capabilities 

and local processing. When a client requires access to additional functionality— 

such as database access—that does not exist at that machine, it connects to a server 

that provides the needed functionality. A server is a system containing both hard-

ware and software that can provide services to the client machines, such as file 

access, printing, archiving, or database access. In general, some machines install 

only client software, others only server software, and still others may include both 

client and server software, as illustrated in Figure 2.6. However, it is more 



common that client and server software usually run on separate machines. Two 

main types of basic DBMS architectures were created on this underlying 

client/server framework: two-tier and three-tier. 

  

3. Two-Tier Client/Server Architectures for DBMSs 

  

In relational database management systems (RDBMSs), many of which started as 

centralized systems, the system components that were first moved to the client side 

were the user interface and application programs. Because SQL (see Chapters 4 

and 5) provided a standard language for RDBMSs, this created a logical dividing 

point between client and server. Hence, the query and transaction functionality 

related to SQL processing remained on the server side. In such an architecture, the 

server is often called a query server or transaction server because it provides 

these two functionalities. In an RDBMS, the server is also often called an SQL 

server. 

  

The user interface programs and application programs can run on the client side. 

When DBMS access is required, the program establishes a connection to the 

DBMS (which is on the server side); once the connection is created, the client 

program can communicate with the DBMS. A standard called Open Database 

Connectivity 

  

(ODBC) provides an application programming interface (API), which allows 

client-side programs to call the DBMS, as long as both client and server machines 



have the necessary software installed. Most DBMS vendors provide ODBC drivers 

for their systems. A client program can actually connect to several RDBMSs and 

send query and transaction requests using the ODBC API, which are then 

processed at the server sites. Any query results are sent back to the client program, 

which can process and display the results as needed. A related standard for the Java 

programming language, called JDBC, has also been defined. This allows Java 

client programs to access one or more DBMSs through a standard interface. 

  

The different approach to two-tier client/server architecture was taken by some 

object-oriented DBMSs, where the software modules of the DBMS were divided 

between client and server in a more integrated way. For example, the server 

level may include the part of the DBMS software responsible for handling data 

storage on disk pages, local concurrency control and recovery, buffering and 

caching of disk pages, and other such functions. Meanwhile, the client level may 

handle the user interface; data dictionary functions; DBMS interactions with 

programming language compilers; global query optimization, concurrency control, 

and recovery across multiple servers; structuring of complex objects from the data 

in the buffers; and other such functions. In this approach, the client/server 

interaction is more tightly coupled and is done internally by the DBMS modules—

some of which reside on the client and some on the server—rather than by the 

users/programmers. The exact division of functionality can vary from system to 

system. In such a client/server architecture, the server has been called a data 

server because it provides data in disk pages to the client. This data can then be 

structured into objects for the client programs by the client-side DBMS software. 

  



The architectures described here are called two-tier architectures because the 

soft-ware components are distributed over two systems: client and server. The 

advan-tages of this architecture are its simplicity and seamless compatibility with 

existing systems. The emergence of the Web changed the roles of clients and 

servers, leading to the three-tier architecture. 

  

4. Three-Tier and n-Tier Architectures for Web Applications 

  

Many Web applications use an architecture called the three-tier architecture, 

which adds an intermediate layer between the client and the database server, as 

illustrated in Figure 2.7(a). 

 

This intermediate layer or middle tier is called the application server or 

the Web server, depending on the application. This server plays an intermediary 

role by run-ning application programs and storing business rules (procedures or 

constraints) that are used to access data from the database server. It can also 



improve database security by checking a client’s credentials before forwarding a 

request to the data-base server. Clients contain GUI interfaces and some additional 

application-specific business rules. The intermediate server accepts requests from 

the client, processes the request and sends database queries and commands to the 

database server, and then acts as a conduit for passing (partially) processed data 

from the database server to the clients, where it may be processed further and 

filtered to be presented to users in GUI format. Thus, the user interface, 

application rules, and data access act as the three tiers. Figure 2.7(b) shows 

another architecture used by database and other application package vendors. The 

presentation layer displays information to the user and allows data entry. The 

business logic layer handles intermediate rules and constraints before data is 

passed up to the user or down to the DBMS. The bottom layer includes all data 

management services. The middle layer can also act as a Web server, which 

retrieves query results from the database server and formats them into dynamic 

Web pages that are viewed by the Web browser at the client side. 

