$\mathbf{UNIT} - \mathbf{II}$

CONTINUOUS FUNCTION

Definition: Continuous Function

Let X and Y be topological spaces.

A function $f: X \rightarrow Y$ is said to be continuous if for

each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X. \checkmark Open

Note 1:

Recall that $f^{-1}(V)$ is the set of all points x of X for which $f(x) \in V$. It is empty if V does not intersect the image set f(X) of f.

Note 2:

Continuity of a function depends not only upon the function itself, but also on the topologies specified for its domain and range. If we wish to emphasize this fact, we can say that f is continuous relative to specified topologies on X and Y.

Example-1:

Let us consider the function like those studied in analysis "A real valued function of a real variable".

 $f: \mathcal{R} \to \mathcal{R}$
i.e., f(x) = x

Example-2:

Let \mathcal{R} denote the set of real numbers in its usual topology and let \mathcal{R}_{ℓ} denote the same set in the **lower limit topology.**

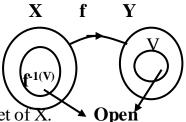
Let $f : \mathcal{R} \to \mathcal{R}_{\ell}$ be the identity function.

f(x) = x for every real number X. Then f is not a continuous function. The inverse image of an open set [a, b) of \mathcal{R}_{ℓ} equals itself which is not open in \mathcal{R} .

On the other hand, the identity function $\mathbf{g}: \mathcal{R}_{\ell} \to \mathcal{R}$ is continuous, because the inverse image of (a, b) is itself, which is open in \mathcal{R}_{ℓ} .

Definition : Homeomorphism

Let X and Y be a topological spaces. Let $f : X \to Y$ be a **bijection**.



If both \mathbf{f} and \mathbf{f}^{-1} are continuous, then \mathbf{f} is called a **Homeomorphism**.

Theorem:

Statement:

Let X and Y be a topological spaces. Let $f: X \to Y$. Then the following are equivalent.

- (i) f is continuous
- (ii) for every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$
- (iii) for every closed set B of Y the set $f^1(B)$ is closed in X
- (iv) for each $x \in X$ and each neighbourhood V of f(x) there is a neighbourhood U of x such that $f(U) \subset V$

If the conclusion in (4) holds for the point x of X we say that f is **continuous** at the point x.

Proof:

Let X and Y be the topological spaces. Let $f: X \to Y$.

 $(\mathbf{i}) \Rightarrow (\mathbf{ii})$

Assume that f is continuous. Let A be a subset of X.

<u>To prove:</u> $\mathbf{f}(\bar{\mathbf{A}}) \subset f(\overline{\mathbf{A}})$

Let $x \in \overline{A}$. Then $f(x) \in f(\overline{A})$

if $f(x) \in f(\overline{A})$ then we have to show that

```
\mathbf{f}(\mathbf{x}) \subset f(\overline{\mathbf{A}})
```

Let V be a neighbourhood of f(x). Then $f^{-1}(V)$ is an open set of X containing x. (: f is continuous)

Here $x \in \overline{A}$ and $f^{-1}(V)$ is open.

 \therefore f⁻¹(V) must intersect A in some point y.

Then V intersects f(A) in the point f(y).

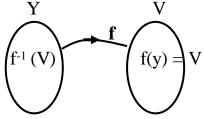
i.e.,
$$f(y) \in V \cap f(A)$$

 $\Rightarrow V \cap f(A)$ is non empty.
 $\Rightarrow f(x) \in \overline{f(A)}$
 $\therefore f(\overline{A}) \subset \overline{f(A)}$

(ii) \Rightarrow (iii) Let B closed in Y and let $A = f^{-1}(B)$

To prove:A is closed in X.We have $A \subset \overline{A}$

if we prove $\overline{A} \subset A$ then $A = \overline{A}$ \Rightarrow A is closed. Let us prove : $\overline{A} \subset A$ Here $A = f^{-1}(B) \Rightarrow f(A) \subset B$. Let $x \in \overline{A}$ then $f(x) \in f(\overline{A})$ $\subset \overline{f(A)}$ $\subseteq \overline{B} = B$ since B is closed i.e., $f(x) \in B$ (or) $x \in f^{-1}(B) = A$ $\Rightarrow \bar{A} \subset A$ Hence $A = \overline{A}$ \therefore A = f⁻¹ (B) is closed. $(iii) \Rightarrow (i)$ Let V be an open set in Y. Let B = Y-V, then B is closed in Y. \therefore f⁻¹ (B) is closed in X. (by (iii)) Y $f^{-1}(V) = f^{-1}(Y-B)$ $= f^{-1}(Y) - f^{-1}(B)$ $= X - f^{-1}(B)$ \therefore f⁻¹(V) is open.



Hence f is continuous.

 $(\mathbf{i}) \Rightarrow (\mathbf{iv})$

Let $x \in X$ and V be a neighbourhood of f(x). Then since f is continuous $f^{-1}(V)$ is a neighbourhood of x. Let $f^{-1}(V) = U$.

Then $f(U) = f(f^{-1}(V)) \subset V$

For given $x \in X$ and a neighbourhood V of f(x), there exist a neighbourhood U of x such that $f(U) \subseteq V$.

 $(iv) \Rightarrow (i)$ Let V be an open set of Y. Let $x \in f^{-1}(V)$ then $f(x) \in V$.

By hypothesis,

 \exists a neighbourhood U_x of x such that $f(U_x) \subseteq V$

Then, $U_x \subseteq f^{-1}(f(U_x)) \subseteq f^{-1}(V)$.

Hence $f^{-1}(V) = \bigcup U_x$.

since each U_x is open and union of open sets is open, $f^{-1}(V)$ is open in X.

Therefore f is continuous. Hence the theorem.

Foot Note:

i) A is always contained in $f^{-1}(f(A))$

i.e $A \subseteq f^{-1}(f(A))$

 $\textbf{ii}) \quad f(f^{\text{-1}}(B)) \subseteq B.$

Result-1:

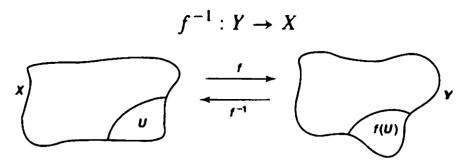
If the inverse image of every basis element is open, then f is continuous.

Proof:

Let $f: X \rightarrow Y$ and the inverse image of every basis element be open Let $V \subseteq Y$ be a open in Y. Then $V = \bigcup B_{\alpha}$ α $f^{-1}(V) \subset f^{-1}(\bigcup B_{\alpha}) = \bigcup f^{-1}(B_{\alpha})$ α $\Rightarrow f^{-1}(V)$ is open in X, since each $f^{-1}(B_{\alpha})$ is open in X.

Definition: Open map

A map $f: X \to Y$ is said to be an open map if for every open set U of X, f(U) is open in Y.



Note:

Let $f: X \to Y$, then the map $f^{-1}: Y \to X$ the inverse image of U under the map f^{-1} is same as the image of U under the map f.

The homeomorphism can be defined as a bijective correspondence

 $f: X \to Y$ such that f(U) is open iff U is open.

Definition : Topological property

Let $f : X \to Y$ be a homeomorphism. Any property of X that is entirely expressed in terms of the topology of X yields, through the correspondence f, the corresponding property for the space Y, such a property of X is called **topological property.**

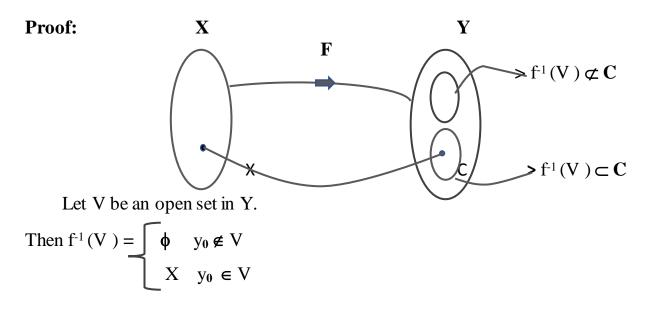
Constructing Continuous Functions:

Theorem : Rules for constructing continuous function

Let X, Y and Z be topological spaces.

(a) Constant function:

If $f: X \to Y$ maps all of X into the single point y_0 of Y. Then f is continuous.



 \therefore f⁻¹(V) is open in X. (since both ϕ and X are open in X)

(b) Restriction Function:

Let A be a subspace of X. Then the restriction function, restricting the domain $f/A : A \rightarrow Y$ is continuous.

