UNIT — 11
CONTINUOUS FUNCTION

Definition: Continuous Function X f Y

Let X and Y be topological spaces.
A function f : X = Y is said to be continuous if for @ Q
each opensubsetV of Y, the set -1 (V) is an open subset oT X Ope
Note 1:

Recall that 1 (V) is the set of all points x of X for which f(x) V. Itis
empty if V does not intersect the image set f(X) of f.

Note 2:

Continuity of a function depends not only upon the function itself, but also
on the topologies specified for its domain and range. If we wish to emphasize
this fact, we can say that f is continuous relative to specified topologies on X
and Y.

Example-1:

Let us consider the function like those studied in analysis “ A real valued
function of a real variable”.

f:R>R
L.e., f(x) =x
Example-2:

Let R denote the set of real numbers in its usual topology and let R,
denote the same set in the lower limit topology.

Letf: R > R, bethe identity function.

f(x) = x for every real number X. Then f is nota continuous function. The
inverse image of an open set [a, b) of R, equals itself which is not openin R.

On the otherhand, the identity function g : R,— R is continuous, because
the inverse image of (a, b) is itself, which is openin R, .

Definition : Homeomorphism
Let X and Y be a topological spaces. Letf: X — Y be a bijection.



If both f and f! are continuous, then f is called a Homeomorphism.

Theorem:
Statement:

Let X and Y be a topological spaces. Letf: X — Y. Then the following
are equivalent.

(i) f is continuous

(i) for every subset A of X, fA) ¢ T(A)

(iii) for every closedsetB of Y the setf!(B) is closedin X

(iv) for eachx € X and each neighbourhood V of f(x) there is a

neighbourhood U of x such that f(U) c V

If the conclusion in (4) holds for the point x of X we say that f is
continuous at the point x.

Proof:
Let X and Y be the topological spaces. Letf: X — Y.
(i) = (i)
Assume that f is continuous. Let A be a subset of X.
Toprove: f(A) c f(A)
Let X € A. Then f(x) € f(A)
if f(x) e f(A) then we have to show that
f(x) = f(A)
Let V be a neighbourhood of f(x). Then 1 (V) is an open set of X
containing X. (+ fis continuous )
Here x € A and 1 (V) is open.
~ 1 (V) must intersect A in some point y.
Then V intersects f(A) in the point f(y).
L.e., f(y) eVn (A)
=V f(A) is non empty.
= f(x)e f(A)
. f(A) cf(A)

(i) = (iii)
Let Bclosedin Yand let A=f1(B)

To prove: A is closed in X.
We have Ac A



if we prove A c A then A=A
= Ais closed.
Let us prove: A c A
Here A=f1(B) =f(A)cB.
Let X € A then f(x) € f(A)
cfA
— B =B since B is closed
e, f(x) e B(onx e f1(B) =A
=> AcA
Hence A=A
~ A=11(B)is closed.

(iii) = (i)
Let Vbean opensetin Y. LetB=Y-V, then Bis closedin Y.
~ 1 (B) is closed in X. (by (iii) Y \/
f1(V)=11(Y-B) f
=f1(Y) - F1(B) \
=X -11(B)
~ F1(V) is open.
Hence fis continuous.
(i) =(v)

Let x eXand V be a neighbourhood of f(x). Then since f is continuous
f1(V) is a neighbourhood of x. Let f1(V)=U.

Then f(U) = f(f1 (V) cV

For given x e X and a neighbourhood V of f(x), there exist a
neighbourhood U of x such that f(U) c V.

(iv)=(i)
Let V bean opensetof.
Let x € f1(V) then f(x) € V.

By hypothesis,

3 a neighbourhood Uy of x such that f(Uy) <V
Then, Uy < f1(f(Uy) < FL1(V).
Hence f1 (V) = U U,
since each Uy is open and union of open sets is open, f1(V) is openin X.



Therefore fis continuous.
Hence the theorem.

FootNote:
1) Aisalways contained in f-1 (f(A))
i.e Acfi(f(A)

i) f(f(B)) < B.

Result-1:
If the inverse image of every basis element is open, then f is continuous.

Proof:
Let f: X—Y and the inverse image of every basis element be open
Let VcY beaopenin.
Then V= U B«

a

f1(V)cfl(UB:) = Uf1(By)
= 1 (V) is openin X, since each f1(B.) is openin X.

Definition: Open map
A map f: X — Y is said to be an open map if for every open set U of X,
f(U) is openin'.

f_I:Y—>X

f
—_—

-

'-1
U w

Let f: X > Y, then the map f1: Y — X the inverse image of U under the
map 1 is same as the image of U under the map f.

Note:



The homeomorphism can be defined as a bijective correspondence

f: X = Y such that f(U) is openiff U is open.

Definition : Topological property

Let f : X —> Y be a homeomorphism. Any property of X that is entirely
expressed in terms of the topology of X yields, through the correspondencef, the

corresponding property for the space Y, such a property of Xis called topological
property.

Constructing Continuous Functions:

Theorem: Rules for constructing continuous function
Let X, Y and Z be topological spaces.

(a) Constantfunction:
If f: X — Y maps all of X into the single point y,ofY.
Then f is continuous.

Proof: X Y
F

/—#\

F1(V)zC

fi(V)cC
Let V bean opensetin Y.
Thenf!(V)=| ¢ vYvogV
X YoeV

~ f1(V)is openin X. (since both ¢ and X are open in X)



(b) Restriction Function:

Let A bea subspaceof X. Then the restriction function, restricting the
domain f /A : A — Y is continuous.