  

Other architectures have also been proposed. It is possible to divide the layers 

between the user and the stored data further into finer components, thereby giving 

rise to n-tier architectures; where n may be four or five tiers. Typically, the 

business logic layer is divided into multiple layers. Besides distributing 

programming and data throughout a network, n-tier applications afford the 

advantage that any one tier can run on an appropriate processor or operating 

system platform and can be handled independently. Vendors of ERP (enterprise 

resource planning) and CRM (customer relationship management) packages often 

use a middleware layer, which accounts for the front-end modules (clients) 

communicating with a number of back-end databases (servers). 



Advances in encryption and decryption technology make it safer to transfer 

sensitive data from server to client in encrypted form, where it will be decrypted. 

The latter can be done by the hardware or by advanced software. This technology 

gives higher levels of data security, but the network security issues remain a major 

concern. Various technologies for data compression also help to transfer large 

amounts of data from servers to clients over wired and wireless networks. 

 

 

Centralized Database Management System 

 

A centralized database is stored at a single location such as a mainframe computer. 

It is maintained and modified from that location only and usually accessed using an 

internet connection such as a LAN or WAN. The centralized database is used by 

organizations such as colleges, companies, banks etc. 



 

As can be seen from the above diagram, all the information for the organisation is 

stored in a single database. This database is known as the centralized database. 

Advantages 

Some advantages of Centralized Database Management System are − 

• The data integrity is maximised as the whole database is stored at a single 

physical location. This means that it is easier to coordinate the data and it is 

as accurate and consistent as possible. 

• The data redundancy is minimal in the centralised database. All the data is 

stored together and not scattered across different locations. So, it is easier to 

make sure there is no redundant data available. 

• Since all the data is in one place, there can be stronger security measures 

around it. So, the centralised database is much more secure. 

• Data is easily portable because it is stored at the same place. 



• The centralized database is cheaper than other types of databases as it 

requires less power and maintenance. 

• All the information in the centralized database can be easily accessed from 

the same location and at the same time. 

Disadvantages 

Some disadvantages of Centralized Database Management System are − 

• Since all the data is at one location, it takes more time to search and access 

it. If the network is slow, this process takes even more time. 

• There is a lot of data access traffic for the centralized database. This may 

create a bottleneck situation. 

• Since all the data is at the same location, if multiple users try to access it 

simultaneously it creates a problem. This may reduce the efficiency of the 

system. 

• If there are no database recovery measures in place and a system failure 

occurs, then all the data in the database will be destroyed. 

Client Server System 

In client server computing, the clients request a resource and the server provides 

that resource. A server may serve multiple clients at the same time while a client is 

in contact with only one server. 

The different structures for two tier and three tier are given as follows − 

Two - Tier Client/Server Structure 



The two tier architecture primarily has two parts, a client tier and a server tier.The 

client tier sends a request to the server tier and the server tier responds with the 

desired information. 

An example of a two tier client/server structure is a web server. It returns the 

required web pages to the clients that requested them. 

 

An illustration of the two-tier client/server structure is as above 

 

Advantages of Two - Tier Client/Server Structure 

Some of the advantages of the two-tier client/server structure are − 

• This structure is quite easy to maintain and modify. 

• The communication between the client and server in the form of request 

response messages is quite fast. 

Disadvantages of Two - Tier Client/Server Structure 

A major disadvantage of the two-tier client/server structure is − 



• If the client nodes are increased beyond capacity in the structure, then the 

server is not able to handle the request overflow and performance of the 

system degrades. 

Three - Tier Client/Server Structure 

The three tier architecture has three layers namely client, application and data 

layer. The client layer is the one that requests the information. In this case it could 

be the GUI, web interface etc. The application layer acts as an interface between 

the client and data layer. It helps in communication and also provides security. The 

data layer is the one that actually contains the required data. 

An illustration of the three-tier client/server structure is as follows − 

 

Advantages of Three - Tier Client/Server Structure 

Some of the advantages of the three-tier client/server structure are − 

• The three tier structure provides much better service and fast performance. 

• The structure can be scaled according to requirements without any problem. 



• Data security is much improved in the three tier structure. 

 

Disadvantages of Three - Tier Client/Server Structure 

A major disadvantage of the three-tier client/server structure is − 

• Three - tier client/server structure is quite complex due to advanced features. 