Proof:

Let V be open in Y.Then $f^{-1}(V)$ is open in X, since f is continuous.

 $f^{-1}(V) \cap A$ is open in A and $(f(A)^{-1}(V) = f^{-1}(V) \cap A$

Thus $(f(A))^{-1}$ (V) is open in A.

 \therefore f /A : A \rightarrow Y is continuous.

(c) Inclusion Function:

If A is a subspace of X the inclusion function $\mathbf{j} : A \rightarrow X$ is continuous.

Proof:

Let U be open in X then $j^{-1}(U) = A \cap U$ is open in A.

(in subspace topology)

 $\therefore j^{-1}(U)$ is open in A.

i.e $\mathbf{j} : \mathbf{A} \rightarrow \mathbf{X}$ is continuous.

(d) Composition of continuous functions is continuous

If $f: X \to Y$ and $g: Y \to Z$ are continuous then the map gof : $X \to Z$ is continuous.

Proof:

Let V be an open set of Z then $g^{-1}(V)$ is open in Y. (: g is continuous) Since f is continuous $f^{-1}(g^{-1}(V))$ is open in X. And $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ \therefore for every open set V of Z, $(gof)^{-1}(V)$ is open in X. Hence $gof : X \rightarrow Z$ is continuous.

(e) Restricting (or) Expanding the range:

(i) Let $f: X \to Y$ be continuous. If Z is a subspace of Y containing the image set f(X), then the function g: $X \to Z$ obtained by restricting the range of f is continuous.

(ii) If Z is a space having Y as a subspace then the function f_n , $h:X\to Z$ obtained by expanding the range of f is continuous.

Proof:

(i) Let $f: X \to Y$ be continuous. If Z is a subspace of Y containing f(X)We have $f(X) \subseteq Z \subseteq Y$. Let g: $X \to Z$ be a function. <u>To prove:</u> g is continuous.

Let B be open in Z.

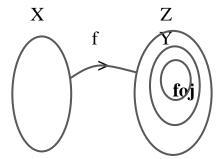
To prove:

 $g^{-1}(B)$ is open in X.

Since B is open in the subspace topology, $B = U \cap Z$, where U is open in Y. $g^{-1}(B) = f^{-1}(B) = f^{-1}(U \cap Z)$

```
= f^{-1}(U) \cap f^{-1}(Z)
= f^{-1}(U) \cap X.
g^{-1}(B) = f^{-1}(U) .....(*)
Since U is open in Y and f is continuous,
f^{-1}(U) is open in X.
```

- i.e., $g^{-1}(B)$ is open in X (by (*)) Hence $g: X \rightarrow Z$ is continuous.
 - (ii) Let Z contains Y as a subspace given that $f: X \rightarrow Y$ is continuous.



The inclusion function j: $Y \rightarrow Z$ is also continuous.

 \therefore Their composition (jof): $X \rightarrow Z$ is continuous.

i.e., The map $h: X \rightarrow Z$ is continuous.

(f) Local formulation of Continuity:

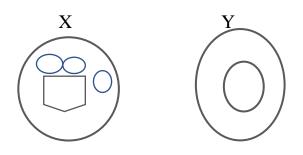
The map $f: X \to Y$ is continuous if X can be written as union of open sets U_{α} such that f/U_{α} is continuous for each α .

Proof:

Let $f: X \rightarrow Y$ and let $X = U_{\alpha}$ Given that :

 $f \mid U_{\alpha} : U_{\alpha} \to Y$ is continuous, for each α .

To prove:



f| U_{α} : $X \rightarrow Y$ is continuous.

Let V be open in Y.

<u>claim:</u>

f¹(V) is open in X. Since f / U: U_α → Y is continuous, and V is open in Y. (f/U_α)⁻¹(V) is open in U_α. (f/U_α)⁻¹(V) = f⁻¹(V) ∩ U_α is open in U_α. Since U_α is open in X, we have f⁻¹(V) ∩ U_α is open in X. Now $f^{-1}(V) = \bigcup_{\alpha} (f^{-1}(V) \cap U_{\alpha}),$ arbitrary union of open sets is open. ⇒ f⁻¹(V) is open in X, Since f : X → Y is continuous. Hence proved.

Pasting Lemma: Statement:

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If $f(x) = g(x) \quad \forall x \in A \cap B$ then **f** & **g** combine to give a continuous function.

 $h: X \rightarrow Y$ defined by setting

$$h(x) = \int f(x) , \text{ if } x \in A$$
$$g(x) , \text{ if } x \in B$$

Proof:

Let V be a closed set in Y. Then $h^{-1}(V) = f^{-1}(V) \bigcup g^{-1}(V)$

Since f is continuous,

 $f^{-1}(V)$ is closed in A and A closed in X

 \Rightarrow f⁻¹(V) is closed in X.

 $g^{-1}(V)$ is closed in B and B closed in X

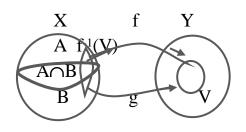
 \Rightarrow g⁻¹(V) is closed in X.

Since union of two closed sets is closed,

$$f^{-1}(V) \bigcup g^{-1}(V)$$
 is closed in X.

i.e.,
$$h^{-1}(V)$$
 is closed in X.

Therefore h is continuous.



Hence the proof.

Example 1:

For Pasting Lemma Define $h: \mathcal{R} \to \mathcal{R}$ by $h(x) = \begin{cases} x \text{ if } x \leq 0 \\ x/2 \text{ if } x \geq 0 \end{cases}$ f(x) = x, g(x) = x/2 $A = \{ x: x \leq 0 \} = \text{negative reals } \cup \{0\} \text{ is closed.}$ $B = \{ x: x \geq 0 \} = R_+ \cup \{0\} \text{ is closed.}$ and $R = A \cup B$ $A \cap B = \{0\}$ f(0) = 0, g(0) = 0.Hence f(0) = g(0).Hence by Pasting Lemma, h is continuous.

Example 2:

The pieces of the function must agree on the overlapping part of their domains in Pasting Lemma. If not the function need not be continuous.

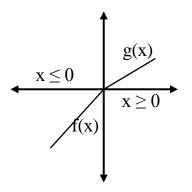
Let h1:
$$\mathcal{R} \to \mathcal{R}$$
 defined by
h_1(x) = $\begin{bmatrix} x-2 & \text{if } x \le 0 \\ x+2 & \text{if } x \ge 0 \end{bmatrix}$
f(x) = x-2, g(x) = x+2
A = {x: x \le 0}
= R. U {0} is closed.
B = {x: x \ge 0}
= R_+ U {0} is closed.
 $\mathcal{R} = AUB.$
A $\cap B = \{0\}$
f(0) = -2 \neq g(0) = 2.
Example the solution is closed in the solution is solution.

From the graph it is clear that h_1 is not continuous.

Example 3:

Let
$$: \mathcal{R} \to \mathcal{R}$$

Let $\ell(\mathbf{x}) = \begin{bmatrix} \overline{\mathbf{x}} \cdot 2 & \text{if } \mathbf{x} < 0 \\ \end{bmatrix}$ if $\mathbf{x} < 0$, $\mathbf{x} + 2$ if $\mathbf{x} \ge 0$



 $A = \{x: x < 0\}$

 $= R_{-}$ is not closed.

We define a function ℓ mapping \mathcal{R} into \mathcal{R} and both the pieces are continuous.

But ℓ is not continuous, the inverse image of the open set (1,3) is non-open set [0,1).

Theorem 2.4:

Maps Into Products:

Statement:

Let $f : A \to X \times Y$ be given by the equation

 $f(a) = (f_1(a), f_2(a))$

Then f is continuous if and only if the function

 $f_1: A \rightarrow X$ and $f_2: A \rightarrow Y$ are continuous.

The maps f_1 and f_2 are called the coordinate functions of f.

Proof:

Let $\Pi_1: X \times Y \to X$ and

 $\Pi_2: X \times Y \rightarrow Y$ be projections onto

the first and second factors, respectively.

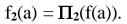
These maps are continuous.

For $\Pi_1^{-1}(U) = U \times Y$ and

 $\Pi_2^{-1}(U) = X \times V$ and these sets are open.

if U and V are open. Note that for each $a \in A$.

 $f_1(a) = \prod_1(f(a))$ and



If the function f is continuous then f_1 and f_2 are composites of continuous function and therefore continuous.

Conversely,

Suppose that f_1 and f_2 are continuous.

