# Unit – III

# **Connected Spaces and Compact spaces**

# Connected space

# **Definition: Separation**

Let X be a Topological space separation of X is a pair U, V of disjoint, non-empty open subsets of X whose union is X.

```
X = U \cup V, U and V are open
U \cap V = \emptyset, U \neq \emptyset, V \neq \emptyset
```

The space X is said to be connected if the does not exist a separation of X.

# Result

A Space X is connected iff the only subsets of X that are both open and closed in X are the empty sets and X itself.

Proof:

Assume X be connected. Let X be connected.

Α

Suppose  $A \subset X$ , is both open and closed

Let 
$$U = A$$
,  $V = X - X = A \cup (X - A)$   
=  $U \cup V$ 

Then U and V form a separation for X, which is a contradiction.

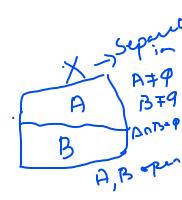
Hence X is connected. the only subsets that are both open Conversely, and chosed are g and X.

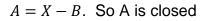
Let X is disconnected. Assume that the only sets of X which are both open and closed are  $\phi$  and X.

Since X is disconnected, there exist a separation, such that

$$X = A \cup B, \quad A \neq \phi, \quad B \neq \phi$$
$$A \cap B = \phi \qquad A \text{ and } B \text{ is open}$$

Now A is open





Therefore the A is both open and closed and A is a proper subset of X which is a contradiction.

Hence X is connected.

Hence the proof.

### Note:

Connectedness is a Topological Property. Since it is formulated entirely in terms of the collection open sets of X. If X is connected so is any space homeomorphic to X.

# Examples:

1. Let  $X = \{a, b\}$ 

Let  $\tau = \{\phi, X\}$ . The indiscrete Topology on X. Then there exist no separation of X.

Therefore, X is connected.

2. Consider  $X = \{a, b, c\}$ . Let  $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}\}$ 

The discrete topology on X. This Topological space is not connected.

Since all subsets of X both open and closed and then there a exist a separation

 $X = \{a\} \cup \{b, c\}.$ 

# Lemma 1:

If Y is a subspace of X, a separation of Y is a pair of disjoint non-empty sets A and B whose union is Y neither of which contains a limit point of the other. The space Y is connected if there exists no separation of Y.

メ

ANB=9 BNA=9

#### Proof

Suppose A and B form a separation of Y.

A is both open and closed in Y

$$cl_{Y} A = \overline{A} \cap Y$$

$$A = \overline{A} \cap Y \qquad (\because A \text{ is closed in } Y, cl_{Y} A = A)$$

$$\overline{A} \cap B = \phi \quad [A = \overline{A} \cap Y, \qquad A \cap B = \overline{A} \cap (\underline{Y} \cap \underline{B})$$

$$A \cap B = \overline{A} \cap B$$

$$\therefore A \cap B = \phi ]$$

B contains no limit point of A.

Similarly A contains no limit point of A. 3

Conversely, Suppose that A and B are disjoint non-empty sets whose union in Y, neither of which contains the limit point of the other.

 $\bar{A} \cap B = \phi \quad and \quad A \cap \bar{B} = \phi$  $\bar{A} \cap Y = \bar{A} \cap (A \cup B) = (\bar{A} \cap B) \cup (A \cap \bar{B})$ 

 $= A \cup \phi = A$ 

 $\therefore$  A is closed in Y.

Similarly,  $\overline{B} \cap Y = B$ 

 $\therefore$  B is closed in Y.

As Y - B = A and Y - A = B.

Both A and B are open in Y. A and B Form a separation of Y.  $\Rightarrow$  Y is disco weeker

The space Y is connected if there exist no separation of Y.

#### Example 1:

Let X denote a two pint space in the indiscrete topology. Obviously there is no separation of X, So X is connected.

#### Example 2:

Let  $Y \subseteq R$  the real line such that



 $Y = [-1, 0) \cup (0, 1]$ . Both [-1, 0) and (0, 1] are disjoint non-empty and their union us Y. Both are open in Y [Not in R].

They form a separation of Y.

 $\overline{[1,0)} = [-1,0]$ 

 $\overline{(0,1]} = [0,1]$ 

Note that none of these sets contains the limit points of the other.

#### Example 3:

Let  $X = [-1, 1] \subset R$  $X = [-1, 0] \cup [0, 1]$  This does not form separation of X, Since [-1, 0] is not open in X. Note that, here first set contains a limit zero of the second. Indeed there is no separation of the space [-1, 1].

# Example 4:

The rationals Q is not connected. The only connected subsets of Q are the 1-pt set. Let Y be a subspace of Q containing two point p and q. In between p and q there always exist a irrational a.

Consider  $Y \cap (-\infty, \infty)$  and  $Y \cap (a, \infty)$ . Both are disjoint non-empty open sets in Y, whose union in Y.

 $\therefore$  Y has a separation and hence it is not connected.

### Lemma 2:

If the sets C and D form a separation of X and if y is a connected subspace of X, then Y lies entirely within either C or D.

### Proof

Since C and D are both open in X.  $C \cap Y$  and  $D \cap Y$  are both open in Y.

 $(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y = Y$ 

 $(\mathbb{C} \cap Y) \cap (D \cap Y) = (C \cap D) \cap Y = \phi$ 

If both  $C \cap Y \neq \phi$  and  $D \cap Y \neq \phi$ , then  $C \cap Y$  and  $D \cap Y$  with form a separation of Y but Y is connected.

 $\therefore$  One of these should be empty.

If  $C \cap Y = \phi$  then  $Y \subset D$ 

If  $D \cap Y = \phi$  then  $Y \subset C$ 

# Lemma 3:

The union of a collection of connected subspaces of X, that have a point in common is connected.

AL

# Proof:

Let  $\{A_{\alpha}\}$  be a collection of connected subspaces of X.