 

Centralized and Client–Server Architectures 

 

Centralized database systems are those that run on a single computer system and 

do not interact with other computer systems. Such database systems span a range 

from single-user database systems running on personal computers to high-

performance database systems running on high-end server systems. Client–server 

systems, on the other hand, have functionality split between a server system, and 

multiple client systems. 

Centralized Systems 

A modern, general-purpose computer system consists of one to a few CPUs and a 

number of device controllers that are connected through a common bus that 

provides access to shared memory . The CPUs have local cache memories that 

store local copies of parts of the memory, to speed up access to data. Each device 

controller is in charge of a specific type of device (for example, a disk drive, an 

audio device, or a video display). The CPUs and the device controllers can execute 

concurrently, competing for memory access. Cache memory reduces the contention 

for memory access, since it reduces the number of times that the CPU needs to 

access the shared memory. 



We distinguish two ways in which computers are used: as single-user systems and 

as multiuser systems. Personal computers and workstations fall into the first 

category. A typical single-user system is a desktop unit used by a single person, 

usually with only one CPU and one or two hard disks, and usually only one person 

using the machine at a time. A typical multiuser system, on the other hand, has 

more disks and more memory, may have multiple CPUs and has a multiuser 

operating system. It serves a large number of users who are connected to the 

system via terminals. 

 

A centralized computer system. 



Database systems designed for use by single users usually do not provide many of 

the facilities that a multiuser database provides. In particular, they may not support 

concurrency control, which is not required when only a single user can generate 

updates. Provisions for crash-recovery in such systems are either absent or 

primitive for example, they may consist of simply making a backup of the database 

before any update. Many such systems do not support SQL, and provide a simpler 

query language, such as a variant of QBE. In contrast, database systems designed 

for multi user systems support the full transactional features that we have studied 

earlier. 

Although general-purpose computer systems today have multiple processors, they 

have coarse-granularity parallelism, with only a few processors (about two to four, 

typically), all sharing the main memory. Databases running on such machines 

usually do not attempt to partition a single query among the processors; instead, 

they run each query on a single processor, allowing multiple queries to run 

concurrently. Thus, such systems support a higher throughput; that is, they allow a 

greater number of transactions to run per second, although individual transactions 

do not run any faster. 

Databases designed for single-processor machines already provide multitasking, 

allowing multiple processes to run on the same processor in a time-shared manner, 

giving a view to the user of multiple processes running in parallel. Thus, coarse 

granularity parallel machines logically appear to be identical to single-processor 

machines, and database systems designed for time-shared machines can be easily 

adapted to run on them. 

In contrast, machines with fine-granularity parallelism have a large number of 

processors, and database systems running on such machines attempt to parallelize 



single tasks (queries, for example) submitted by users. We study the architecture of 

parallel database systems. 

Client–Server Systems 

As personal computers became faster, more powerful, and cheaper, there was a 

shift away from the centralized system architecture. Personal computers supplanted 

terminals connected to centralized systems. Correspondingly, personal computers 

assumed the user-interface functionality that used to be handled directly by the 

centralized systems. As a result, centralized systems today act as server systems 

that satisfy requests generated by client systems. Figure shows the general 

structure of a client–server system. Database functionality can be broadly divided 

into two parts the front end and the back end as in Figure . The back end manages 

access structures, query evaluation and optimization, concurrency control, and 

recovery. The front end of a database system consists of tools such as forms, report 

writers, and graphical user interface facilities. The interface between the front end 

and the back end is through SQL, or through an application program. 

 

General structure of a client–server system. 

Standards such as ODBC and JDBC, were developed to interface clients with 

servers. Any client that uses the ODBC or JDBC interfaces can connect to any 

server that provides the interface. In earlier-generation database systems, the lack 

of such standards necessitated that the front end and the back end be provided by 

the same software vendor. With the growth of interface standards, the front-end 



user interface and the back-end server are often provided by different vendors. 

Application development tools are used to construct user interfaces; they provide 

graphical tools that can be used to construct interfaces without any programming. 

Some of the popular application development tools are PowerBuilder, Magic, and 

Borland Delphi; Visual Basic is also widely used for application development. 

Further, certain application programs, such as spreadsheets and statistical-analysis 

packages, use the client–server interface directly to access data from a back-end 

server. In effect, they provide front ends specialized for particular tasks. Some 

transaction-processing systems provide a transactional remote procedure call 

interface to connect clients with a server. These calls appear like ordinary 

procedure calls to the programmer, but all the remote procedure calls from a client 

are enclosed in a single transaction at the server end. Thus, if the transaction 

aborts, the server can undo the effects of the individual remote procedure calls. 