We show that for each basis element $U \times V$ for the topology of $X \times Y$,

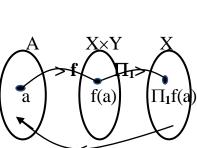
its inverse image $f^{-1}(U \times V)$ is open.

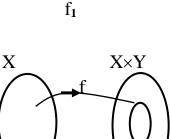
A point **a** is in $f^{-1}(U \times V)$ iff $f(a) \in U \times V$.

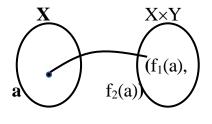
i.e., iff $f_1(a) \in U$ and $f_2(a) \in V$.

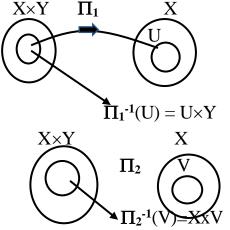
 $f^{-1}(U \times V) = f_1^{-1}(U) \cap f_2^{-1}(V)$

Since both of the sets $f_{1}^{-1}(U)$ and $f_{2}^{-1}(V)$ are open,









so is their intersection. Hence the proof.

Definition : Limit of the Sequence

If the sequence $\{x_n\}$ of points of the Hausdorff Space X converges to a point x of X. We write $x_n \rightarrow x$ and call x as a limit of the sequence $\{x_n\}$.

The Product Topology:

Definition: J-tuple

Let **J** be an indexed set given a set X. We define a **J-tuple** of elements of X to be the function

X: $J \rightarrow X$ if α is an element of J. We denote the value if X at α by (X(a)=) x_{α} rather than $x(\alpha)$.

Then x_{α} is called the α^{th} co-ordinate of X.

The function X itself is denoted by the symbol $(x_{\alpha})_{\alpha \in J}$. We denote the set of all **J**-tuples of elements of X by X^J.

Definition:

Let $\{A_{\alpha}\}_{\alpha \in J}$ be an indexed family of sets. Let

$$X = \bigcup_{\alpha \in J} A_{\alpha}$$

The Cartesian product of this indexed family denoted by

$$\prod_{\alpha\in J}A_{\alpha},$$

is defined to be the set of all **J-tuples** $(x_{\alpha})_{\alpha \in J}$ elements of X such that

 $x_{\alpha} \in A_{\alpha}$ for each $\alpha \in J$.

i.e., it is the set of all functions

$$\mathbf{x}: J \to \bigcup_{\alpha \in J} A_{\alpha}$$

such that $x(\alpha) \in A_{\alpha}$ for each α .

Note:

If all the sets A_{α} are equal to X, then the cartesian product $\prod_{\alpha \in J} A_{\alpha}$ is just the set X^J of **J**-tuples of elements of X.

Definition: Box Topology

Let $\{X_{\alpha}\}_{\alpha \in J}$ be an indexed family of topological spaces. Then the basis for a topology on the product space $\prod_{\alpha \in J} X_{\alpha}$ is the collection of all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X for each $\alpha \in J$.

The topology generated by this basis is called the **Box topology.**

Note:

The collection satisfies the first condition for a basis because ΠX_{α} is itself a basis element and it satisfies the 2nd condition because the intersection of any two basis element is another basis element.

$$(\prod_{\alpha\in J}U_{\alpha})\cap (\prod_{\alpha\in J}V_{\alpha})=\prod_{\alpha\in J}(U_{\alpha}\cap V_{\alpha}).$$

Definition: Projection Mapping

Let $\pi_{\beta} : \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$ be the function assigning to each element of the product space its β^{th} co-ordinate,

 $\pi_{\beta}((\mathbf{x}_{\alpha})_{\alpha \in \mathbf{J}}) = \mathbf{x}_{\beta}$

It is called the projection mapping associated with the index β .

Definition :

Let S_{β} denote the collection

 $S_{\beta} = \{ \prod^{-1}_{\beta} (U_{\beta}) / U_{\beta} \text{ open in } X_{\beta} \}$

And let S denote the union of these collections,

$$\mathbf{S} = \mathbf{U}_{\boldsymbol{\beta} \in \mathbf{J}} \mathbf{S}_{\boldsymbol{\beta}}$$

The topology generated by the sub basis S is called the **product topology**.

In this topology $\prod_{\alpha \in J} X_{\alpha}$ is called a **product space**.

Theorem

Comparison of the Box and Product topologies

Statement :

The box of topology on $\prod X_{\alpha}$ has an basis all sets of the form $\prod U_{\alpha}$ where U_{α} is open in X_{α} for each α . The product topology on $\prod X_{\alpha}$ has a basis all sets

of the form $\prod U_{\alpha}$ where U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of α .

Proof:

Basis for product topology on $\prod X_{\alpha}$.

The collection **B** consist of all finite intersection of elements of S.

If we intersect elements belonging to the same collection of S_{β} then

 $\prod {}^{-1}{}_{\beta}(U_{\beta}) \cap \prod {}^{-1}{}_{\beta}(V_{\beta}) = \prod {}^{-1}{}_{\beta}(U_{\beta} \cap V_{\beta})$

Thus the intersection of two elements of S_β or finitely many such elements is again an element of S_β .

So let us intersect elements from different sets S_{β} . Let β_1 , β_2 ,, β_n be a finite set of distinct indices from the index set J.

Let U_{β} be an open set in $X_{\beta i}$, i = 1, 2, ..., n. Then

 $\prod {}^{-1}{}_{\beta 1}(\,U_{\,\beta 1})\, \Pi \prod {}^{-1}{}_{\beta 2}(\,U_{\,\beta 2})\, \Pi \, \, \Pi \prod {}^{-1}{}_{\beta n}(\,U_{\,\beta n})$

is the finite intersection of subbasis elements so it belongs to ${\bf B}$.

Let
$$\beta = \prod^{-1} \beta_1 (U_{\beta 1}) \cap \prod^{-1} \beta_2 (U_{\beta 2}) \cap \dots \cap \prod^{-1} \beta_n (U_{\beta n})$$

Let $\mathbf{x} = (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{J}} \in \beta$
 $\Leftrightarrow (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{J}} \in \prod^{-1} \beta_1 (U_{\beta 1}) \cap \prod^{-1} \beta_2 (U_{\beta 2}) \cap \dots \cap \prod^{-1} \beta_n (U_{\beta n})$
 $\Leftrightarrow (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{J}} \in \prod^{-1} \beta_i (U_{\beta i}) , i = 1, 2, \dots n$
 $\Leftrightarrow \prod_{\beta i} ((\mathbf{x}_{\alpha}))_{\alpha \in \mathbf{J}} \in U_{\beta i}$
 $\Leftrightarrow X_{\beta i} \in U_{\beta i}$

There is no intersection on α^{th} co-ordinates of x if α is not one of the indices

$$\begin{array}{ccc} \beta_1 \,,\, \beta_2 \,,\, \ldots \ldots \,\, \beta_n \\ & x \,\, \epsilon \, B \,\, \Leftrightarrow \, \prod U_\alpha \end{array}$$

Where U_{α} is open in X_{α} for all α and $V_{\alpha} = X_{\alpha}$ if $\alpha \neq \beta_1, \beta_2, \dots, \beta_n$. Thus $\prod X_{\alpha}$ has as basis all sets of the form $\prod U_{\alpha}$ where U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of α .

Hence the theorem

Example :

- i) For finite product $\prod_{\alpha=1}^{n} X \alpha$ the two topologies are precisely the same .
- ii) The box topology is in general finer than the product topology for any basis element of the form $\prod U_{\alpha}$ where U_{α} is open in X_{α} is contained in $\prod U_{\alpha}$, where U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of α .

Theorem :

Suppose the topology on each space X_{α} is given by a basis \mathcal{B}_{α} . The collection of all sets of the form $\prod_{\alpha=J} B_{\alpha}$ where $B_{\alpha} \in \mathcal{B}_{\alpha}$ for each α will serve as a basis for box topology on $\prod_{\alpha=J} X_{\alpha}$.

The collection of all sets of the same form, where $B_{\alpha} \in \mathcal{B}_{\alpha}$ for finitely indices α and $B_{\alpha} = X_{\alpha}$ for all the remaining indices, will serve as a basis for the product topology $\prod_{\alpha=J} X_{\alpha}$

Proof:

Box Topology

Let $((X_{\alpha}))_{\alpha=J} \in W$ and W be an open set in $\prod_{\alpha=J} X_{\alpha}$. For box topology on $\prod X_{\alpha}$ there exist a basis element $\prod_{\alpha=J} U_{\alpha}$ where each U_{α} open un X_{α} such that

$$(X_{\alpha}) \in \prod U_{\alpha} \subset W$$

Since \mathcal{B}_{α} generates X_{α} , for each $X_{\alpha} \in U_{\alpha}$ there exist $B_{\alpha} \in \mathcal{B}_{\alpha}$ such that $x_{\alpha} \in B_{\alpha} \subset U_{\alpha}$.