Proof:

Let V beopenin Y.Thenf1(V) is openin X, since f is continuous.
F1(V)nAisopenin A and (f(A)1 (V) =f1 (V)N A
Thus (f(A))1 (V) is openin A.
~T/A:A—>Y is continuous.
(c) Inclusion Function:

If A is a subspace of X the inclusion function j : A— Xis continuous.

Proof:

Let U beopenin Xthen j1(U)=AnNnU isopenin A.
(in subspacetopology)

~ j1(U) is openin A.
I.e j: A— X is continuous.

(d) Composition of continuous functions is continuous

If f:X—>Yand g:Y — Zare continuous then the map gof: X > Z
IS continuous.

Proof:

Let V bean opensetof Zthen gt (V) isopeninY. (g is continuous)
Since fis continuous 1 (g (V)) is open in X.

And f1(g*(V)) = (gof)* (V)

=~ for every opensetV of Z, (gof)1 (V) is openin X.

Hence gof: X — Zis continuous.

(e) Restricting (or) Expanding the range:

(i) Letf: X — Y becontinuous. If Zis a subspaceof Y containing the
image set f(X), then the function g: X — Z obtained by restricting the range of f
IS continuous.

(i) If Zis aspacehaving Y as a subspace then the function f,, h: X —»> Z
obtained by expanding the range of f is continuous.



Proof:

() Letf: X—Y becontinuous.
If Z is a subspace of Y containing f(X)
We have f(X) c Z Y.
Let g: X — Z bea function.

To prove: g is continuous.

Let B be openin Z.

To prove:
g(B) is openin X,

Since B is open in the subspacetopology, B=UNZ, where U is openin Y.
g'(B) =f(B) =f1(Un 2)
=1 (U) nF1(2)
=f1(U) n X
g®B =} (*)
Since U is openin Y and f is continuous, X
(V) is openin X. f Y
1.e., g1(B)isopenin X (by (x)) @

Hence g : X — Zis continuous.

(i) Let Zcontains Y as a subspace
given that f: X — Y s continuous.
The inclusion function j: Y—Z is also continuous.
=~ Their composition (jof) : X — Zis continuous.
l.e., Themaph: X — Zis continuous.

(f) Local formulation of Continuity:
Themap f: X — Y is continuous if X can be written as union of open
sets Uq such that f/ U, is continuous for each a.

Proof:

Letf: X—> Y and let X=Uq,
Given that :
f |Us: Ue — Y is continuous, for each a.

Toprove: X Y

Oﬁo



flUs : X — Y is continuous.
Let V beopenin Y.
claim:

(V) is openin X.

Since f /U: U, — Y is continuous, and Vis openin Y.
(f/Ue) (V) is openin Uy,

(f/Uo) (V) =1 (V) N Ugis openin U,
Since U is openin X, we have

1 (V) N Ugis openin X
Now

= mnu),

a arbitrary union of open sets is open.

= f1(V)isopenin X, Sincef: X —> Y is continuous.
Hence proved.

Pasting Lemma:
Statement:
Let X =AUB where Aand B are closedin X. Letf:A—>Yandg:B—>Y
be continuous. If f(xX) =g(X) V xe ANB then f & g combine to give a
continuous function.
h: X — Y defined by setting
h(x) = [f(X), if xeA
g(x) , if xeB
Proof:
Let V beaclosedsetin Y. Then
ht(V) =f(V) Ug'(V)
Since fis continuous,
1 (V) is closed in Aand A closed in X
= (V) is closed in X.
g1 (V) is closed in Band B closed in X
= g1(V)is closedin X.
Since union of two closed sets is closed,
f1 (V) U gt (V)is closed in X.
le., h1(V) is closedin X.
Therefore his continuous.




Hence the proof.

Example 1: 1
For Pasting Lemma g(x)
Define h: R —>R by - x<0 .
h(x) =[x if x<0 ) x>0
{x/z if x>0 } (x)
f(x) = x, g(x) =x/2 v

A= {x:x<0 } = negative reals U {0} is closed.
B={x:x>0}=R.,U {0} is closed.
and R=AUB
AN B ={0}
f(0) =0, g(0) =0.
Hence f(0) =g(0).
Hence by Pasting Lemma, his continuous.

Example 2:
The pieces of the function must agree on the overlapping part of their
domains in Pasting Lemma. If not the function need not be continuous.

Let h1: R >R defined by Y
ha(x) = {-2 ifx<0 02 1_—9%
x+2 x>0 . » X
T x<0 x>0

f(x) = x-2, g(X) =x+2

A= {x: x <0} / 0,-2)
=R .U {0}is closed.

B={xx>0}
=R. U {0} is closed.

R = AUB.

AN B = {0}
f(0) =-2 # g(0) =2
Fromthe graph it is clear that h; is not continuous.

v

Example 3:
Let : R >R

Letf(x)z%i-z ifx<0, x+2 ifx>0



A={xx<0}
=R _ is not closed.

We define a function £ mapping R into R and both the pieces are
continuous.

But £ is not continuous, the inverse image of the openset (1,3) is
non-open set [0,1).

Theorem2.4:
Maps Into Products: X XxY
Statement:
Let f: A — XxY be given by the equation
f(a) = (f(a), ©2(2)) a f(a)
Then f is continuous if and only if the function

f1: A— Xand f,. A— Y are continuous.
The maps f; and f,are called the coordinate functions of f.