 

Front-end and back-end functionality. 

Server System Architectures 

Server systems can be broadly categorized as transaction servers and data servers. 



• Transaction-server systems, also called query-server systems, provide an 

interface to which clients can send requests to perform an action, in response to 

which they execute the action and send back results to the client. Usually, client 

machines ship transactions to the server systems, where those transactions are 

executed, and results are shipped back to clients that are in charge of displaying 

the data. Requests may be specified by using SQL, or through a specialized 

application program interface. 

• Data-server systems allow clients to interact with the servers by making requests 

to read or update data, in units such as files or pages. For example, file servers 

provide a file-system interface where clients can create, update, read, and delete 

files. Data servers for database systems offer much more functionality; they 

support units of data such as pages, tuples, or objects that are smaller than a file. 

They provide indexing facilities for data, and provide transaction facilities so 

that the data are never left in an inconsistent state if a client machine or process 

fails. 

Of these, the transaction-server architecture is by far the more widely used 

architecture. We shall elaborate on the transaction-server and data-server 

architectures. 

Parallel Systems 
Parallel systems improve processing and I/O speeds by using multiple CPUs and 

disks in parallel. Parallel machines are becoming increasingly common, making 

the study of parallel database systems correspondingly more important. The 

driving force behind parallel database systems is the demands of applications that 

have to query extremely large databases (of the order of terabytes that is, 1012 

bytes) or that have to process an extremely large number of transactions per second 



(of the order of thousands of transactions per second). Centralized and client–

server database systems are not powerful enough to handle such applications. 

In parallel processing, many operations are performed simultaneously, as opposed 

to serial processing, in which the computational steps are performed sequentially. 

A coarse-grain parallel machine consists of a small number of powerful processors; 

a massively parallel or fine-grain parallel machine uses thousands of smaller 

processors. 

Most high-end machines today offer some degree of coarse-grain parallelism: Two 

or four processor machines are common. Massively parallel computers can be 

distinguished from the coarse-grain parallel machines by the much larger degree of 

parallelism that they support. Parallel computers with hundreds of CPUs and disks 

are available commercially. 

There are two main measures of performance of a database system: (1) throughput, 

the number of tasks that can be completed in a given time interval, and (2) 

response time, the amount of time it takes to complete a single task from the time it 

is submitted. A system that processes a large number of small transactions can 

improve throughput by processing many transactions in parallel. A system that 

processes large transactions can improve response time as well as throughput by 

performing subtasks of each transaction in parallel. 

Speedup and Scale up 

Two important issues in studying parallelism are speedup and scale up. Running a 

given task in less time by increasing the degree of parallelism is called speedup. 

Handling larger tasks by increasing the degree of parallelism is called scale up. 

Consider a database application running on a parallel system with a certain number 

of processors and disks. Now suppose that we increase the size of the system by 



increasing the number or processors, disks, and other components of the system. 

The goal is to process the task in time inversely proportional to the number of 

processors and disks allocated. Suppose that the execution time of a task on the 

larger machine is TL, and that the execution time of the same task on the smaller 

machine is TS. 

The speedup due to parallelism is defined as TS/TL. The parallel system is said to 

demonstrate linear speedup if the speedup is N when the larger system has N times 

the resources (CPU, disk, and so on) of the smaller system. If the speedup is less 

than N, the system is said to demonstrate sub linear speedup. Figure illustrates 

linear and sub linear speedup. 

 

Speedup with increasing resources. 

Scale up relates to the ability to process larger tasks in the same amount of time by 

providing more resources. Let Q be a task, and let QN be a task that is N times 

bigger than Q. Suppose that the execution time of task Q on a given machine MS is 

TS, and the execution time of task QN on a parallel machine ML, which is N times 

larger than MS, is TL. The scale up is then defined as TS/TL. The parallel system 

ML is said to demonstrate linear scale up on task Q if TL = TS. If TL > TS, the 



system is said to demonstrate sub linear scale up. Figure illustrates linear and sub 

linear scale ups (where the resources increase proportional to problem size). There 

are two kinds of scale up that are relevant in parallel database systems, depending 

on how the size of the task is measured: 

• In batch scale up, the size of the database increases, and the tasks are large jobs 

whose runtime depends on the size of the database. An example of such a task is 

a scan of a relation whose size is proportional to the size of the database. Thus, 

the size of the database is the measure of the size of the problem. Batch scale up 

also applies in scientific applications, such as executing a query at an N-times 

finer resolution or performing an N-times longer simulation. 