Hence

$$(\mathbf{X}_{\alpha})_{\alpha=J} \quad \in \prod \mathbf{B}_{\alpha} \ \subset \prod \mathbf{U}_{\alpha} \ \subset \mathbf{W}$$

Hence by theorem "Let (X, τ) be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of x such that $x \in C \subset U$. Then C is a basis for the topological basis for the box topology on $\prod_{\alpha=J} X_{\alpha}$ ".

Product Topology:

Take $U = \prod U_{\alpha}$

Let $(X_{\alpha})_{\alpha=J} \in W$ and W be an open set in $\prod_{\alpha=J} X_{\alpha}$. For the product topology on $\prod X_{\alpha}$ there exist a basis element $\prod_{\alpha=J} U_{\alpha}$ where each U_{α} is open in X_{α} and $U_{\alpha=} X_{\alpha}$ except for finitely many $_{\alpha}$,s.

 $(X_{\alpha}) \in U \subset W$

Since \mathcal{B}_{α} generates X_{α} for each $x_{\alpha} \in U_{\alpha}$ there exist $B_{\alpha} \in \mathcal{B}_{\alpha}$ such that $x_{\alpha} \in B_{\alpha}$ U_{α} (except for finitely many α 's note that $U_{\alpha} = X_{\alpha}$)

Hence $(x_{\alpha}) \in \prod B_{\alpha} \subset \prod U_{\alpha} = U \subset W$

Hence by above stated theorem $\prod_{\alpha=J} B_{\alpha}$ where $B_{\alpha} \in \mathcal{B}_{\alpha}$ for each α is a basis for the product topology on $\prod X_{\alpha}$.

Hence the proof.

Example :

Consider Euclidean n – space \mathbb{R}^n . A basis for \mathbb{R} consists of all open intervals in \mathbb{R} , hence a basis for the topology of \mathbb{R}^n consists of all products of the form

 $(a_1, b_1)x (a_2, b_2)x \dots x(a_n, b_n)$

Since \mathbb{R}^n is a finite product, the box and product topologies agree whenever we consider \mathbb{R}^n , we will assume that it is given this topology unless we specifically state otherwise.

Theorem

Let A_{α} be a subspace of X_{α} for each $\alpha \in J$, then $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ if both products are give the box topology or if both products are given the product topology.

Proof:

Box Topology:

Consider $\prod X_{\alpha}$ and $\prod A_{\alpha}$ with box topologies. Let $\prod U_{\alpha}, U_{\alpha}$ is open in X_{α} for all α be a general basis element of $\prod X_{\alpha}$. That implies $U_{\alpha} \subseteq X_{\alpha}$ for all with U_{α} is open in X_{α} .

 $\rightarrow U_{\alpha} \bigcap A_{\alpha} \subseteq A_{\alpha}$ is open in A_{α} Since each A_{α} is a subspace

 $\rightarrow \prod_{\alpha=J} (U_{\alpha} \cap A_{\alpha}) \subseteq \prod A_{\alpha}$ is a basis element for $\prod A_{\alpha}$

But $\prod (U_{\alpha} \cap A_{\alpha}) = (\prod U_{\alpha}) \cap (\prod A_{\alpha})$

Therefore $(\prod U_{\alpha}) \cap (\prod A_{\alpha})$ is a basis of $\prod A_{\alpha}$ with $\prod U_{\alpha}$ is basis element for $\prod X_{\alpha}$. So $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ in box topology.

Product Topology:

Suppose both products are given product topologies.

Claim :

 $\prod A_{\alpha} \text{ is a subspace of } \prod X_{\alpha} \text{ . Let } \prod U_{\alpha} \text{ be a general basis element of } \prod X_{\alpha} \text{ where } U_{\alpha} \text{ is open in } X_{\alpha} \text{ .}$

For finitely many α 's say β_1 , β_2 ,, β_n and $U_{\alpha} = X_{\alpha}$ for the remaining α 's. Since each A_{α} is a subspace of X_{α} , $U_{\beta i} \bigcap A_{\beta i}$ is open in $A_{\beta i}$, i = 1, 2, ..., n and $X_{\alpha} \bigcap A_{\alpha}$ is open in A_{α} for the remaining α 's.

Then $\prod V_{\alpha}$ is a general basis element of $\prod A_{\alpha}$. Therefore $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ in product topology.

Hence the proof.

Theorem:

If each space X_{α} is Hausdorff space then $\prod X_{\alpha}$ is Hausdorff space in both the box and product topologies.

Proof:

Claim : $\prod_{\alpha=J} X_{\alpha}$ is Hausdorff

Let $(x_{\alpha})_{\alpha=J} \neq (y_{\alpha})_{\alpha=J}$ in $\prod_{\alpha=J} X_{\alpha}$. Then there exist atleast one $\beta \in J$ such that $x_{\beta} \neq y_{\beta}$. Now X_{β} is a Hausdorff and $x_{\beta} \neq y_{\beta}$ in X_{β} .

There exist two open sets U_{β} and V_{β} in X_{β} such that $x_{\beta} \in U_{\beta}$, $y_{\beta} \in V_{\beta}$ and $U_{\beta} \cap V_{\beta} = \Phi$

Now consider the projection

 $\prod _{\beta} : \ \prod X_{\alpha} \rightarrow X_{\beta}$

 $\prod^{-1}{}_{\beta}(U_{\beta})$ is open in $\prod X_{\alpha}$ and $(x_{\alpha}) \in \prod^{-1}{}_{\beta}(U_{\beta})$

Similarly,

 $\Pi^{-1}{}_{\beta}(V_{\beta}) \text{ is open in } \Pi X_{\alpha} \text{ and } (y_{\alpha}) \in \Pi^{-1}{}_{\beta}(V_{\beta}) \text{ and}$ $\Pi^{-1}{}_{\beta}(U_{\beta}) \cap \Pi^{-1}{}_{\beta}(V_{\beta}) = \Pi^{-1}{}_{\beta}(U_{\beta} \cap V_{\beta})$ $= \Phi$

In either topology this result holds good. If $\prod X_{\alpha}$ is given box topology then

 $\prod^{-1}{}_{\beta}(U_{\beta}) = \prod U_{\alpha} \text{ where } U_{\alpha} \text{ is open in } X_{\alpha} \text{ foll all } \alpha.$

If $\prod X_{\alpha}$ is given product topology then $\prod^{-1}{}_{\beta}(U_{\beta}) = \prod U_{\alpha}$ where U_{α} is open in X_{α} for finitely many α 's and $U_{\alpha} = X_{\alpha}$ for the remaining α 's.

Hence the proof.

Theorem :

Let { X_{α} } be an indexed family of spaces. Let $A_{\alpha} \subset X_{\alpha}$ for each α . Then $\prod X_{\alpha}$ is given either the product topology or the box topology, then $\prod \overline{A}_{\alpha} = \prod A_{\alpha}$

Proof:

$$\prod A_{\alpha} = \prod A_{\alpha}$$
$$x = (x_{\alpha}) \in \prod \overline{A}_{\alpha}$$

Claim:

 $x \in \prod \overline{A}_{\alpha}$

Let $U = \prod U_{\alpha}$ be a basis element for either topology that contain x.

 $x_{\alpha} \in U_{\alpha}$ for all α and so U_{α} intersects A_{α} as $x_{\alpha} \in \overline{A}_{\alpha}$.

Let $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ for all α . Then $y = (y_{\alpha}) \in \prod U_{\alpha}$ and $\prod A_{\alpha}$.

Since U is arbitrary, every basis element about x intersects $\prod A_{\alpha}$. Therefore $x \in \overline{\prod A_{\alpha}} \rightarrow \prod \overline{A}_{\alpha} \Box \overline{\prod A_{\alpha}}$ Conversely,

Let $x = (x_{\alpha}) \in \prod \overline{A}_{\alpha}$ in either topology.

To Prove :

 $x_{\,\alpha}\, \, \varepsilon \, \, \overline{A_{\,\alpha}} \,$, for all $\, \alpha$.

So that $(x_{\alpha}) \in \prod \overline{A}_{\alpha}$ choose a particular index β .