Proof: XxY II X
Let IT;: XxY - X and
IT,: XxY — Y be projections onto
the first and second factors, respectively.
These maps are continuous. I1;1(U) = UxY
For IT;1(U) = UxY and

XxY X
IT,1(U) = XxV and these sets are open. IT,
if U and V are open. Note that for each acA.
fi(a) = ITy(f(@)) and IL1(\V)=

fa(a) = I1a(f(a)).
If the function fis continuous then f; and f, are composites of continuous
function and therefore continuous.

Conversely, A xY X
Supposethat f; and f, are continuous.
We show that for each basis element UxV for
the topology of XxY,
its inverse image 1 (UxV) is open.
A point a is in 1 (UxV) iff f(a)e UxV.
Le., iff fi(a) e U and fx(a) € V.
1 (UxV) =fi1(U) n 1 (V) X XxY
Since both of the sets f;-1 (U ) and 1 (V) are open,




so is their intersection.
Hence the proof.

Definition : Limit of the Sequence
If the sequence {x»} of points of the Hausdorff Space X converges to a
point x of X. Wewrite x, — x and call x as a limit of the sequence {x.}.

The Product Topology:

Definition: J-tuple

Let J be an indexed set given aset X. We define a J-tuple of
elements of X to be the function

X:J—> X if ais an element of J. We denote the value if X at a by

(X(@)=) Xq rather than x(a).

Then X, is called the athco-ordinate of X.

The function X itself is denoted by the symbol (X<) «e3. We denote the set
of all J-tuples of elements of X by XJ.

Definition:
Let {Ac}aes be an indexed family of sets. Let
X = Uae.l Aqa
The Cartesian product of this indexed family denoted by
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ael
is defined to be the set of all J-tuples (Xa)«zecs elements of X such that

X € Aq foreach a €.
i.e., it is the set of all functions

x:J—)-UAa

such that x(a) € A« foreach a.

Note:
If all the sets A. are equal to X, then the cartesian product

ITeey A is just the set X! of J-tuples of elements of X.



Definition: Box Topology

Let {Xca}ees bean indexed family of topological spaces. Thenthe basis for
a topology on the productspace Ilae; Xa is the collection of all sets of the
form Ilae; Us where Uq is openin X foreach a eJ.

The topology generated by this basis is called the Box topology.

Note:
The collection satisfies the first condition for a basis because IT X, is itself

a basis element and it satisfies the 2" condition because the intersection of any
two basis element is another basis element.

([T N ([] V) = []Wa N Va).

ael act aclt

Definition: Projection Mapping
ng n Xe = Xp
Let el be the function assigning to each element of the
productspaceits Bt co-ordinate,

s ( (Xa)a 1) = X
It is called the projection mapping associated with the index .
Definition :

Let S denote the collection
Sp={11"(Up)/ Usopenin Xs }

And let S denote the union of these collections,

S =Uses S
The topology generated by the sub basis S is called the product topology.
In this topology [].cs X, is called a product space.
Theorem

Comparison of the Box and Product topologies

Statement :

The box of topology on [| X, has an basis all sets of the form [] U, where
U, is openin X, foreach a. The producttopologyon [] X, has a basis all sets



of'the form [] U, where U, is openin X, foreach a and U, equals X, except
for finitely many values of a.

Proof:
Basis for producttopology on [] X, .
The collection B consistof all finite intersection of elements of S.
If we intersect elements belonging to the same collection of Sgthen
[THe(Up) AT p(Vp)=T1"p(Up1 Vy)

Thus the intersection of two elements of Sg or finitely many such elements is
again an element of Sg .

So let us intersect elements from different sets Sg. Let B1, B2, ...... Bn be a
finite set of distinct indices from the index setJ .

Let Ugbeanopensetin Xg ,i = 1,2,....n. Then

[T7p1(Upt) AT p2(Up2) . O] pn(Ugpn)

Is the finite intersection of subbasis elements so it belongs to B .

Let B =11 (Upt) A]Ip2(Up2) 1...... O] pn(Ugpn)

Let X = (X4 )ocs € B

< (X )aes € [T g1 (Upt) AT 1p2(Usp2) .o O] pn(Upn)

& (Xaees € [T4i(Ugi) ,i=12 ... n

< [T ((Xa )acs € Upi

< Xpi € Ug;

There is no intersection on ot co-ordinates of x if o is not one of the indices

B1, P2, ... Bn
X eB & []U,
Where U, isopenin X, forall a and V, =X, if a #p1, P2, ...... Bn -

Thus J] X, has as basis all sets of the form [[ U, where U, is openin X,
foreach aand U, equals X, except for finitely many values of o .

Hence the theorem



), For finite product [[2-, X a the two topologies are precisely the
same .

i)  The boxtopology is in general finer than the producttopology for
any basis element of the form []| U, where U, isopenin X, is
contained in []J U, ,where U, isopenin X, foreach a and U,
equals X, except for finitely many values of o .

Theorem :

Supposethe topology oneach space X, is given byabasis B, . The
collection of all sets of the form [[,-y B, Where B, € B, foreach a will
serve as a basis for boxtopology on []q=1 X4 .

The collection of all sets of the same form, where B, € B, for finitely
indices o and B, = X, for all the remaining indices , will serve as a basis for
the producttopology [Ju=1 X«

Proof:
Box Topology

Let ((Xo))o=s € W and W bean opensetin [[q=; X, . FOrbox
topology on [[ X, there exist abasis element [],-;U, where each U, open
un X, such that

(Xy) € [[Uu € W

Since B, generates X, ,foreach X, € U, there exist B, € B, suchthat
X, € B, € U, .

Hence (Xa)a=1 €[]Bo €[]JUs € W

Hence by theorem ““Let ( X, T) be a topological space. Supposethat C
is a collection of open sets of X such that for each open set U of x such that

x € Cc U.Then Cis a basis for the topological basis for the box topology on
Ha=J Xa “ .