• In transaction scale up, the rate at which transactions are submitted to the 

database increases and the size of the database increases proportionally to the 

transaction rate. This kind of scale up is what is relevant in transaction 

processing systems where the transactions are small updates for example, a 

deposit or withdrawal from an account and transaction rates grow as more 

accounts are created. Such transaction processing is especially well adapted for 

parallel execution, since transactions can run concurrently and independently on 

separate processors, and each transaction takes roughly the same amount of 

time, even if the database grows. 

Scale up is usually the more important metric for measuring efficiency of parallel 

database systems. The goal of parallelism in database systems is usually to make 

sure that the database system can continue to perform at an acceptable speed, even 

as the size of the database and the number of transactions increases. Increasing the 

capacity of the system by increasing the parallelism provides a smoother path for 

growth for an enterprise than does replacing a centralized system by a faster 

machine (even assuming that such a machine exists). However, we must also look 



at absolute performance numbers when using scale up measures; a machine that 

scales up linearly may perform worse than a machine that scales less than linearly, 

simply because the latter machine is much faster to start off with 

 

Scale up with increasing problem size and resources. 

A number of factors work against efficient parallel operation and can diminish 

both speedup and scale up. 

• Startup costs. There is a startup cost associated with initiating a single process. 

In a parallel operation consisting of thousands of processes, the startup time may 

overshadow the actual processing time, affecting speedup adversely. 

• Interference. Since processes executing in a parallel system often access shared 

resources, a slowdown may result from the interference of each new process as 

it competes with existing processes for commonly held resources, such as a 

system bus, or shared disks, or even locks. Both speedup and scale up are 

affected by this phenomenon. 

• Skew. By breaking down a single task into a number of parallel steps, we reduce 

the size of the average step. Nonetheless, the service time for the single slowest 

step will determine the service time for the task as a whole. It is often difficult to 



divide a task into exactly equal-sized parts, and the way that the sizes are 

distributed is therefore skewed. For example, if a task of size 100 is divided into 

10 parts, and the division is skewed, there may be some tasks of size less than 

10 and some tasks of size more than 10; if even one task happens to be of size 

20, the speedup obtained by running the tasks in parallel is only five, instead of 

ten as we would have hoped. 

 

Distributed Systems 

 
In a distributed database system, the database is stored on several computers. The 

computers in a distributed system communicate with one another through various 

communication media, such as high-speed networks or telephone lines. They do 

not share main memory or disks. The computers in a distributed system may vary 

in size and function, ranging from workstations up to mainframe systems. 

The computers in a distributed system are referred to by a number of different 

names, such as sites or nodes, depending on the context in which they are 

mentioned. We mainly use the term site, to emphasize the physical distribution of 

these systems. The general structure of a distributed system appears in Figure . 

The main differences between shared-nothing parallel databases and distributed 

databases are that distributed databases are typically geographically separated, are 

separately administered, and have a slower interconnection. Another major 

difference is that, in a distributed database system, we differentiate between local 

and global transactions. A local transaction is one that accesses data only from 

sites where the transaction was initiated. A global transaction, on the other hand, is 

one that either accesses data in a site different from the one at which the 

transaction was initiated, or accesses data in several different sites. 



There are several reasons for building distributed database systems, including 

sharing of data, autonomy, and availability. 

• Sharing data. The major advantage in building a distributed database system is 

the provision of an environment where users at one site may be able to access 

the data residing at other sites. For instance, in a distributed banking system, 

where each branch stores data related to that branch, it is possible for a user in 

one branch to access data in another branch. Without this capability, a user 

wishing to transfer funds from one branch to another would have to resort to 

some external mechanism that would couple existing systems. 

• Autonomy. The primary advantage of sharing data by means of data distribution 

is that each site is able to retain a degree of control over data that are stored 

locally. In a centralized system, the database administrator of the central site 

controls the database. In a distributed system, there is a global database 

administrator responsible for the entire system. A part of these responsibilities is 

delegated to the local database administrator for each site. Depending on the 

design of the distributed database system, each administrator may have a 

different degree of local autonomy. The possibility of local autonomy is often a 

major advantage of distributed databases. 



 

A distributed system. 