To Prove :

 $x_{\,\beta}\,\,\varepsilon\,\,A_{\,\beta}$

Let V_{β} be an open set of X_{β} containing x_{β} .

$$\begin{split} &\prod {}^{-1}{}_{\beta}(V_{\beta}) \text{ is open in } \prod X_{\alpha} \text{ in either topology and } X_{\alpha} \in \prod {}^{-1}{}_{\beta}(V_{\beta}) \text{ .} \\ & \text{Therefore } \prod {}^{-1}{}_{\beta}(V_{\beta}) \cap \prod A_{\alpha} \neq \Phi \end{split}$$

Let $y = (y_{\alpha}) \in \prod^{-1}{}_{\beta} (U_{\beta}) \cap \prod A_{\alpha}$ for the index β , $y_{\beta} \in A_{\alpha}$

$$(y_{\alpha}) \in \prod^{-1}{}_{\beta} (V) \rightarrow (y_{\alpha}) \in V_{\beta}$$

ie, $y_{\alpha} \in V_{\beta}$
ie, $y_{\alpha} \in V_{\beta} \cap A_{\beta}$
Therefore $(X_{\alpha}) \in \prod \bar{A}_{\alpha}$
 $\rightarrow \overline{\prod} A_{\alpha} = \prod \bar{A}_{\alpha}$
Hence $\prod \bar{A}_{\alpha} = \overline{\prod} \bar{A}_{\alpha}$

Hence Proved

Theorem:

Let $f : A \to \prod X_{\alpha}$ be given by the equation $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha} : A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

Proof:

Let $f: A \to \prod X_{\alpha}$ is given by the equation $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha}: A \to X_{\alpha}$ for each α .

Claim:

 f_{α} is continuous .

Let \prod_{β} be the projection of the product onto it's the β^{th} factor. The function \prod_{β} is continuous.Now, suppose that the function f: $A \rightarrow \prod X_{\alpha}$ is continuous. The function f_{β} equals the composite \prod_{β} o f being the composite of two continuous functions is continuous.

Conversely, suppose that each f_{α} is continuous. To prove that f is continuous, it is enough to prove that inverse image of every sub-basis element is open in A. A typical sub basis element for the product topology on $\prod X_{\alpha}$ is a set of the form $\pi^{-1}{}_{\beta}$ (U_{β}), where β is some index and U_{β} is open in X_{β} .

Now ,
$$f^{-1}(\pi^{-1}{}_{\beta}(U_{\beta})) = (\pi_{\beta} O f)^{-1}(U_{\beta})$$

= $f^{-1}{}_{\beta}(U_{\beta})$

Because $f_{\beta} = \pi_{\beta} O$ f. Since f_{β} is continuous, this set is open in A.

 \rightarrow f is continuous

Hence the proof.

Note :

The above theorem fails if $\prod X_{\alpha}$ is given box topology.

Example :

Consider \mathbb{R}^w be the countably infinite product of \mathbb{R} with itself recall that,

$$\mathbb{R}^w = \prod_{n \in \mathbb{Z}^+} X_n$$

Where $X_n \in \mathbb{R}_n$ for each n. Let us define a function $f : \mathbb{R} \to \mathbb{R}^w$ by the equation

$$f(t) = (t, t, t,)$$

Therefore the function f is continuous if \mathbb{R}^w is given by the product topology. But f is not continuous if \mathbb{R}^w is given by the box topology. Consider the example, the basis element

$$\mathbf{B} = (-1, 1) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \dots$$

for the box topology, we assert that $f^{-1}(B)$ is not open in \mathbb{R} .

If $f^{-1}(B)$ were open in \mathbb{R} , it would contain some interval $(-\delta, \delta)$ about the point U. This means that $f(-\delta, \delta) \square B$, so that applying π_n to both sides of the induction,

 $f_n(-\delta, \delta) = (-\delta, \delta) \Box (-1/n, 1/n)$

for all n, a contradiction.

Metric Topology : Definition :

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ having the following properties:

- 1. $d(x, y) \ge 0$ for all x, y $\in X$; equality holds iff x = y
- 2. d(x, y) = d(y, x) for all $x, y \in X$
- 3. (Triangle inequality) d (x, y) + d (y,z) \geq d (x, z) for all x , y, z $\in X$

Example: 1

Given a set, define d(x, y) = 1 if $x \neq y$

$$d(x, y) = 0$$
 if $x = y$

Its trivial to check that d is a metric.

The topology induced is the discrete topology. The basis element B(x, 1), for example, consist of the point x alone.

Example : 2

The standard metric on the real number \mathbb{R} is defined by

$$\begin{array}{l} d(x, y) = |x - y| \\ d(x, y) \ge 0 \text{ iff } x = y \\ |x - y| = |y - x| \text{ and} \\ d(x, z) = |x - z| = |x - y + y - z| \le |x - y| + |y - z| \\ = d(x, y) + d(y, z) \end{array}$$

Definition :

Given a metric d on X the number d(x, y) is often called the distance between x and y in the metric d.

Given $\epsilon > 0$, consider the set, $B_d(x, \epsilon) = \{ y / d(x, y) < \epsilon \}$ of all points y whose distance from x is less than ϵ . It is called the ϵ -ball centered at x.

Note :

In \mathbb{R} the topology induced by the metric d(x, y) = |x - y| is the same as the order topology. Each basis element (a, b) for the order topology is a basis element for the metric topology. Indeed (a, b) = B(x, ϵ) where x = a+b/2 and $\epsilon = b-a/2$ and conversely, each ϵ - ball B(x, ϵ) equals an open interval (x- ϵ , x+ ϵ).

Definition :

Metric Topology:

If d is a metric on the set X, then the collection of all ε -ball $B_d(x,\varepsilon)$ for $x \in X$ and $\varepsilon > 0$ is a basis for a topology on X, called the metric topology induced by d.

Result 1 :

If y is a point of the basis element $B(x, \epsilon)$, then there is a basis element $B(y, \delta)$ centered at y that is contained in $B(x, \epsilon)$.

Proof:

Define δ to be the positive number ϵ - d(x, y). Then B (y, δ) < B (x, ϵ) for if z ϵ B (y, δ) then d (x, z) < ϵ - d(x, y) from which we conclude that

$$d(x, z) \le d(x, y) + d(y, z) < \epsilon$$

Hence the result .

Result 2 :

 $B = \{ B_d (x, \epsilon) / x \in X \text{ and } \epsilon > 0 \}$ is a basis.

Proof:

First condition for a basis :

 $x \in B(x, \epsilon)$ for any $\epsilon > 0$.

Second condition for a basis :

Let B_1 and B_2 be two basis elements . Let $y \in B_1 \cap B_2$. We can choose the number $\delta_1 > \delta_2$ so that $B(y, \delta_1) \le B_1$ and $B(y, \delta_2) \le B_2$.

Letting δ be the smaller of δ_1 and δ_2 . We can conclude that

 $B(y, \delta) \leq B_1 \cap B_2$.

Result 3 :

A set U is open in the metric topology induced by d iff for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subseteq U$.

Proof:

Clearly this condition implies that U is open.

Conversely, If U is open it contains a basis element $B = B_d$ (x, ϵ) containing y, and B in turn contains a basis element B_d (y, δ) centered at y.

Hence the result.

Definition :

If X is a topological spaces. X is said to be metrizable if there exist a metric d on the set X that induces the topology of X. A metric space is a **metrizable** space X together with a specific metric d that gives the topology of X.

Definition :

Let X be a **metric space** with metric d. A subset A of X is said to be bounded if there is some number M such that $d(a_1, a_2) \le M$ for every pair a_1, a_2 of points of A.

Definition :

If A is bounded and non – empty the diameter of A is defined to be the number .

diam A = sup {d $(a_1, a_2) / a_1, a_2 \in A$ }

Theorem :

Let X be a metric space with metric d. Define $d: X \times X \to \mathbb{R}$ by the equation

 $d(x, y) = \min \{ d(x, y), 1 \}$

Then d is a metric that induces the same topology as d. The metric d is called the standard bounded metric corresponding to d.

Proof:

d is a metric .

= min { d (x, y), 1 }
=
$$d(y, x)$$

Claim :

 $\begin{array}{l} d(x, z) \leq d(x, y) + d(y, z) \\ \text{Suppose } d(x, y) = d(x, y), \ d(y, z) = d(y, z) \\ \text{And } d(x, z) \leq d(x, y) + d(y, z) = d(x, y) + d(y, z) \\ \text{Also } d(x, z) \leq d(x, z) \qquad (by \text{ defn}) \\ d(x, z) \leq d(x, y) + d(y, z) \end{array}$

Suppose $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then

R.H.S of our claim is atleast 1 and L.H.S of our claim is atmost 1

The equality holds.