Product Topology:
Take U=]] U4

Let (Xo)a=y € W and W be an opensetin [],-; X, . Forthe product
topology on [] X, there exist a basis element [],-; U, where each U, is
openin X, and U,- X, except for finitely many , ,s.



(Xq) eU c W

Since B, generates X, foreach x, € U, there exist B, € B, suchthat
Xe € By U, (except for finitely many o’snotethat U, = X, )

Hence (X,) € [[Bos cJJ]U, =U c W

Hence by above stated theorem [[,-;B, where B, € B, foreach ais a
basis for the producttopologyon [ X, .

Hence the proof.

Example :

Consider Euclidean n —space R". A basis for R consists of all open
intervals in R, hence a basis for the topology of R" consists ofall products of
the form

(al,bl)x (az,bz)X .......... X(an,bn)

Since R" isa finite product, the box and producttopologies agree whenever
we consider R" , we will assume that it is given this topology unless we
specifically state otherwise.

Theorem

Let A, be a subspaceof X, foreach a € J,then [] A, is asubspace of
[T X« if bothproducts are give the box topology or if both products are given
the product topology.

Proof:
Box Topology:

Consider J] X, and [] A, with boxtopologies . Let [] U, U, is open
in X, forall a be ageneral basis element of [] X, . That implies U, & X,
forall with U, is openin X,

— U, NA, €A, isopenin A, Since each A, is a subspace
— Jle-1 (Us NA,) S [JA, is abasis element for [JA
But [] (Us NA,) =([1Us) O(]]A)

Therefore ([]Us) O (][] A«) is abasis of [] Aq with [] U, is basis element
for [ X, . So [] A« is asubspaceof[] X, in boxtopology.



Product Topology:
Suppose both products are given product topologies.
Claim:

[] A« 1s a subspaceof [] X, . Let [] U, be a general basis element of ] X,
where U, is openin X,.

For finitely many o’s say Bi1, B2, ...... Bn and U, = X, for the remaining
a’s. Since each A, is asubspaceofX,,Ugi 1 Ag; isopenin Agi , i1=1,2,
....n and X, N A, isopenin A, forthe remaining o’s.

Let V.= X, 0OA, if a=pi,i=1,2,....... n

A, If a#Pi

Then [] V. is a general basis element of [] A, . Therefore [] A, IS a
subspaceof || X, In producttopology.

Hence the proof.
Theorem:

If each space X, is Hausdorff spacethen [] X, is Hausdorff space in
both the box and product topologies.

Proof:
Claim : []u=; X, is Hausdorff

Let Xo)o=1 # (Vo) a=1 M JJa=s Xq . Then there exist atleast one p € J such
that xg # yps. Now Xjp is a Hausdorffand xg # ypin Xs.

There exist two opensets Ug and Vg in X suchthat X3 € Up, Yy € Vg
and UB n VB =0

Now consider the projection
[T : T1Xae — X5
[T%s(Ug) isopenin [TX. and (xa) € [T (Up )
Similarly,
[T% (Vp) isopenin [[ X, and (Yo) € [ (Vs ) and
[T% (Up) L IT% (V) = IT7% (U 11 V3)
= O
In either topology this result holds good. If [] X, is given box topology then



[T%(Upg) = [[Us where U, is openin X, foll all a.

If J]X. is given producttopologythen [['(Ups) = [[U, wWhere U, is
openin X, for finitely many o’s and U, = X, for the remaining a’s.

Hence the proof.
Theorem :

Let { X, } be an indexed family of spaces.Let A, c X, foreach a.
Then [] X, is given either the producttopology or the box topology , then

[TA« =T«
Proof:
[TA« =TTA.
X= (Xa) € [[Ad
Claim:
X ETAa
Let U= J] U, be a basis element for either topology that contain x.
X, € U, forall a andso U, intersects A, as X,e€A,.
Let y, € UoNA, forall a .Then y=(yq)e [[U, and [TA .
Since U is arbitrary, every basis element about x intersects [] A , . Therefore
xe [JA — JlA. [ T]A

Conversely ,

Let Xx=(X,) € [[A, in either topology.
ToProve :
Xo € A, , forall a.
Sothat (X,) € []A. choosea particular index B .
ToProve :
Xp € Ay
Let Vg be an open set of Xy containing X .
[T (Vp) isopenin [[ X, in either topology and X, € [[%(Vp) .
Therefore [[(Vp) A [[As # @
Let y=(Ya) € [['3(Up) A]] Ay fortheindex B , yp € A,



(Vo) € [T (V) = (ya) €V
e, Vo €V
e, Yo € Vg NN A
Therefore (X,) € [JAq

— TTA« = IA,
Hence [JA, = TJA.

Hence Proved

Theorem:

Let f: A — [J] X, begiven by the equation f(a) =(f,(a) )ocy
where f,: A— X, for each a.Let J] X, have the product topology .
Then the function f is continuous if and only if each function f, is continuous .

Proof:

Letf: A — [] X, Iis given by the equation f (@) =(f, (@) )ecs Where
f.: A— X, for each a.

Claim:
f, Is continuous .

Let []p be the projection of the product onto it’s the Bt factor. The function
[1s is continuous.Now, suppose that the function f: A — [] X, is continuous.
The function fg equals the composite [[s o f being the composite of two
continuous functions is continuous.