Let  $p \in \cap A_{\alpha}$ 

Claim:  $Y = \bigcup A_{\alpha}$  is connected.

Suppose  $Y = C \cup D$  is a separation of Y.





С

T

Then  $p \in C$  or  $p \in D$ . Suppose  $p \in C$ Since  $A_{\alpha}$  is connected.  $A_{\alpha} \subset C$  or  $A_{\alpha} \subset D$  (By Previous lemma)  $A_{\alpha} \not\subseteq D$  because  $p \in A_{\alpha}$  and  $p \in C$ .  $\therefore A_{\alpha} \subset C$  for all  $A_{\infty}$   $\Rightarrow \cup A_{\alpha} \subset C$  which means  $(\cup A_{\alpha}) \cap D = \phi$   $Y \cap D = \phi$  $\Rightarrow D = \phi$ 

 $\therefore Y = \cup A_{\alpha}$  is connected.

# Theorem 4:

Let A be a connected subspace of X. If  $A \subset B \subset \overline{A}$ , B is also connected.

### Proof:

Let A is connected.

Given  $A \subset B \subset \overline{A}$ 

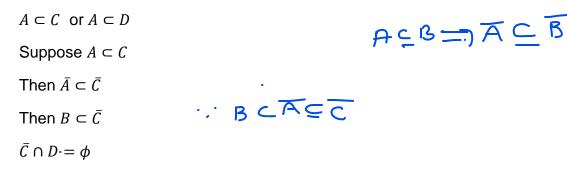
Claim: B is connected.

 $B = C \cup D$  with  $C \neq \phi$ ,  $D \neq \phi$ 

 $C \cap D = \phi$ , C and D are open.

Since A is a connected subset of B then by lemma,

"If the sets C and D form a separation of  $\overrightarrow{D}$  and if Y is a connected subspace of X, then Y lies entirely within either C or D."



Since D contains no limit point of C.

$$B \cap D \subseteq \overline{C} \cap D = \phi$$
$$\therefore D = \phi$$
$$\implies \leftarrow D \neq \phi$$

: There exist no separation of B.

In otherwords B is connected.

# Theorem 5:

The image of connected space under a continuous map is connected.

# Proof

Let  $f: X \to Y$  is continuous.

Then  $f: X \to Z = (f(X))$  [since restriction to its range is continuous]

Let  $g: X \to Z$  is a surjective continuous map.

Claim: Z is connected.

Suppose  $Z = A \cup B$  where  $A \neq \phi, B \neq \phi$ 

 $A \cap B = \phi$ , A and B are open in Z.

 $g^{-1}(A) \neq \phi$ ,  $g^{-1}(B) \neq \phi$  [::g is surjective]

$$g^{-1}(A) \cap g^{-1}(B) = g^{-1}(A \cap B) = \phi \cdot A$$

 $\therefore X = g^{-1}(A) \cup g^{-1}(B)$  for, a separation of X

 $\stackrel{\frown}{\Rightarrow}$  X is disconnected, which is a contradiction.

 $\Rightarrow$  X has separation.

Hence  $Z = f(\mathbf{x})$  is connected.

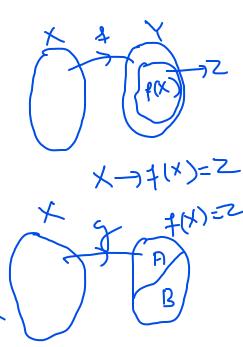
# Theorem 6:

A finite Cartesian product of connected spaces is connected.

# Proof

Let us first prove for 2-spaces X and Y, time

Choose a base point  $a \times b$  in  $X \times Y$ .



The horizontal slice  $X \times b$  is connected, being homeomorphic with X, and vertical slice  $x \times Y$  is connected being homeomorphic with Y.

Each T- shaped space  $T_x = (X \times b) \cup (x \times Y)$  is connected.

Being the union of two connected spaces that have points axb is common.

Now, Consider  $\bigcup_{x \in X} T_x$  of all these T- shaped spaces.

Since axb is a common point,

 $\bigcup_{x \in X} T_x$  is connected.

But  $X \times Y = \bigcup_{x \in X} T_x$ 

 $\therefore X \times Y$  is connected.

Claim: To prove  $X_1 \times X_2 \times ... \times X_n$  is connected. Let us use index on X.

If n = 2, the result is true.

Assume that the result for n - 1.

 $X_1 \times X_2 \times ... \times X_n$  is connected.

If  $n \rightarrow k$ , now,

 $X_1 \times X_2 \times ... \times X_n = (X_1 \times X_2 \times ... \times X_{n-1}) \times X_n$  is connected.

Since  $(X_1 \times X_2 \times ... \times X_{n-1}) \times X_n$  are connected and product of 2-connected spaces are connected.

Hence  $X_n$  is connected.

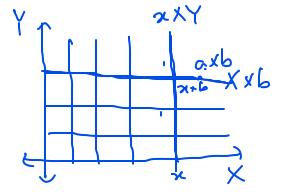
#### Example 1:

Consider the Cartesian product  $\mathbb{R}^{\omega}$  in the box topology. We can write  $\mathbb{R}^{\omega}$  as the union of the set A. Consisting of all bounded sequence of real numbers and the set B of all unbounded sequence.

These sets are disjoint and each is open in the box topology for if a is a point of  $\mathbb{R}^{\omega}$  the open set.

 $U = (a_1 - 1, a_1 + 1) \times (a_2 - 1, a_2 + 1) \times ...$ 

Consider entirely of bounded sequences if A is bounded and of unbounded sequences if a if unbounded.



Thus, eventhough  $\mathbb{R}$  is connected,  $\mathbb{R}^{\omega}$  is not connected in the box topology.

# Example 2:

Now consider  $\mathbb{R}^{\omega}$  in the product topology.

Assuming that  $\mathbb{R}$  is connected. We show that  $\mathbb{R}^{\omega}$  is connected.