Hence d is metric space.

Hence the theorem

Definition :

Given $x = (x_1, x_2, \dots, x_n)$ in \mathbb{R}^n , we define the norm of x by the equation

 $\| x \| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{\frac{1}{2}}$

The euclidean metric d on \mathbb{R}^n is given by the equation

$$d(x, y) = \|x - y\| = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2]^{1/2}$$
$$= [\sum_{i=1}^{n} (x_i - y_i)^2]^{1/2}$$

Where $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n)$.

Definition :

The square metric ρ on \mathbb{R}^n is given by the equation

 $\rho(x, y) = \max \{ |x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n| \}$

Relation between euclidean metric d and sequence metric ρ in \mathbb{R}^n is

 $\rho(x, y) \leq d(x, y) \leq \sqrt{n} (\rho(x, y))$

Theorem:

Let d and d' be two metrices on the set X. Let τ and τ' be the topologies they induce respectively. Then τ' is finer than τ iff for each x in X and each $\epsilon > 0$ there exist a $\delta > 0$ such that

 $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$

Proof:

Suppose $\tau \subset \tau'$

Then by lemma

" Let ${\cal B}$ and ${\cal B}'$ be basis for the topologies τ and τ' respectively on X . Then the following are equivalent

 $(i) \quad \tau \subset \tau'$

(ii) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \square \mathcal{B}''$."

Given the basis element

 $B_d(x\ ,\epsilon)$ for $\tau,$ by the lemma, there exist a basis element B' for the topology τ' such that

 $x \in B' \subset B_d(x,\varepsilon)$

within B' we can find a ball B'(x, δ) such that

 $x \in B_{d'}(x, \delta) \subset B' \subset B_d(x, \epsilon)$

Conversely,

Suppose that ϵ - δ condition holds. given a basis element B for τ containing x, we can find within B a ball $B_d(x, \epsilon)$ contained at x.

ie, $x \in B_d(x, \varepsilon) \subset B$

By hypothesis, $x \in B_d(x, \delta) \subset B_d(x, \varepsilon)$

By lemma , τ' is finer than τ .

Hence the theorem

Theorem :

The topologies on \mathbb{R}^n induced by the euclidean metric d and the square metric δ are the same as the product topology on \mathbb{R}^n .

Proof:

Let $X = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ be two points of \mathbb{R}^n

Let τ_d be the topology induced by the metric d and τ_ρ be the topology, induced by the metric ρ .

Claim : $\tau_{\rho} = \tau_d$

To prove :

 $\tau_{\rho} \subseteq \tau_{d}$ and $\tau_{d} \subseteq \tau_{\rho}$ ie, To prove: i) $B_{d}(x, \varepsilon) \subseteq B_{\rho}(x, \varepsilon)$

ii) \mathbf{B}_{ρ} (x, ε / \sqrt{n}) $\subset \mathbf{B}_{d}$ (x, ε)

i) Let $y \in B_d(x, \varepsilon)$ $\rightarrow d(x, y) < \epsilon$

$$\begin{array}{l} \rightarrow \rho(x,y) < \varepsilon & (\rho(x,y) \leq d(x,y) < \varepsilon) \\ \rightarrow y \in B_{\rho}(x,\varepsilon) & \\ \rightarrow B_{d}(x,\varepsilon) \subseteq B_{\rho}(x,\varepsilon) & \\ \text{Therefore } \tau_{\rho} \subseteq \tau_{d} & (\text{by theorem }) \\ \text{ii}) & \text{Let } y \in B_{\rho}(x,\varepsilon/\sqrt{n}) & \\ \rightarrow \rho(x,y) < \varepsilon & \\ \rightarrow \sqrt{n} \rho(x,y) < \varepsilon & \\ \rightarrow d(x,y) < \varepsilon & \\ \rightarrow y \in B_{d}(x,\varepsilon) & \\ \rightarrow B_{\rho}(x,\varepsilon/\sqrt{n}) \subseteq B_{d}(x,\varepsilon) & \\ \rightarrow \tau_{d} \subseteq \tau_{\rho} & \\ \text{We get }, \tau_{d} = \tau_{\rho} \end{array}$$

Claim :

 $\tau = \tau_{\rho}$

To prove that the product topology is same as the topology induced by the square metric $\,\rho$.

First let prove $\tau \subseteq \tau_{\rho}$, where τ is the product topology on \mathbb{R}^n . Let $B = (a_1, b_1) x (a_2, b_2) x \dots x (a_n, b_n)$ be a basis element of τ with $x \in X$ where $X = (x_1, x_2, \dots, x_n)$.

Now for each i there is an ϵ_i such that

 $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subseteq (a_i, b_i)$

Thus $B_{\rho}(x, \varepsilon) \subseteq B$ for $y \in B_{\rho}(x, \varepsilon)$

Conversely,

To Prove :

$$\tau_{\rho} \subseteq \tau$$

Let $B_{\rho}(x, \epsilon)$ be a basis element for ρ topology given the element $y \in B_{\rho}(x, \epsilon)$

We need to find a basis element B for product topology such that

 $y \in B \subseteq B_{\rho}(x, \varepsilon)$

Now $B_{\rho}(x, \varepsilon) = ((x_1 - \varepsilon, x_1 + \varepsilon) (x_2 - \varepsilon, x_2 + \varepsilon) \dots (x_n - \varepsilon, x_n + \varepsilon))$

Which is itself a basis element of the product topology.

 $y \in B = B_{\rho}(x, \varepsilon)$

Hence $\tau_{\rho} \subseteq \tau$ (2)

From (1) and (2)

$$\tau_{\rho} \ = \tau$$

Definition :

Given a indexed set J and given points $x = (x_{\alpha})_{\alpha \epsilon J}$ and

 $y = (y_{\alpha})_{\alpha \epsilon J}$ of R^{J} , a metric $\overline{\rho}$ on R^{J} defined by the equation

 $\overline{\rho}(x, y) = \sup \{ d(x_{\alpha}, y_{\alpha}) \}_{\alpha \in J}$

where $d(x, y) = \min \{ |x - y|, 1 \}$ the standard bounded metric on \mathbb{R} .

 $\overline{\rho}$ is a metric on R^J called the uniform metric on R^J. The topology it induces is called the **uniform topology**.

Theorem:

The uniform topology on R^J is finer than the product topology and coarser than the box topology.

Proof:

(i) Let $\,\tau_{\rho}\,$ be the product topology on $\,R^{J}$. τ_{B} be box topology on $\,R^{J}$ and $\tau_{\rho}\,$ be the uniform topology on R^{J} . The theorem states that

 $\tau_{\rho} \subseteq \tau_{\rho} \subseteq \tau_{B}$

First let us prove :

 $\tau_{\rho} \subseteq \tau_{\overline{\rho}}$

Let $x = (x_{\alpha})_{\alpha \in J}$ and $U = \prod U_{\alpha}$ be a basis element of τ_{ρ} with $(x_{\alpha})_{\alpha \in J} \in U$

Let α_1 , α_2 , α_3 , ..., α_n be the induces for which $U_\alpha \neq R$ then for each i, we can choosen an $\epsilon_i > 0$ such that

 $B_{\overline{d}}(x_i, \varepsilon_i) \subseteq U_i$ for all $i = \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ Where U_i is open in R.