Conversely, suppose that each f, is continuous. To prove that f is continuous
, It is enough to prove that inverse image of every sub-basis element is openin A,
A typical sub basis element for the producttopologyon [] X, is aset of the
form -l (Up ), where B is someindex and Ug is openin Xg

Now , ft(ml(Up)) =(mp0 f)*! (Up)
= 1 (Up)
Because fg = mg0 f. Since fp is continuous, this set is openin A.
— f'is continuous
Hence the proof.
Note :
The above theorem fails if [] X, IS given boxtopology.



Example :

Consider RW be the countably infinite productof R with itself recall
that,

Rw = anz+ Xn

Where X, € R, foreachn. Let us define a functionf : R — RWY bythe
equation

F(t)=(t,tt....)

The nth co — ordinate function f is the function f,(t) =t .Each of the
coordinate functions fo: R — R is continuous .

Therefore the function f is continuous if RY is given by the product
topology . But f is not continuous if RW is given by the box topology.
Consider the example , the basis element

B=(-1,1)x (%, %)< (-%,%)........
for the box topology , we assert that 1 ( B) is notopenin R.

If 1 (B) were openin R, it would contain some interval (- 6,8 ) about
the point U . This means that f (-6,d ) [] B, sothat applying 7, to both sides
of the induction ,

f.(-6,0) =(-6,0) [ (-1/n,1/n)
for all n, a contradiction.
Metric Topology :Definition :

A metric on a set X is a functiond: X x X — R having the
following properties:

1. d(x,y) > 0 forall x,y € X; equality holds iff x=y

2. d(x,y) =d(y,x) forall x,y ¢X

3. (Triangle mequality ) d(x,y) +d(y,z)=>d(x,z) forall x,y,z
€ X

Example: 1
Given a set,define d(x,y) =1 if x#y
d(x,y) =0 if x=y

Its trivial to check that d is a metric .



The topology induced is the discrete topology . The basis element
B(x,1), forexample, consistof the point x alone .
Example : 2
The standard metric on the real number R is defined by
d(xy)= |x-y|
d(x,y) = 0iff x=y
|x—y | = [y-x | and
d(x,z) = |x—z | = |x—y+y-Z| < |X—y | + |y-z |
=d(xy) +d(y,z)
Definition :

Given a metric d on X the number d ( x, y) is often called the
distance between x and y in the metric d.

Given € >0, considerthe set, By (X, €)={y/d(x,¥y)<e }ofall points
y whose distance from x is less than €. It is called the € - ball centered at X .

Note :

In R the topology induced by the metric d (x,y) = |x—y] is the
same as the order topology. Each basis element ( a, b) for the order topology
IS abasis element for the metric topology. Indeed (a, b) =B(x, €)
where x = a+b/2 and € = b-a/2 and conversely , each ¢- ball B( x, €) equals an
openinterval ( X-€, X+€).

Definition :
Metric Topology:

If d is a metric on the set X, then the collection of all ¢ - ball
Ba (X, €) for xe X and e >0is abasis for a topology on X, called
the metric topology induced by d .

Result1:

If y is a point of the basis element B (x, €), then there is a basis
element B (y, 8 ) centered at y that is contained in B (X, €).

Proof:



Define o to be the positive number ¢ - d(X, y). Then
B(y,8)<B(x,e)forif zeB (y,d) then d(x,z)<e-d(X, y)from
which we conclude that

d(x,z)<d(x,y) +d(y,z) <€
Hence the result .

Result2 :

B={Bs(x,e)/xeXande>0}Iis a basis.
Proof:

First condition for a basis :

xe€ B (x,¢e)foranye>0.
Second condition for a basis :

Let B; and B, be two basis elements . Let y € B; 1 B, . We can choose the
number 81> 9, so that B(y, 01 ) <B; and B(y, 02 ) <B,.

Letting 0 be the smaller of &; and 6,. We can conclude that
B(y, S)SBlﬂ B,
Result3:

A set U is open in the metric topology induced by d iff for each ye U,
there is a & > 0 suchthat B4 (y,d) € U.

Proof:
Clearly this condition implies that U is open .

Conversely , If U is open it contains a basis element B = By ( X, € ) containing
y, and B in turn contains a basis element By (y, 6 ) centered at y.

Hence the result.
Definition :

If X is a topological spaces . X is said to be metrizable if there exist a metric
d on the set X that induces the topology of X . A metric space is a metrizable
space X together with a specific metric d that gives the topology of X .



Definition :

Let X be a metric space with metric d . A subset A of X is said to be
bounded if there is some number M such that d (a; , a;) <M for every pair a; , @,
of points of A..

Definition :

If A'is bounded and non — empty the diameter of A is defined to be the
number .

diam A=sup {d (ai, a;) / a;, a,€ A }
Theorem :

Let X be a metric space with metric d . Define d: X x X — R by the
equation

d(x,y)=mn {d(x,y),1}

Then d is a metric that induces the same topology as d . The metric d is called
the standard bounded metric correspondingto d .