Let  $\widetilde{\mathbb{R}^n}$  denote the subspace of  $\mathbb{R}^{\omega}$ . Consisting of all sequences  $x = (x_1, x_2, ...)$  such that  $x_i = 0, i > n$ .

The Space  $\widetilde{\mathbb{R}^n}$  is clearly homeomorphic to  $\mathbb{R}^n$ , so that it is connected.

By the preceeding theorem

It follows that the space  $\mathbb{R}^{\infty}$  i.e., the union of the space is  $\widetilde{\mathbb{R}^n}$  is connected, for these spaces have the point 0 = (0, 0, ...) in common.

We show that the closure of  $\mathbb{R}^{\infty}$  equals all of  $\mathbb{R}^{\omega}$ , from which it follows that  $\mathbb{R}^{\omega}$  is connected as well.

Let  $a = (a_1, a_2, ...)$  be a point of  $\mathbb{R}^{\omega}$ , let  $U = \prod U_i$  be a basis element for the product topology that contains a.

We show that U intersects. There is an integer, N there exist  $U_i = \mathbb{R}, i > N$  then the point

 $x = (a_1, a_2, \dots, a_n, 0, 0, \dots)$  of  $\mathbb{R}^{\infty} \in U$ . Since  $a_i \in U_i$  for all i.  $0 \in U_i$  for i > N.

The argument just given generalizes to show that an arbitrary product of connected spaces is connected in the product topology.

# **Definition: Totally Disconnected space**

A space is totally disconnected if its only connected spaces are one point subsets.

# Example:

if X has discrete topology then x is totally disconnected.

The set of Rationals Q is totally disconnected.

# Connected subspaces of the real line

# Linear Continuum:

A simply ordered set L having more than one element is called a linear continuum if the following hold.

(i) L has the least upper bound property.

(ii) If x < y there exist z there exist x < z < y.

# Example:

R is a linear continuum.

 $Z_+$  is not a linear continuum.

# Theorem 7:

If L is a linear continuum in the order topology, then L is connected and so are intervals and rays in L.

# **Proof:**

Let us prove that if Y is a convex subset of L. then Y is connected.

Let Y be a convex subset of L. Suppose Y is disconnected then  $Y = A \cup B$ , where A and B are disjoint non-empty sets each of which is open in Y.

Choose  $a \in A, b \in B$  say with a <br/>b the interval [a, b] of points of L is contained in Y.

Hence [*a*, *b*] is the union of disjoint sets.

$$A_0 = A \cap [a, b]$$

$$B_0 = B \cap [a, b]$$

Where  $A_0$  and  $B_0$  are each open in [a,b] in the subspace topology, which is the same as the order topology.

The sets  $A_0$  and  $B_0$  are non-empty because  $a \in A_0$  and  $b \in B_0$ .

Thus  $A_0$  and  $B_0$  constitute a separation of [a,b]. Thus  $A_0$  and  $B_0$ . Constitute a Let  $g = \sup A_0$  . Separation for [a,b]

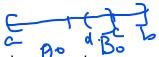
We show that  $\overleftarrow{\wp}$  belongs neither to  $A_0$  nor  $B_0$  which contradicts the fact that [a,b] is the union of  $A_0$  and  $B_0$ .

# Case (i)

Suppose that  $\boldsymbol{\varrho} \in B_0$  then  $c \neq a$ .

So either c = b or a < c < b in either case it follows the fact that  $B_0$  is open in [a,b] that there is some intervals of the form  $(d, c] \subset B_0$ .

4·5<u>5</u>4·551 4:555 5=(5,8)((9,15) (ub S = 15)



If c = b, we have contradiction at once for d is a smaller upper bound on  $A_0$  we have contradiction at once for d is a smaller upper bound on  $A_0$  than c. If c<b we note that (c,b] does not intersect  $A_0$  [because c is an upper bound on  $A_0$ ]

Then  $(d, b] = (d, c] \cup (c, b]$  does not intersect  $A_0$ .

Again d is a smaller upper bound on  $A_0$  then  $\sum_{i=1}^{n}$  contrary to construction.

# Case (ii):

Suppose that  $c \in A_0$ , then  $c \neq b$  so either c = a or a < c < b. Because  $A_0$  is open in [a,b]. There must be some interval of the form  $[c, e) \subset A_0$ .

Because of ordered property-2 of the linear continuum L, we can choose a point z of L such that c < z < e.

Then  $z \in A_0$ , contrary to the fact that c is an upper bound for  $A_0$ .

# **Corollary:**

The Real line  $\mathbb{R}$  is connected and so are intervals and says in  $\mathbb{R}$ .

### Proof:

We know that  $\mathbb{R}$  is linear continuum then by above theorem,

We can say that  $\mathbb{R}$  is connected and so are intervals and rays in  $\mathbb{R}$ .

# **Theorem 8: (Intermediate Value Theorem)**

Let  $f: X \to Y$  be a continuum map where X is a connected space Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b) then there exist a point c of X such that f(c) = r.

Note: The Intermediate Value Theorem of calculus is a special case of this theorem that occurs when we take X to be a closed interval in  $\mathbb{R}$  and Y to be  $\mathbb{R}$ .

#### Proof

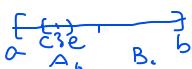
Assume the hypothesis of the theorem the sets,

 $A = f(\mathbf{x}) \cap (-\infty, r)$  and  $B = f(\mathbf{x}) \cap (r, \infty)$  are disjoint ad they are non-empty.

Because one contains f(a) and other contains f(b)

Each is open in  $f(\mathbf{x})$ , being the intersection of an open ray in  $\mathbf{Y}$ , with  $f(\mathbf{x})$ .

If there were no point c of X such that f(x) = r. Then for would be the union of the sets A and B.



Then A and B would constitute a separation of f(x), contradicting the fact that the image of a connected space under a continuum map is connected.

Hence the proof.