Let $\varepsilon = \min \{ \varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \}$ Then $B_{\overline{p}}(x, \varepsilon) \subseteq U$ for $Z \in B_{\overline{p}}(x, \varepsilon)$ $\rightarrow \overline{p}(x, z) < \varepsilon$ $\rightarrow \sup \{ d(x_{\alpha}, z_{\alpha}) \}_{\alpha \in J} < \varepsilon$ $\rightarrow \overline{d}(x_{\alpha}, z_{\alpha}) < \varepsilon < \varepsilon_i \text{ for all } \alpha$ $\rightarrow z_{\alpha} \in B_{\overline{d}}(x_{\alpha}, \varepsilon)$ $\rightarrow Z \in U$ $\rightarrow Z \in \Pi U_{\alpha}$ Thus $\tau_{\rho} \subseteq \tau_{\overline{p}}$

(ii) To Prove:

$$\tau_{\overline{p}} \subseteq \tau_{\rho}$$

Let $B_p(x, \varepsilon)$ be a basis element of $\tau_{\overline{p}}$. Then the neighbourhood

 $U = \Pi (x_{\alpha} - \varepsilon / 2, x_{\alpha} + \varepsilon / 2) \text{ is } x \in U \subseteq B_{\overline{p}} (x, \varepsilon) \text{ for } y \in U$ $\rightarrow U_{\alpha} \in (x_{\alpha} - \varepsilon / 2, x_{\alpha} + \varepsilon / 2) \text{ for all } \alpha$ $\rightarrow \overline{d} (x_{\alpha}, y_{\alpha}) < \varepsilon / 2 \text{ for all } \alpha$ $\rightarrow \sup \{ \overline{d} (x_{\alpha}, y_{\alpha}) \}_{\alpha \in J} < \varepsilon / 2$ $\rightarrow \overline{p} (x, y) < \varepsilon / 2 < \varepsilon$ $\rightarrow y \in B_{\overline{p}} (x, \varepsilon)$

The topologies τ_{ρ} , τ_{ρ} -and τ_{B} in R^{J} are different if J is infinite.

Theorem:

Let $\overline{d(a,b)} = \min \{ |a-b|, 1 \}$ be the standard bounded metric on R. If x and y are two points of R^w , Define

 $D(x,y) = \sup \{ \overline{d}(x_i, y_i) / i \}$

Then D is a metric that induces the product topology on R^w

Proof:

D (x,y) = sup { $\overline{d}(x_i, y_i) / i$ } is a metric.

Since each
$$\overline{d}(x_i, y_i) \ge 0, D(x, y) \ge 0$$

 $D(x, y) = 0 \Leftrightarrow \overline{d}(x_i, y_i) = 0 \quad \forall i$
 $\Leftrightarrow x_i = y_i \forall i$
 $\Leftrightarrow x = y$
 $D(x, y) = sup\left\{\frac{\overline{d}(x_i, y_i)}{i}\right\} = sup\left\{\frac{\overline{d}(y_i, x_i)}{i}\right\}$
 $= D(x, y)$

Since d is metric

$$\bar{d}(x_i, z_i) \leq \bar{d}(x_i, y_i) + \bar{d}(y_i, z_i)$$

$$\leq \frac{\bar{d}(x_i, y_i)}{i} \leq \frac{\bar{d}(x_i, y_i)}{i} \leq \frac{\bar{d}(y_i, z_i)}{i}$$

$$\leq sup\left\{\frac{\bar{d}(x_i, y_i)}{i}\right\} + sup\left\{\frac{\bar{d}(y_i, z_i)}{i}\right\}$$

$$\bar{d}(x_i, z_i) \leq D(x, y) + D(y, z)$$

$$\sup\left\{\frac{\bar{d}(x_i, z_i)}{i}\right\} \le D(x, y) + D(y, z)$$

 \therefore *D* is a metric on \mathbb{R} .

Claim: $\tau_D = \tau_p$ (we have topology induced by *D* be τ_D

To prove: $\tau_D \subseteq \tau_p$

Let *U* be open in metric topology τ_D and $x \in U$

To prove that \exists an open set V in $\tau_p \ni x \in V \subseteq U$.

Since $x \in U, \exists a \varepsilon > 0, B_D(x, \varepsilon) \subset U$.

Choose N large enough $1/N < \varepsilon$.

Let
$$V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \dots \times (x_N - \varepsilon, x_N + \varepsilon)$$

We assert that $V \subset B_D(x, \varepsilon)$ for if $y \in R^w$ then $\frac{\overline{d}(x_i, y_i)}{i} < \frac{1}{N} \forall i > N$

$$\therefore D(x,y) = max\left\{\frac{\bar{d}(x_1,y_1)}{1}, \frac{\bar{d}(x_2,y_2)}{2}, \dots, \dots, \frac{\bar{d}(x_N,y_N)}{N}\right\}$$

If $y \in V$ then $D(x, y) < \varepsilon \Rightarrow y \in B_D(x, \varepsilon)$

 $\therefore x \in V \subset B_D(x,\varepsilon) \subset V$

$$\tau_D \subseteq \tau_p$$

Consider the basis element $U = \prod_{i \in Z_+} U_i$ for the product topology, where U_i is open in R for $i = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $U_i = R$ for all other indices *i*.

Let $x \in U$. Let us find an set V of the metric topology such that $\mathbf{x} \in V \subset U$. Choose an interval $(x_i - \varepsilon_i, x_i + \varepsilon_i)$ in R centered about *xi* and lying in U_i , for $i = \alpha_1, \ldots, \alpha_n$; choose each $\varepsilon_i \leq 1$. Then define $\varepsilon = \min\{\varepsilon_i / i \mid i = \alpha_1, \ldots, \alpha_n\}.$ $x \in B_D(x,\varepsilon) \subset U.$ For $y \in B_D$ (*x*, ε), $\Rightarrow D(x, y) < \varepsilon \Rightarrow \frac{\overline{d}(x_i, y_i)}{i} \le D(x, y) < \varepsilon \text{ for all } i,$ $\Rightarrow \bar{d}(x_i, y_i) \le D(x, y) < \varepsilon(i) < \varepsilon_i \text{ for } i = \alpha_1, \dots, \alpha_n$ $\Rightarrow \min\{|x_i - y_i|, 1\} < \varepsilon_1 < 1$ \Rightarrow $y_i \in (x_i - \varepsilon_i, x_i + \varepsilon_i) \subset U_i \forall i = \alpha_1, \ldots, \alpha_n$ obviously, $y_i \in R$ for other indices i, $\therefore y \in U$ Hence, $x \in B_D(x, \varepsilon) \subset U$ (basis element of τ_P) $\therefore \tau_P \subseteq \tau_D$ Hence $\tau_P = \tau_D$

Hence the theorem.

Theorem:

Let $f : X \to Y$. Let X and Y be metrizable with metrics d_X and d_Y , respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\varepsilon > 0$, there exists $\delta > 0$ such that $d_X(x, y) < \delta \Rightarrow d_Y (f(x), f(y)) < \varepsilon$.

Proof.

Suppose that f is continuous.

Given x and ε , consider the set

 $f^{-1}(B(f(x),\varepsilon)),$

which is open in X and contains the point x.

 $\therefore \exists \ \delta > 0 \ \exists \ R(x,\delta) \ \subset f^{-1}(B(f(x),\varepsilon))$ Then $y \in B(x,\delta) \ \Rightarrow y \in f^{-1}B(f(x),\varepsilon))$ i.e $y \in B(x,\delta) \ \Rightarrow f(y) \in B(f(x),\varepsilon)$

i.e $d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon$.

Thus $\varepsilon - \delta$ conditions holds

Conversely,

Suppose $\varepsilon - \delta$ conditions holds

Claim:

 $f: X \to Y$ is continuous

Let V be open in Y; we

show that f-1(V) is open in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$,

As V is open, there exists $\varepsilon > 0$ such that $B(f(x), \varepsilon) \subseteq V$

By the ε - δ condition, there is a δ -ball $B(x, \delta)$ centered at x such that $f(B(x, \delta))$

$$\subset B(f(x), \varepsilon).$$

 \Rightarrow Thus $x \in B(x, \delta)$ contained in $f^{-1}(V)$, so that $f^{-1}(V)$ is open in X.

Hence continuity and ε - δ conditions are equivalent.

Hence the theorem.

The Sequence lemma :

Let *X* be a topological space; let $A \subset X$. If there is a sequence of points of *A* converging to *x*, then $x \in \overline{A}$; the converse holds if *X* is metrizable.

Proof:

Suppose that $x_n \rightarrow x$, where $x_n \in A$ then for every neighborhood of x

contains a point of $A \Rightarrow x \in \overline{A}$

by Theorem "Let A be a subset of the topological space X.

Then $x \in \overline{A}$ iff every open set V containing x intersects A.

Supposing the topology of X is given by a basis then $x \in \overline{A}$ iff every basis element B containing x intersects A"

Conversely, suppose that X is metrizable and $x \in \overline{A}$. Let d be a metric for the topology of X. For each positive integer n, take the neighborhood $B_d(x, 1/n)$ of

radius 1/n of x, and choose $x_n \exists x_n \in Bd\left(x, \frac{1}{n}\right)$

Then (x_n) is a sequence of A.