Proof:
d is a metric .

e d(x,y)=min {d(x,y),1}=0
d(x,y)=0min {d(x,y),1}=20

—d(x,y)=0
oX=y (d1s ametric )
e d(x,y)=mn {d(x,y)1}
=min {d(x,y), 1}
=d(y,x)
Claim:
d(x,z)<d(x,y)+d(y,z)
Supposed (x,y)=d(x,y), d(y,z)=d(y,z)
Andd(Xx,z)<d(x,y)+d(y,z)=d(x,y)+d(y,z)
Alsod(x,z)<d(x,2z) ( by defn)
d(x,z)<d(x,y)+d(y,z)



Supposed(x,y)>1 or d(y,z)>1 then
R.H.S of our claim is atleast 1 and L.H.S of our claim is atmost 1
The equality holds.
Hence d is metric space.
Hence the theorem
Definition :

Given X = (X, X2, .....Xn ) In R, we define the norm of x
by the equation

% || = (xa2 + %22+ ...+ %02 ) %
The euclidean metric d on R"is given by the equation
d(x,y) =[x y[|= [Cx-y02 + O = y2l2 + o (xa = yo)? 12
=[ XM= (Xi—yi)? ]+
Where X = (X1, X2, ..... Xn ), Y=(VY1, Y2, ..... Y0 ) .
Definition :
The square metric p on R"is given by the equation
p(x,y)=max {|x1-Yi|, [ X2=VYa,...... o | Xn=Ynl }
Relationbetween euclidean metric d and sequence metric p in R" is
p(x,y)< d(x,y)<Vn(p(xy))
Theorem:

Let d and d' be two metrices on the set X . Let T and 1’ be the
topologies they induce respectively. Then t’ is finer than 7t iff for each x in X
and each £ > 0 there exist a & > 0 such that

Ba(X,0)CBg(x ¢)
Proof:
SupposetC T’
Then by lemma

“Let B and B' be basis for the topologies t and 1’ respectively on X .
Then the following are equivalent

() tct



(i) Foreach x e X and each basis element B € B containing X , there is a
basis element B’ € B 'suchthat xe B’ [/ B ".”

Given the basis element

Ba (X, ) for 1, by the lemma, there exist a basis element B’ for the topology
T’ such that

xeB' < By(x,8)
within B’ we can find a ball B'( x, 6) such that
XeBg(x,0)cB cBy(x,¢)
Conversely ,

Supposethat € -6 condition holds. given a basis element B for t
containing x , we can find within B a ball B4 ( x, € ) contained at x .

le,XeBg(x,¢) cB
By hypothesis, XeBg(x,0) < By(x,¢)
By lemma , t'is finer than t.
Hence the theorem
Theorem :

The topologies on R" induced by the euclidean metric d and the
square metric d are the same as the producttopology on R".

Proof:

Let X=(X1, X2, .....Xn) and y= (v, Y2, ..... yn ) betwo points of R"

Let 14 be the topology induced by the metric d and t, be the topology,
induced by the metric p.

Claim: 7, - 14
Toprove :
T, € 19 and 1q E7,
le, Toprove: ) Ba(x,€) €SB, (x,¢)
i)B, (x, &/Vn) C By (x,€)

1) LetyeBqg(x,¢)
— d(x,y)< €



—p(x,y)<e (p(x,y)<d(x,y)< €)

_)YEBP(Xag)

— By (x,¢€) C By(x,¢)

Therefore 1, € 14 ( by theorem )
i) LetyeB,(x,e/\Nn)

—p(x,y)<e/n

—\np(x,y)<e

— d(x,y)< €

— yeBg(x,¢€)

—B,(x,e/n)SBy(x,¢)

— T4 ET,

We get, 14 = 1,

Claim:
T="Tp

To prove that the producttopology is same as the topology induced by the
square metric p .

First let prove 1 € 1, Where 1 is the producttopology on R". Let
B=(a;, b1) x(az, b2)x........ X (an, bn) bea basis element of t with X e X
where X = (X1, X2, ..... Xn ).

Now for each i there is an &; such that
(Xi-¢i,Xt¢&)C<(a,b)

Thus B,(x,e)SB for yeB,(x,¢)
—p(x,€)<e
— max { [x1 —Vyi|, X1 —Vi, ...... Xn —Yn| } <€
— [xi—Vi|<e<e¢g , foralli=1,2,....n
—vyiee (X-g,X+g) foralli
—vyi €€ (a,b;) forall i
—yeB
—TCT, (1)

Conversely ,

ToProve :

T, &1



Let B, (X, € ) bea basis element for p topology given the element
yeB,(x, ¢)
We need to find a basis element B for producttopology such that
yeBEB,(x,¢)
NowB, (x,e)=((x1-&,X1+e)(Xo-€,X2+¢€)....... (Xn-€,Xnt€))
Which is itself a basis element of the product topology .
yeB=B,(x,¢)
Hence 1, €1t  ........ (2)
From (1) and (2)
Tp =T
Definition :
Given a indexed set J and given points X = ( X, )qcs and
Y = (VYo )oees OFR?, ametric p on RJ defined by the equation
P (% y)=sup {d(Xe,Ya)}ues
Where d(x,y)=min { [x —Y|, 1} the standard bounded metric on R.

P is ametric onR? called the uniform metric on R?. The topology it
induces is called the uniform topology.

Theorem:

The uniform topology on RY is finer than the producttopology and coarser
than the box topology.

Proof:

(1) Let 1, bethe producttopology on R’. tg be boxtopology on R’and T,
be the uniform topology on R?. The theorem states that

T, S-S 1B
First let us prove :
T, & T
Let X = (Xq)oey and U=T1U, be a basis element of 7, with ( Xy )a: € U

Let 01, 02, 03, ..... onbe the induces for which U, # R then for each i, we
can choosenan g; > 0 such that



Ba(Xi,&) €U foralli=oy, 02,03, .....0n

Where U; is openin R,

Let ¢ =min {&,¢&,.....€}

ThenBs (x,e) €U for ZeBs (x,¢)
—p(x,z)<c¢
—sup {d(Xa,Za) Jaes < €
—>d(Xe,24)< € < g forall a
— 7, € Br(Xo, €)

—Z ¢ U
— 7 ¢ 11U,

Thus 1, € 1,
(1) ToProve:
T,

Let B, (%, ¢ ) be a basis element of 1z . Then the neighbourhood
U=II(x4-€/2,x4+t€/2)is xeUCSBp(x,¢)foryeU
—Uge(Xy-€/2,%x,+€/2) forall a
—>d(Xe.Ye)<e/2 forall a
—sup { d(Xe.Ya) Yaes <&/2
—p (x,y) <e/2 <g
—yeBs(xe)

The topologies 1, tand tg in RY are different if J is infinite.