# Example 1:

One example of a linear continuum different from  $\mathbb{R}$  is the ordered sequence.

We check the least upper bound property (the  $2^{nd}$  property of the linear continuum is trial to check) the A be a subset of  $I \times I$ .

Let  $b = \sup \prod_{1} (A)$ 

If  $b \in \prod_1(A)$  then A intersects the subset b×l of l×l.

Because b×I has the order type of I, the set  $A \cap (b \times I)$  will have a least upper bound b×c which will be the least upper bound of A.

If  $b \notin \prod_1(A)$  then  $b \times O$  is the least upper bound of A, No element of the form  $b \times c$  with b' < b can be an upper bound for A for then b' would be an upper bound for  $\prod_1(A)$ .

# Example 2:

If X is a well ordered set then  $X \times [0, 1]$  is a linear continuum in the dictionary order. This set can be thought of an having been constructed by "fitting in" a set of the order type of [0, 1] immediately following each element of x.

# Note:

Connectedness of intervals in  $\mathbb{R}$  given rise to an especially useful criterion for showing that a space X is connected, namely the condition that every pair of points of X can be joined by a path in X.

# **Definition 4:**

Given points x and y of the space X<sub>a</sub> path in X from x to y is a continuum map

$$f:[a,b] \rightarrow X$$
 of some closed interval in the real line into X such that  $f(a) = x$  and

$$f(b) = y.$$

# **Result:**

Path connected  $\Rightarrow$  connected.

# Proof:

It is easy to see that a path connected space X is connected. Suppose  $X = A \cup B$  is a separation of X.

Let  $f:[a,b] \to X$  be any path in X. Being the continuum image of a connected set, the set f([a,b]) is connected.

So that, it lies entirely in either A or B.

Therefore, there is no path in X joining a point of A to a point of B, contrary to the assumption that X is path connected.

Example 1: But connectedness \$ path connectedness.

Define the unit ball  $\mathbb{R}^n$  in  $\mathbb{R}^n$  by equation  $B^n = \{x/||x|| \le 1\}$  where

$$||x|| = ||x_1, x_2, \dots, x_n|| = (x_1^2, x_2^2, x_3^2, \dots, x_n^2)^{1/2},$$

The unit ball is path connected given any two points x and y of  $B^n$ , the straight line path.

 $f: [0, 1] \to \mathbb{R}^n$  defined by f(t) = (1 - t)x + ty lies in  $B^n$  for if x and y are in  $B^n$  and t is in [0, 1].

 $||f(t)|| \le (1-t)||x|| + t||y|| \le 1$ 

A similar argument show that every open ball  $B_d(x, \epsilon)$  and every closed ball  $\overline{B_d}(x, \epsilon)$  in  $\mathbb{R}^n$  is path connected.

# Example 2:

Define punctured Euclidean space to be the space  $\mathbb{R}^n - \{0\}$  where 0 is the origin  $\mathbb{R}^n$ .

If n > 1 this space is path connected given x and y different from O.

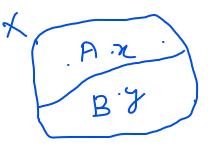
We can join x and y by the straight line path between them. If that path does not go through the origin otherwise we can choose a point z, not on the line joining x and y and take the broken line path from x to z and then z to y.

A connected space need not be a path connected.

# Example 3:

The ordered square  $I_0^2$  is connected but not path connected.

Being a linear continuum the order square is connected.



Let  $P = 0 \times 0$  and  $q = 1 \times 1$ 

We suppose there is a path  $f:[a, b] \rightarrow I_0^2$  joining p and q and derive a contradiction.

The image set f([a, b]) must contain every point  $x \times Y$  of  $I_0^2$ , by the intermediate value theorem.

∴ for each  $x \in I$ , the set  $U_x = f^{-1}(x \times (0, 1))$  is non-empty subset of [a,b] by continuity it is open in [a,b].

Choose for each  $x \in I$  a rational number  $q_x$  belonging to  $U_x$ . Since the sets  $U_x$  are disjoint the map  $x \to q_x$  is an injective mapping of I into Q. This contradicts the fact that the interval I is countable.

### Example 4:

Let S denote the following subset of the plane

 $S = \{x \times \sin(1/x) \mid 0 < x \le 1\}$ 

Because S is the image of the connected set (0,1] under a continuum map, S is connected.

 $\therefore$  Its closure  $\overline{S}$  in  $\mathbb{R}^2$  is also connected.

The Set  $\overline{S}$  is a classical example in Topology called the Topology's sine curve

It equals the union of s and the vertical interval  $0 \times [-1, 1]$ 

We show that  $\overline{S}$  is not path connected. Suppose there is a path  $f:[a,c] \to \overline{S}$  beginning at the origin and ending at the point of S.

The Set of those t for which  $f(t) \in 0 \times [-1, 1]$  is closed, so it has a largest element b.

Then  $f: [b, c] \rightarrow \overline{S}$  is a path that maps b into the vertical interval  $0 \times [-1, 1]$  and maps the other points of [b, c] to points of S.

Replace [b,c] by [0,1] for convenience let f(t) = [x(t), y(t)]. Then x(0) = 0, while x(t) > 0 and  $y(t) = \sin\left[\frac{1}{x(t)}\right]$  for t>0. We show that there is a sequence of points  $t_n \to 0$ . Such that  $y(t_n) = (-1)^n$ .

Then the sequence  $y(t_n)$  does not converge, contradicting continuity of f. To find  $t_n$ , we proceed as follows given n, choose u with  $0 < u < x\left(\frac{1}{n}\right)$  such that  $\sin\left(\frac{1}{u}\right) = (-1)^n$ . Then use the intermediate value theorem to find  $t_n$  with  $0 < t_n < \frac{1}{n}$  such that  $x(t_n) = u$ .

# **Compact Spaces**

A collection  $\mathcal{A}$  of subsets of a space X is said to cover X if the union of elements of  $\mathcal{A}$  is equals to X.