• Availability. If one site fails in a distributed system, the remaining sites may be 

able to continue operating. In particular, if data items are replicated in several 

sites, a transaction needing a particular data item may find that item in any of 

several sites. Thus, the failure of a site does not necessarily imply the shutdown 

of the system. 

The failure of one site must be detected by the system, and appropriate action may 

be needed to recover from the failure. The system must no longer use the services 

of the failed site. Finally, when the failed site recovers or is repaired, mechanisms 

must be available to integrate it smoothly back into the system. 

Although recovery from failure is more complex in distributed systems than in 

centralized systems, the ability of most of the system to continue to operate despite 

the failure of one site results in increased availability. Availability is crucial for 

database systems used for real-time applications. Loss of access to data by, for 

example, an airline may result in the loss of potential ticket buyers to competitors. 



An Example of a Distributed Database 

Consider a banking system consisting of four branches in four different cities. Each 

branch has its own computer, with a database of all the accounts maintained at that 

branch. Each such installation is thus a site. There also exists one single site that 

maintains information about all the branches of the bank. Each branch maintains 

(among others) a relation account(Account-schema), 

where Account-schema = (account-number, branch-name, balance) 

The site containing information about all the branches of the bank maintains the 

relation branch(Branch-schema), where 

Branch-schema = (branch-name, branch-city, assets) 

There are other relations maintained at the various sites; we ignore them for the 

purpose of our example. 

To illustrate the difference between the two types of transactions local and global 

at the sites, consider a transaction to add $50 to account number A-177 located at 

the Valley view branch. If the transaction was initiated at the Valley view branch, 

then it is considered local; otherwise, it is considered global. A transaction to 

transfer $50 from account A-177 to account A-305, which is located at the Hillside 

branch, is a global transaction, since accounts in two different sites are accessed as 

a result of its execution. 

In an ideal distributed database system, the sites would share a common global 

schema (although some relations may be stored only at some sites), all sites would 

run the same distributed database-management software, and the sites would be 

aware of each other’s existence. If a distributed database is built from scratch, it 

would indeed be possible to achieve the above goals. However, in reality a 

distributed database has to be constructed by linking together multiple already-



existing database systems, each with its own schema and possibly running different 

database management software. Such systems are sometimes called multi database 

systems or heterogeneous distributed database systems. where we show how to 

achieve a degree of global control despite the heterogeneity of the component 

systems. 

Implementation Issues 

Atomicity of transactions is an important issue in building a distributed database 

system. If a transaction runs across two sites, unless the system designers are 

careful, it may commit at one site and abort at another, leading to an inconsistent 

state. Transaction commit protocols ensure such a situation cannot arise. The two-

phase commit protocol (2PC) is the most widely used of these protocols. 

The basic idea behind 2PC is for each site to execute the transaction till just before 

commit, and then leave the commit decision to a single coordinator site; the 

transaction is said to be in the ready state at a site at this point. The coordinator 

decides to commit the transaction only if the transaction reaches the ready state at 

every site where it executed; otherwise (for example, if the transaction aborts at 

any site), the coordinator decides to abort the transaction. Every site where the 

transaction executed must follow the decision of the coordinator. If a site fails 

when a transaction is in ready state, when the site recovers from failure it should be 

in a position to either commit or abort the transaction, depending on the decision of 

the coordinator. 

Concurrency control is another issue in a distributed database. Since a transaction 

may access data items at several sites, transaction managers at several sites may 

need to coordinate to implement concurrency control. If locking is used (as is 

almost always the case in practice), locking can be performed locally at the sites 

containing accessed data items, but there is also a possibility of deadlock involving 



transactions originating at multiple sites. Therefore deadlock detection needs to be 

carried out across multiple sites. Failures are more common in distributed systems 

since not only may computers fail, but communication links may also fail. 

Replication of data items, which is the key to the continued functioning of 

distributed databases when failures occur, further complicates concurrency control. 

The standard transaction models, based on multiple actions carried out by a single 

program unit, are often inappropriate for carrying out tasks that cross the 

boundaries of databases that cannot or will not cooperate to implement protocols 

such as 2PC. 

Alternative approaches, based on persistent messaging for communication, are 

generally used for such tasks. When the tasks to be carried out are complex, 

involving multiple databases and/or multiple interactions with humans, 

coordination of the tasks and ensuring transaction properties for the tasks become 

more complicated. Workflow management systems are systems designed to help 

with carrying out such tasks. 