Theorem:

Let d(a,b)=min {]Ja—Db|, 1} be the standard bounded metric on R . If x
and y are two points of Rw, Define

D(xy)=sup{d(xi,yi)/i}
Then D is a metric that induces the producttopology on Rv
Proof:

D(xy)=sup{d(xi,Vi)/i}isa metric.



Since each d(x;,y;) = 0,D(x,y) =0
D(x,y) =0 J(xi,yi) =0 Vi

ox, =y Vi

X =Yy
D(x,y) = sup {d(x;’ yl)} = sup {d(yii' xz)}
= D(x,y)

Since d is metric

d(x;,z;) < d(x,y) +d;, z;)

&(xi,yi) < 5(xi,yi) < J(yi,zi)

i - i - i

< sup{a(x;'yi)}+Sup{a(y;'zi)}

d(x;z;) < D(x,y) + D(y,2)

<

sup {d (xii'zi)} <D(x,y)+D(y,2)

~ D is a metric on R.

Claim: 7, = 7, (we have topology induced by D be 7,
Toprove: 7, S,

Let U be openin metric topology z, and x € U
Toprovethat 3 an opensetVint, > x €V < U.
Sincex eU,3ae>0,B, (x,&) cU.

ChooseN large enough 1/ < e.

LetV=(x;—&x;+&e)X(x, —&x; + )X vev e . X (Xy — &, xy + €)
We assertthat V c B, (x, €) for if y € RY then =222 d(x‘ % <l/yvi>n
d(xy,y1) d(x,y,) d (X, Yn)
.~ D(x,y) = max 1 ) 5 e e T

If y e Vthen D(x,y) < € =y € By (x,¢)



~xX €V CBy(xe)cV

Consider the basis element U = [];¢,, U; for the producttopology, where U is

openin R fori = (a, a3, ... ..... ayy and U; = R for all other indices i.

Let x € U. Let us find an set V of the metric topology such that

X €V c U. Choosean interval (x; — ¢;,x; + &;)in R centered about xi and

lying in U; fori=ay, ..., an chooseeach ¢; <1.
Then define
e=min{e; li|i=oy, ..., On}.

X € By (x,e)c U.
Fory € B, (x,¢),

= D(x,y) <€=>MSD(X,}/)< e forall i,

i
=d(x;,y;) <Dx,y)<e(i)<egfori=a...,an

= min{|x; —y;|,1} <e; < 1

>V, €M —&,x &)U Vi=ay, ..., o

obviously, y; € R for other indices 1,

~yeU

Hence, x € B, (x,)c U (basis element of 7,)

S Tp & Tp

Hence 7, = 1)

Hence the theorem.

Theorem:

Let f: X — Y.Let X and Y bemetrizable with metrics dy and d, respectively.
Then continuity of f is equivalent to the requirement that given x € X and given
€ >0, there exists § > 0 such that

dx(X, y)<&=dy (f(x),T(y))<e.



Proof.

Supposethat f is continuous.

Given x and &, consider the set
fHBf (), ),
which is openin X and contains the point x.

~38§>03B(x,8) cfY(B(f (x),8))

Theny € B(x,8) =y € f1B(f (x),9))

ey € B(x,8) = f(y) € B(f (x),¢€)

Le dy(x,y)<8 =dy (T(x),T(y)) <e.

Thus € — § conditions holds

Conversely,

Suppose € — § conditions holds

Claim:
f+ X — Yis continuous

Let V be openin Y; we

show that f —1(V) is openin X. Let x € f ~* (V). Then f (x) € V,
As V is open, there exists ¢ > 0suchthat B(f (x),e) SV

By the € -6 condition, there is a 6-ball B(x, J) centered at x such that 1 (B(x, J))
c B(f (%), ¢).

= Thus x € B(x, ¢) contained in f -1(V), so that f (V) is openin X.
Hence continuity and ¢ -6 conditions are equivalent.

Hence the theorem.

The Sequence lemma :

Let X be a topological space; let A c X. If there is a sequence of points of A
converging to x, then x € A; the converse holds if X is metrizable.
Proof:

Suppose that x, — x, where x, € A then for every neighborhood of x
contains a pointof A= x € A

by Theorem “Let A be a subset of the topological space X.



Then x € A iff every opensetV containing x intersects A.

Supposing the topology of X is given by a basis then x € A iff every basis
element B containing x intersects A”

Conversely, supposethat X is metrizable and x € A. Let d be a metric for the

topology of X. For each positive integer n, take the neighborhood By (x, 1/n) of
radius 1/n of x, and choose x, 3 x, € Bd (x %)

Then (x, ) is a sequence of A.
Claim: x, converges to x

Any openset U containing x is suchthat x € B(x,e) c U

if we choose N sothat 1/N < ¢, then L 1« <1< ¢andsothatU
N+3 N+2 N+1 N

contains x; for all i > N.

Hence the proof.

Theorem:

Let f: X — Y. If the function f is continuous, then for every convergent
sequence X, — x in X, the sequence f (x,) converges to f (x). The converse
holds if X is metrizable.

Proof:

Assume that fis continuous. Let X, — X.