Here A is called the covering of X.

$$\mathcal{A} = \{A_1, A_2, A_3, \dots, \}$$
 where  $A_i \subseteq X$  for all I and  $X = \bigcup_{i \in J} A_i$ 

# **Open Covering**

The covering of X is called an open covering of X if its elements are open subsets of X.

# **Compact Space**

A Space X is said to be compact if every open covering 4 of X contains a finite sub collection that also covers X.

#### Example 1:

The real line  $\mathbb{R}$  is not compact



Consider the open covering of  $\mathbb{R}$ .  $\mathcal{A} = \{(n, n+2)/n \in \mathbb{Z}\}$ . This contains no finite collection.

### Example 2:

Consider the subspace  $X = \{0\} \cup \left\{\frac{1}{n}/n \in \mathbb{Z}_+\right\}$  of  $\mathbb{R}$ . This is compact in  $\mathbb{R}$ . Given an open covering  $\mathcal{A}$  of X there is an element U of  $\mathcal{A}$  containing zero The Set U contains all but finitely many points 1/n.

Choose for each point of X not in U and element of A containing it. The collection consisting of these elements of A along with the element U is a finite sub collection of  $\mathcal{A}$  that covers X.

#### Example 3:

Any space X containing only finitely many points is necessarily compact B'(o) every covering of X in this case is finite.

#### Example 4:

The interval (0,1] is not compact.

Soln:



(0,1]

# Lemma 9:

Let Y be a subspace of X then Y is compact iff every covering of Y by sets open in X contains a finite sub collection covering  $\leq Y$ .

### Proof:

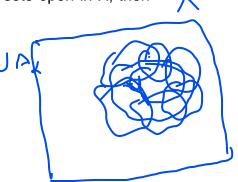
Suppose Y is compact. Let  $\mathcal{A} = \{A_{\alpha} | \alpha \in J\}$  is a covering of Y. By sets open in X, then the collection,

 ${A_{\alpha} \cap Y / \alpha \in J}$  is a covering of Y By sets open in Y.

Since Y is compact there exist a finite sub collection

 $\{A_{\alpha_1} \cap Y, A_{\alpha_2} \cap Y, \dots, A_{\alpha_n} \cap Y\}$  which covers Y.

$$Y \subseteq \bigcap_{i=1}^{n} A_{\alpha_{i}} \cap Y$$
$$= \left(\bigcap_{i=1}^{n} A_{\alpha_{i}} \cap \right) Y$$
$$Y \subseteq \bigcap_{i=1}^{n} A_{\alpha_{i}} \text{ and } Y \subseteq Y$$





# Y=Y

Then there exist a finite sub collection  $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$  which covers Y.

Conversely, Suppose the given condition holds. Let  $\{A'_{\alpha t} / \alpha \in J\}$  be an open covering of Y by sets open in Y.

For each  $A_{\alpha}$ ' there exist an  $A_{\alpha}$  which is open in X.

Such that 
$$A_{\alpha}' = A_{\alpha} \cap Y$$
  
le,  $Y \subseteq \bigcup_{\alpha \in J} A_{\alpha}'$   
 $Y \subseteq \bigcup_{\alpha \in J} (A_{\alpha} \cap Y)$   
 $Y \subseteq \left(\bigcup_{\alpha \in J} A_{\alpha}\right) \cap Y$   
 $Y \subseteq \bigcup_{\alpha \in J} A_{\alpha}$ 

By hypothesis there exist a finite sub collection  $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$  that covers Y  $\{A_{\alpha_1}', A_{\alpha_2}', \dots, A_{\alpha_n}'\}$  is a sub-collection of  $\{A'_{\alpha} / \alpha \epsilon J\}$  which covers Y.

 $\therefore$  Y is compact.

Hence the proof.

# Theorem 10:

Every closed subspace of a compact space is compact.

# Proof:

·X.

Let Y be a closed subspace of the compact space X.

Claim: Y is compact.

Let  $\{A_{\alpha} | \alpha \in J\}$  be an open covering of Y, By sets open in X.

Now, since Y is closed, X-Y is open and  $\mathcal{B} = \{ \cup A_{\alpha} \} \cup \{ X - Y \}$  is an open covering for X.

Since X is compact, a finite sub-collection of  $\mathcal{B}$  covers X.

If this sub-collection contains the set X-Y, discard X-Y.

Otherwise leave the sub-collection alone the resulting sub-collection is a finite sub collection of  $\{A_{\alpha} \mid \alpha \in J\}$  which covers Y.

 $\therefore$  Y is compact.

Hence the proof.

# Theorem 11:

Every compact space of a Hausdorff space is closed.

# Proof:

Let Y be a compact subspace of the Hausdorff space X.

Claim: Y is closed.

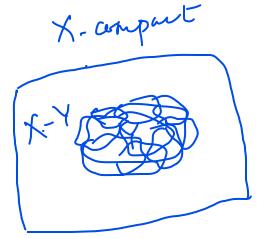
i.e, X-Y is open.

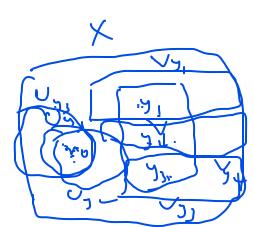
Let  $x_0 \in I = X - Y$  for each point y of Y

Let us choose disjoint neighbourhood,  $U_y$  and  $V_y$  of the points  $x_0$  and y respectively. This is possible became the space X is Hausdorff.

Now the collection  $\{V_y \mid y \in Y\}$  is an open covering of Y, by sets open in X. Since Y is compact, a finite sub collection  $V_{y_1}, V_{y_2}, \dots, V_{y_n}$  covers  $Y \subseteq V_{y_1} \cup V_{y_2} \cup \dots \cup V_{y_n} = V$ 

Note that V is an open set containing Y.