Claim: x_n converges to x

Any open set *U* containing *x* is such that $x \in B(x, \varepsilon) \subset U$

if we choose *N* so that $1/N < \varepsilon$, then $\frac{1}{N+3} < \frac{1}{N+2} < \frac{1}{N+1} < \frac{1}{N} < \varepsilon$ and so that *U* contains x_i for all $i \ge N$.

Hence the proof.

Theorem:

Let $f: X \to Y$. If the function *f* is continuous, then for every convergent sequence $x_n \to x$ in *X*, the sequence $f(x_n)$ converges to f(x). The converse holds if *X* is metrizable.

Proof:

Assume that *f* is continuous. Let $x_n \rightarrow x$.

Claim: $f(x_n) \rightarrow f(x)$.

Let *V* be a neighborhood of f(x). Then $f^{-1}(V)$ is a neighborhood of *x*, and so there is an *N* such that $x_n \in f^{-1}(V)$ for $n \ge N$.

Then $f(x_n) \in V$ for $n \ge N$.

$$f(x_n) \to f(x)$$

conversely,

Suppose that the convergent sequence condition is satisfied.

Let X is metrizable and $A \subset X$;

To prove : f is continuous

We prove, $f(\overline{A}) \subseteq \overline{f(A)}$. Let $x \in \overline{A}$, then there is a sequence x_n in x such that $x_n \to x$ (by the sequence lemma). By hypothesis, $f(x_n)$ converges to f(x). As $f(x_n)$) is in (A); $f(x_n) \in \overline{f(A)}$ Hence $f(\overline{A}) \subseteq \overline{f(A)}$ i.e, f is continuous Hence the theorem.

Theorem:

The addition, subtraction and multiplication operations are continuous function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} ; and the quotient operation is a continuous function from $\mathbb{R} \times (\mathbb{R} - \{0\})$ into \mathbb{R} .

Proof:

Let the addition operation be defined by

 $f_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $f_1(x, y) = x + y$

The multiplication operation be defined by

 $f_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $f_2(x, y) = xy$

Let us use the metric:

d(a,b) = |a - b| on \mathbb{R} and let the metric on \mathbb{R}^2 given by,

$$\varrho((x, y), (x_0, y_0)) = \max\{|x - x_0|, |y - y_0|\}$$

Let $(x_0, y_0) \in \mathbb{R} \times \mathbb{R}$ and $\varepsilon > 0$ be given if $\varrho((x, y), (x_0, y_0)) < \delta$. Then,

$$\max\{|x-x_0|, |y-y_0| < \delta$$

i.e., $|x - x_0| < \delta$ and $|y - y_0| < \delta$.

To prove: f_1 is continuous

Choose
$$\delta < \frac{\varepsilon}{2}$$

 $d(f_1(x, y), f_1(x_0, y_0)) = |f_1(x, y) - f_1(x_0, y_0)|$
 $= |(x + y) - (x_0 + y_0)|$
 $= |x - x_0 + y - y_0|$
 $= |x - x_0| + |y - y_0|$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

Thus $\varrho((x, y), (x_0, y_0)) < \delta$. $\Rightarrow d(f_1(x, y), f_1(x_0, y_0)) < \varepsilon \quad \forall x, y \in \mathbb{R} \times \mathbb{R}$ Thus f_1 is continuous.

To prove: f_2 is continuous

Let $(x_0, y_0) \in \mathbb{R} \times \mathbb{R}$ and $0 < \varepsilon < 1$ be given. Choose $\delta = \frac{\varepsilon}{1+|x_0|+|y_0|}$ $d(f_1(x, y), f_1(x_0, y_0)) = |f_2(x, y) - f_2(x_0, y_0)|$ $= |(xy) - (x_0y_0)|$ $= |xy - x_0y + x_0y - xy_0 + xy_0 + x_0y_0 - x_0y_0 - x_0y_0|$ $= |x(y - y_0) - x_0(y - y_0) + y_0(x - x_0) - x_0(y - y_0)|$ $\leq |(x - x_0)(y - y_0)| + |x_0||(y - y_0)| + |y_0||(x - x_0)|$ $\leq |(x - x_0)||(y - y_0)| + |x_0||(y - y_0)| + |y_0||(x - x_0)|$ $\leq \delta^2 + |x_0|\delta + |y_0|\delta$ if $\varrho((x, y), (x_0, y_0)) < \delta$ $< \delta + |x_0|\delta + |y_0|\delta$ $< \delta (1 + |x_0| + |y_0|)$ $= \frac{\varepsilon}{1 + |x_0| + |y_0|} (1 + |x_0| + |y_0|)$ $< \varepsilon$ Thus $\varrho((x, y), (x_0, y_0)) < \delta$ $\Rightarrow d(f_2(x, y), f_2(x_0, y_0)) < \varepsilon$

Hence f_2 is continuous.

Similarly,

 $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $(x, y) \to (x, -y)$ is continuous.

 $\mathbb{R} \times (\mathbb{R} - \{0\}) \to \mathbb{R}$ is given by $(x, y) \to \frac{x}{y}$ is continuous.

Theorem:

If X is a topological space and if $f \circ g: X \to \mathbb{R}$ are continuous functions, then

f + g, f - g and $f \cdot g$ are continuous. If $g(x) \neq 0 \forall x$ then $\frac{f}{g}$ is continuous.

Proof:

The map $h: X \to \mathbb{R} \times \mathbb{R}$ defined by h(x) = (f(x), g(x)) is continuous by the theorem, "maps into products", 'Let $f: A \to X \times Y$ be given by the equation

$$f(a) = (f_1(a), f_2(a))$$

Then *f* is continuous iff if the function $f_1: A \to X$ and $f_2: A \to Y$ are continuous. The maps f_1 and f_2 are called the co-ordinate functions of f'.

The function $f + g = f_1 \circ h$ where $h: X \to \mathbb{R} \times \mathbb{R}$, $f_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $x \to (f(x), g(x)), (f(x), g(x) \to f(x) + g(x))$ $(f + g)x = f(x) + g(x), \quad \forall x \in X$

is continuous.

Since f_1 is continuous (by previous lemma), h is continuous and composition of continuous function is continuous.

The function $fg = f \circ h$ defined by

$$fg(x) = (f_2 \circ h)(x) = f_2(h(x))$$
$$= f_2(f(x),g(x))$$
$$= f(x)g(x)$$

is continuous.

Since f_1 is continuous, composition of continuous function is continuous.

Similarly, functions f - g and $\frac{f}{g}$ ($g \neq 0$) are continuous.

Definition:

Let $f_n: X \to Y$ be a sequence of functions from the set *X* to the metric space *Y*.

We say that the sequence $\{f_n\}$ converges uniformly to the function $f: X \to \mathbb{R}$ if given $\varepsilon > 0$, there exists an integer \mathbb{N} such that

$$d(f_n(x), f(x)) < \varepsilon$$
, $\forall n > \mathbb{N}$ and for all x in X.

Uniform limit theorem

Let $f_n: X \to Y$ be a sequence of continuous functions from the topological space X into the metric space Y. If $\{f_n\}$ converges uniformly to f, then f is continuous.

Proof:

Let V be open in Y.

Let x_0 be a point of $f^{-1}(V)$. We wish to find a neighborhood U of x_0 such that $f(U) \subset V$.

Let $y_0 = f(x_0)$ first choose ε so that the ε -ball $B(y_0, E)$ is contained in *V*.

Then using the uniform convergence

Choose \mathbb{N} so that for all $n \ge \mathbb{N}$ and all $x \in X$

Finally, using continuity of f_N , choose a neighborhood U of x_0 such that

Claim:

$$f(V) \subset B(y_0, \varepsilon) \subset V$$

If $x \in U$ then

$$d(f(x), f_N(x)) < \frac{\varepsilon}{3} \qquad --- (3) \qquad \text{(by the choice of } N)$$

by (1)

$$d(f_N(x), f_N(x_0)) < \frac{\varepsilon}{3} \quad \dots \quad (4) \qquad \text{(by the choice of } V) \text{ by (2)}$$
$$d(f_N(x_0), f(x_0)) < \frac{\varepsilon}{3} \quad \dots \quad (5) \qquad \text{(by the choice of } N)$$
$$by (1)$$

Adding and using the triangle inequality at x_0 we see that

$$d\big(f(x),f(x_0)\big) < \frac{\varepsilon}{3}$$

as desired.

$$\Rightarrow f(x) \in B(f(x_0), \varepsilon) = B(y_0, \varepsilon)$$
$$f(U) \subset B(y_0, \varepsilon) \subseteq V$$

Hence f is continuous.

Hence the theorem.