Claim: f(x,) — f (X).

Let V be a neighborhood of f (x). Then f “1(V) is a neighborhood of x, and so
there is an N suchthat x, € f “1(V) forn>N.

Then f (x,) € V forn>N.

f (%) — F(X)

conversely,

Suppose that the convergent sequence condition is satisfied.

Let X is metrizable and A c X;

To prove : f is continuous



We prove, f(4) € f (4). Let x € A, then there is a

sequence x, in X such that x, — x (by the sequence lemma).

By hypothesis, f (x,,) converges to f (x). As f(x,,)) is in (4) ;f (X)) € f (4)
Hence f (A) € f (A)

I.e, f is continuous

Hence the theorem.

Theorem:

The addition, subtraction and multiplication operations are continuous

function from R X R into R; and the quotient operation is a continuous function
from R x (R —{0}) into R.

Proof:
Let the addition operation be defined by
it RXR->R,filx,y) =x+y
The multiplication operation be defined by

L:RXR->R, f,(x,y) =xy
Let us use the metric:

d(a,b) = |a — b| onR and let the metric on R? given by,

o(( 3, (x0,50)) = max{lx — x,1, 1y — o}
Let (x,,¥,) € RX Rand £ > 0 be given if o((x,y), (xo,5,)) < &. Then,
max{|x — xol,[y — ¥ <&
e, |x —xpl< dand |y —y,| < §.
To prove: f; is continuous

Choose § < 2

d(f; e ). fi (0, %0)) = 1 (6 ) — fi (x0,70)
=|(x +y) — (%0 + o)

=[x —xy+y =Yl

=[x = x|+ ly =5l



N
N | M
+
N |t
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Thus o((x,¥), (x0,¥)) < 6.

= d(fi0o ), fi (x0,7)) < € Vx,yERXR
Thus f; is continuous.

To prove: f, is continuous

Let (xy,v,) €E RXRand 0 < & < 1 be given.

&

Choose $ =

T+lxg+lyp|

d(fi(x¥), fi (0, 30)) = I, (6 y) = f (0,0

= |(xy) = (eoxo)l

= |xy — XY + X0V — XYy + XVo + XoVo — X0Yo — XoVo|
= |x(y = ¥0) =%y = ¥o) + ¥o(x = x0) = %o (¥y — ¥o)|
< |G —x0) = yo) | + x| — yo) | + ¥l 1(x — x0)]

< (e = 2 = yo ) + 1x0 1y — ¥ )| + 1y [ (x — x0)
< 8%+ |xol6+ |y l6 f Q((x,y),(xo,yo)) )

< 6+ |x|6+ |y |0

< §(1+ Ixol + [wol)

&

FEEEAREH)

1+|X'0 |+|y0

< ¢
Thus o((x, ), (x0,%)) < 6
= d(f,009), £ (x0,%0)) < €

Hence f, is continuous.
Similarly,

+ RX R = Rgiven by (x,y) = (x, —y) is continuous.

R x (R—{0}) = R is given by (x,y) = ;‘7 is continuous.



Theorem:

If X is a topological spaceand if f o g: X — R are continuous functions,
then

f+g, f—gandf g arecontinuous. If g(x) # 0 Vx then i is continuous.

Proof:

The map h: X - R X R defined by h(x) = (f(x), g(x)) is continuous by
the theorem, “maps into products”, ‘Let f: A= X X Y be given by the equation

fla) = (fi(a), f,(a))

Then f is continuous iff if the function f,: A = X and f,: A — Y are continuous.
The maps f; and £, are called the co-ordinate functions of f’.

The function f + g =f, chwhere : X > RX R, fj:RXR-> R
x = (f(x),9(), (f(x),g(x) - f(x)+ g(x)
fF+px=fx)+gx), VxeX
IS continuous.

Since f; is continuous (by previous lemma), h is continuous and
composition of continuous function is continuous.

The function fg = f o h defined by

fg(x) = (f e )(x) = £, (h(x))
=L (f(x),g(x))
= f(x)g(x)

IS continuous.

Since f; is continuous, composition of continuous function is continuous.

Similarly, functions f — g and i (g # 0) are continuous.

Definition:

Let £,: X — Y be asequence of functions from the set X to the metric
spaceY.

We say that the sequence {f,,} converges uniformly to the function f: X — R if
given € > 0, there exists an integer N such that



d(f,(x), f(x)) < e, vn > N and for all x in X.

Uniform limit theorem

Let f,: X — Y be asequence of continuous functions from the topological
spaceX into the metric space Y. If {f,, } converges uniformly to f, then f is
continuous.

Proof:

Let V be openin Y.

Let x, be a point of f =1 (V). We wish to find a neighborhood U of x,
suchthat f(U) c V.

Let y, = f(x,) first choose € so that the e-ball B(y,, E) is contained in
V.

Then using the uniform convergence

ChooseN sothat forall n > Nand all x € X

d(fu (), f0)) < = — (1)
Finally, using continuity of f, , choosea neighborhood U of x, such that
fi (U) € B(fy(x0),5) =)
Claim:
f(V)yc By, ) cV
If x € U then
d(f(x), fy(x)) < § — (3) (by the choice of N)
by (1)
d(fy (), f (x0)) < 2 - (4) (by the choice of V) by (2)
d(fy (x), f(x)) < 5 - (5) (by the choice of N)
by (1)
Adding and using the triangle inequality at x, we see that
d(f (O, f(x0)) <%

as desired.



= f(x) € B(f(x0),€) = B(o, €)
fWU) €B(y, &)V
Hence f is continuous.

Hence the theorem.