Considering the intersection of the corresponding neighbourhood of  $x_0$ ,  $U = U_{y_1} \cap U_{y_2} \cap \dots \cap U_{y_n}$  where U is an open set containing  $x_0$ .

 $\bigvee_{\mathbf{y}_i} \cap U_{\mathbf{y}_i} \doteq \mathcal{P}$ 

$$U \cap Y = \phi \text{ for } z \in V$$
  

$$\Rightarrow z \in V_{y_i} \text{ for some i}$$
  

$$\Rightarrow z \notin U_{y_i} \text{ for some i}$$
  

$$\Rightarrow z \notin U$$

Then U is a neighbourhood of  $x_0$  disjoint from  $\checkmark$ 

Then  $Y \subseteq V$ 

 $x_0 \in U \subset X - Y$ 

Hence the proof.

# Lemma 12:

If Y is a compact subspace of the Hausdorff space X and  $x_0$  is not in Y, there exist disjoint open sets U and V of X, containing  $x_0$  and Y respectively.

Proof:

This proof follows from the previous theorem.

# Example:

The intervals of the type (a , b), [a, b), [a, b] are not compact in  $\mathbb{R}$ . Because they are not closed in the Hausdorff space  $\mathbb{R}$ .

# Theorem 13:

The image of compact space under a continuous map is compact.

# Proof:

 $\frac{1}{2}$ 

Let  $f: X \to Y$  be continuous and X be compact.

Claim:  $f(\mathbf{x})$  is compact.

Let  $\{A_{\alpha} \mid \alpha \in J\}$  be an open covering by sets open in Y.

 $\Rightarrow$  { $f^{-1}(A_{\alpha}) | \alpha \in J$ } is an open covering of X, by sets open in X.

Since f is continuous.

i.e.,  $X \subseteq \bigcup_{\alpha \in J} f^{-1}(A_{\alpha})$ 

$$\Rightarrow X \subseteq \bigcap_{i=1}^{n} f^{-1}(A_{\alpha_{i}}) \qquad [\because X \text{ is compact }]$$

$$f(x) \subseteq \bigcap_{i=1}^{n} f\left(f^{-1}(A_{\alpha_{i}})\right)$$

$$f(x) \subseteq \bigcap_{i=1}^{n} A_{\alpha_{i}} \qquad [\because f\left(f^{-1}(A_{\alpha_{i}})\right) \subseteq A_{\alpha_{i}}]$$

$$\Rightarrow f(x) \text{ is compact.}$$

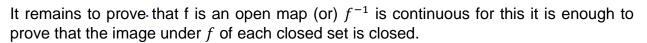
# Theorem 14:

Let  $f: X \to Y$  be a bijective continuous function. If X is compact and Y is a Hausdorff then f is a homeomorphism.  $f': Y \longrightarrow X$  (f')'(c) = f(c)

#### Proof:

Given that f is one-one and onto and continuous.

To prove that f is a homeomorphism.



Let A be a closed subset of X which is compact.

 $\therefore$  A is compact.

 $\therefore f(A)$  is compact.

Since f is continuum: [... closed subset of compact set is compact and continuum image of a compact set is compact]

f(A) is compact subset of Y.

 $\therefore f(A)$  is closed.

)

Since compact subset of a Hausdorff space is closed.

 $\therefore$  *f* is a homeomorphism.

# Theorem 15:

The product of finitely many compact spaces is compact.

# Proof:

We prove this theorem for 2-spaces then it follows for finitely many spaces,

By induction hypothesis

Step 1:

The tube lemma

Consider the product space X×Y, where Y is compact. . Let  $x_{\circ} \in X$ .

If N is an open set of X×Y, containing the slice  $x_0 \times Y$  of  $X \times Y$ . The N contains some tube W×Y about  $x_0 \times Y$  where W is an neighbourhood of  $x_0$  in X.

# **Proof:**

# topslogi al

X and Y are tow spaces where Y is compact. Let  $x_0$  be a point of X and N be an open subset of X×Y containing the slice  $x_0 \times Y$ .

To prove there exist a neighbourhood W of  $x_0$  in X, such that N contains W×Y.

W×Y is called a Tube about  $x_0 \times Y$  first, let us cover  $x_0 \times Y$  by a basis elements U×V for the topologies of X×Y lying in N.

Given Y is compact, the space  $x_0 \times Y$  is homeomorphic to Y and therefore it is compact.

: Each open cover of  $x_0 \times Y$  by finitely many such basis elements (U×V)

 $U_1 \times V_1, U_2 \times V_2, \ldots, U_n \times V_n$ 

We assume that each basis elements  $U_i \times V_i$  intersects  $x_0 \times Y$ .

Define  $W = U_1 \cap U_2 \cap ... \cap U_n$ 

Then W is open since  $U'_is$  are open also  $x_0 \in W$ 

Since  $U_i \times V_i$  intersects  $x_0 \times Y$ .

We claim that the sets  $U_i \times V_i$  which cover the slice  $x_0 \times Y$  actually covers the tube W×Y.

For let  $x \times y \in W \times Y$ 

Consider the point  $x_0 \times y$  of  $x_0 \times Y$ .

Now  $x_0 \times y \in U_i \times V_i$  for some i.

 $\therefore y \in V_i$ 

But  $x \in U_j$  for all j [ $\because x \in W$ ]

 $\therefore x \times y \in U_i \times V_i$ 

Since all the sets  $U_i \times V_i$  lie in N and they cover  $W \times Y$ . We have  $W \times Y \subset N$ .

### Step 2:

Let X and Y be compact spaces to prove  $x \times Y$  is compact.

Let  $\mathcal{A}$  be an open covering of  $X \times Y$ . Let  $x_0 \in X$ . Then the slice  $x_0 \times Y$  is homeomorphic to Y, Y is compact.