In case an organization has to choose between a distributed architecture and a 

centralized architecture for implementing an application, the system architect must 

balance the advantages against the disadvantages of distribution of data.We have 

already seen the advantages of using distributed databases. The primary 

disadvantage of distributed database systems is the added complexity required to 

ensure proper coordination among the sites. This increased complexity takes 

various forms: 

• Software-development cost. It is more difficult to implement a distributed 

database system; thus, it is more costly. 



• Greater potential for bugs. Since the sites that constitute the distributed system 

operate in parallel, it is harder to ensure the correctness of algorithms, especially 

operation during failures of part of the system, and recovery from failures. The 

potential exists for extremely subtle bugs. 

• Increased processing overhead. The exchange of messages and the additional 

computation required to achieve inter site coordination are a form of overhead 

that does not arise in centralized systems. 

There are several approaches to distributed database design, ranging from fully 

distributed designs to ones that include a large degree of centralization. 

 

Network systems 
 

Distributed databases and client–server systems are built around communication 

networks. There are basically two types of networks: local-area networks and wide 

area networks. The main difference between the two is the way in which they are 

distributed geographically. In local-area networks, processors are distributed over 

small geographical areas, such as a single building or a number of adjacent 

buildings. 

In wide-area networks, on the other hand, a number of autonomous processors are 

distributed over a large geographical area (such as the United States or the entire 

world). These differences imply major variations in the speed and reliability of the 

communication network, and are reflected in the distributed operating-system 

design. 

Local-Area Networks 

Local-area networks (LANs) (Figure) emerged in the early 1970s as a way for 

computers to communicate and to share data with one another. People recognized 



that, for many enterprises, numerous small computers, each with its own self 

contained applications, are more economical than a single large system. Because 

each small computer is likely to need access to a full complement of peripheral 

devices (such as disks and printers), and because some form of data sharing is 

likely to occur in a single enterprise, it was a natural step to connect these small 

systems into a network. 

 

Local-area network. 

LANs are generally used in an office environment. All the sites in such systems are 

close to one another, so the communication links tend to have a higher speed and 

lower error rate than do their counterparts in wide-area networks. The most 

common links in a local-area network are twisted pair, coaxial cable, fiber optics, 

and, increasingly, wireless connections. Communication speeds range from a few 

megabits per second (for wireless local-area networks), to 1 gigabit per second for 

Gigabit Ethernet. 



Standard Ethernet runs at 10 megabits per second, while Fast Ethernet run at 100 

megabits per second. A storage-area network (SAN) is a special type of high-speed 

local-area network designed to connect large banks of storage devices (disks) to 

computers that use the data. Thus storage-area networks help build large-scale 

shared-disk systems. The motivation for using storage-area networks to connect 

multiple computers to large banks of storage devices is essentially the same as that 

for shared-disk databases, namely 

• Scalability by adding more computers 

• High availability, since data is still accessible even if a computer fails RAID 

organizations are used in the storage devices to ensure high availability of the 

data, permitting processing to continue even if individual disks fail. Storage area 

networks are usually built with redundancy, such as multiple paths between 

nodes, so if a component such as a link or a connection to the network fails, the 

network continues to function. 

Wide-Area Networks 

Wide-area networks (WANs) emerged in the late 1960s, mainly as an academic 

research project to provide efficient communication among sites, allowing 

hardware and software to be shared conveniently and economically by a wide 

community of users. Systems that allowed remote terminals to be connected to a 

central computer via telephone lines were developed in the early 1960s, but they 

were not true WANs. 

The first WAN to be designed and developed was the Arpanet. Work on the 

Arpanet began in 1968. The Arpanet has grown from a four-site experimental 

network to a worldwide network of networks, the Internet, comprising hundreds of 

millions of computer systems. Typical links on the Internet are fiber-optic lines 

and, sometimes, satellite channels. Data rates for wide-area links typically range 



from a few megabits per second to hundreds of gigabits per second. The last link, 

to end user sites, is often based on digital subscriber loop (DSL) technology 

supporting a few megabits per second), or cable modem (supporting 10 megabits 

per second), or dial-up modem connections over phone lines (supporting up to 56 

kilobits per second). 

WANs can be classified into two types: 

• In discontinuous connection WANs, such as those based on wireless 

connections, hosts are connected to the network only part of the time. 

• In continuous connection WANs, such as the wired Internet, hosts are connected 

to the network at all times. 

 

 

 

 