: Each open covers of  $x_0 \times Y$  has a finite number of elements of  $\mathcal{A}$  say  $(A_1, A_2, \dots, A_m)$ 

If  $N = A_1 \cup A_2 \cup \ldots \cup A_m$ 

Then  $x_0 \times Y \subset N$ 

By step -1 the open set N contains a tube W×Y about  $x_0 \times Y$  where W is open in X then W×Y is covered by finitely many elements.

 $(A_1, A_2, \dots, A_m)$  of  $\mathcal{A}$  thus for each x in X.

We can choose a neighborhood  $W_x$  of x, such that the tube  $W_x \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ .

The collection of all such neighbourhood  $W_x$  is an open covering of X.

Since X is compact, there exist a finite sub cover for X.

Namely  $\{W_1, W_2, ..., W_n\}$  the union of the tube  $\{W_1 \times Y, W_2 \times Y, ..., W_n \times Y\}$  equals  $X \times Y$  i.e., there exist a finite such cover for  $X \times Y$ .

 $\therefore$  X×Y is compact.

We can extent this result to a finite number of spaces.

 $(X_1 \times X_2 \times \ldots \times X_n)$  by using induction hypothesis.

Suppose  $X_1, X_2, ..., X_n$  are compact. To Prove that  $X_1 \times X_2 \times ... \times X_n$  is compact.

The result is true for n=2.

 $\Rightarrow$   $X_1 \times X_2$  is compact.

Assume the result to be true for n-1

 $(X_1 \times X_2 \times \ldots \times X_{n-1})$  is compact.

Now  $(X_1 \times X_2 \times \ldots \times X_n)$  is compact, and  $X_n$  is compact.

 $(X_1 \times X_2 \times \ldots \times X_n) \times X_n$  is compact.

 $(X_1 \times X_2 \times \ldots \times X_n)$  is compact.

# **Definition:**

A collection C of subsets of X is said to have the finite intersection property if for every finite sub collection { $C_1, C_2, ..., C_n$ } of C.

The intersection  $C_1 \cap C_2 \cap ... \cap C_n$  is non empty.

### Theorem 16:

Let X be a topological space then X is compact iff every collection C of closed sets in X having the finite intersection property, the intersection  $\bigcap_{C \in C} C$  of all the elements of C is non-empty.

# Proof:

Given a collection  $\mathcal{A}$  of subsets of X.

Let  $C = \{X - A | A \in A\}$  be the collection of their compliments then the following statements hold.

 $\mathcal{A}$  is a collection of open sets iff  $\mathcal{C}$  is a collection of closed sets.

The collection 
$$\mathcal{A}$$
 covers X iff  $\bigcap_{C \in \mathcal{C}} C = \phi$ .

 $\mathcal{A} \text{ covers } X \Longrightarrow X = \bigcup_{A \in \mathcal{A}} A$ 

Take complements on both sides,

$$X - X = X - \bigcup_{A \in \mathcal{A}} A$$
  
=  $\bigcap_{A \in \mathcal{A}} (X - A)$  [By Demorgan's Law]  
 $\phi = \bigcap_{C \in \mathcal{C}} C$ 

The finite subcollection  $\{A_1, A_2, ..., A_n\}$  of  $\mathcal{A}$  covers X iff  $C_1 \cap C_2 \cap ... \cap C_n = \phi$ .

$$X = \bigcap_{i=1}^{n} A_i \text{ if the finite sub collection covers X.}$$
$$X - \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X - A_i)$$
$$\phi = \bigcap_{i=1}^{n} C_i$$

Suppose X is compact, that

 $\Rightarrow$  Each open cover of X has a finite sub cover.

 $\Rightarrow$  If  $\mathcal{A}$  is a family of open sets in X such that  $\mathcal{A}$  covers X then some finite sub collection of  $\mathcal{A}$  covers X.

 $\Rightarrow$ If no finite sub-collection of  $\mathcal{A}$  covers X then  $\mathcal{A}$  also does not cover X.

Let  $C = \{X - A | A \in \mathcal{A}\}$ 

Then by (1) C is a family of closed sets.

By (3), No finite sub collection of  $\mathcal{A}$  covers X, means

$$\{C_1 \cap C_2 \cap \dots \cap C_n\}$$
 of  $C$ .

By (2)  $\mathcal{A}$  does not cover X means

 $\bigcap_{C \in C} C \neq \phi. C \text{ is a collection of closed sets satisfying the finite intersection}$ property then  $\bigcap_{C \in C} C \neq \phi.$ 

Refracting the steps we can prove this converse.

#### Note:

A special case of the above theorem occurs when we have a nested sequence.

 $C_1 \supset C_2 \supset \ldots \supset C_n \supset C_{n+1}$  of closed sets in a compact space X. If each of the sets  $C_n$  is non-empty then the collection  $C = \{C_n\}_{n \in Z_+}$ 

Automatically has the finite intersection property then the intersection is non-empty.

$$\bigcap_{n \in Z_+}^{\cap} C_n$$

#### **Compact Subspaces of Real line:**

Theorem 17:

Let X be a Simply ordered set having the Least upper bound property in the ordered topology, each closed interval in X is compact.

Proof:

Let a < b,  $a, b \in X$ 

Consider the interval [a, b] in X. Let  $\mathcal{A}$  be an open covering of [a, b] by sets open in [a, b] in the subspace topology which is the same as the ordered topology.

To prove that there exist a finite sub-collection of  $\mathcal{A}$  which covers (a,b] will be compact.

# Step 1:

To prove that "If x is a point of [a,b],  $x \neq b$ . Then there exist a point y > x in [a,b] such that [x,y] can be covered by atmost two elements of A".

Suppose x has an immediate successor in X, then [x,y] consists of the two points x and y.

[x,y] can be covered by atmost two elements of  $\mathcal{A}$ .

Suppose x has a no-immediate successor in X. Then choose an element  $A \in \mathcal{A}$  containing x.

Now  $x \neq b$  and A is open.

∴ A contains an interval of the form [x, c) for some  $c \in [a, b]$ . Choose a pint y in [x, c). Then [x, y] is covered by  $A \in A$ .

# Step 2:

Let C be the set of all points y > a of [a,b] such that [a,y] can be covered by finitely many elements of A.

*i.e.*,  $C = \{y \in [a, b] | (a, y] \text{ can be covered by finitely many elements} \}$ 

Apply step 1, by taking x = a. Then there exist atleast one such y.

C is not empty. Let C be the least upper bound of C. Then  $a < c \le b$ .

# Step 3:

To prove that  $c \in C$ 

To prove that [a,c] can be covered by finitely many elements of  $\mathcal{A}$ . Choose an element  $A \in \mathcal{A}$  containing C.

: A is open A contains an interval of the form (d, c] for some d in [a,b].

Suppose  $c \notin C$ .

Then there is a point  $z \in C$  such that  $z \in (d, c]$  (for otherwise d would be a smaller upper bound of C than  $\Rightarrow \leftarrow$ .

Since  $z \in C$ , [a, z] can be covered by finitely many elements of A (By definition of C).

Say n elements  $A_1, A_2, \dots, A_n$ .

Now [z, c] lies in the single element  $A \in \mathcal{A}$ .

 $\therefore [a,c] = [a,z] \cup [z,c]$ 

 $\therefore$  [a,c] can be covered by finitely many elements (n+1 elements of  $\mathcal{A}$ )

 $\therefore C \in C$ 

 $\Rightarrow \leftarrow$  to our assumption that  $C \notin C$ .

 $\therefore C \in \mathcal{C}.$ 

# Step 4:

Claim: c = b

Suppose c < b

Apply step 1 by taking x = c

Then there exist a point y > c of [a, b].

Such that [c,y] can be covered by finitely many elements of  $\ensuremath{\mathcal{A}}$  .

By step 3,  $C \in C$ .

 $\therefore$  [*a*, *c*] can be covered by finitely many elements of  $\mathcal{A}$ .

 $\therefore [a, y] = [a, c] \cup [c, y]$ 

 $\therefore$  [*a*, *y*] can be covered by finitely many elements of  $\mathcal{A}$ .

∴ y∈ *C*.

This is a contradiction to the fact that C is the least upper bound of C.

 $\therefore c = b.$ 

 $\therefore$  [*a*, *b*] can be covered by finitely many elements of  $\mathcal{A}$ .

 $\therefore$  [*a*, *b*] is compact.

# Corollary:

Prove that closed interval in  $\mathbb{R}$  is compact.

# Proof:

The  $\mathbb{R} = X$ ,  $\mathbb{R}$  is linearly ordered set with least upper bound property.

Every closed interval in  $\mathbb{R}$  is compact.

# Theorem 18: Characterization of Compact subset of $\mathbb{R}^n$

A subspace A of  $\mathbb{R}^n$  is compact if and only if it is closed and bounded in the Euclidean metric d or the square metric  $\rho$ .

# Proof:

We know that  $\rho(x, y) \le d(x, y) \le \sqrt{n} \rho(x, y)$ .

A is bounded under  $\rho$  iff it is bounded under d.

 $\therefore$  Let us consider the metric  $\rho$ 

(i) Suppose A is compact.

To prove that A is closed and bounded  $\mathbb{R}^n$  is Hausdorff.

 $\therefore$  A is closed.

[: Compact subset of Hausdorff space is closed.]

It remains to prove that A is bounded.

Consider the collection of open sets  $\{B_{\rho}(0,m)|m \in Z_+\}$  whose union is all  $\mathbb{R}^n$ .

i.e., This is an open covers for  $\mathbb{R}^n$ .

A is a subset of  $\mathbb{R}^n$ .

We can consider this is an open covers for A, also A is compact.

There exist a finite subcover for A.

 $\therefore A \subset B_{\rho}(0,m)$  for some M.

Suppose  $x, y \in A$ . Then  $x, y \in B_{\rho}(0, m)$ 

 $\Rightarrow \rho(0, x) < M$  and

 $\rho(0, y) < M$ 

 $\implies \rho(x, y) \le \rho(0, x) + \rho(0, y) \le 2M$ 

 $\therefore$  A is bounded under the metric  $\rho$ . Then A is closed and bounded.

(Ii) Suppose A is closed and bounded under  $\rho$ 

To prove that A is compact

A is bounded, let us assume that  $\rho(x, y) \leq N$  for all pair  $x, y \in A$ 

Choose a point  $x_0$  of A and let  $\rho(x_0, 0) = b$ 

$$\rho(x_0, 0) \le \rho(x, x_0) + \rho(x_0, 0)$$

 $\leq N + b$ 

Let P = N + b

Consider  $[-P, P]^n$ . Then A is a subset of  $[-P, P]^n$ .

 $\therefore [-P, P]^n$  is a compact.

So A is closed compact subset of a compact space is compact.

### Theorem 19: (Extreme value theorem)

Let  $f: X \to Y$  be continuous where Y is an ordered set in the order topology. If X is compact, then there exist points c and d in X such that

 $f(c) \le f(x) \le f(d)$  for every $x \in X$ .

# Proof:

Given  $f: X \rightarrow Y$  is continuous and X is compact.

f(x) is compact.

Let f(x) is compact.

Let f(x) = A

To prove that A has a largest element M and a smallest element m.

Suppose A has no larger element,

Then the collection

 $\{(-\infty, a) | a \in A\}$  is an open covering for A.

A is compact. Therefore there exist a finite sub cover.

ie., the finite subcollection {  $(-\infty, a_1), (-\infty, a_2), \dots, (-\infty, a_n)$  } covers A.

Suppose  $a_i = \max\{a_1, a_2, \dots, a_n\}$ . Then  $a_i$  must belong to A.

But A has no larger element which is a contradiction.

Therefore, A has a largest element.

Similarly we can prove that A has a smallest element.

Hence A has a larger element M and a smallest element m.

i.e.,  $m, M \in A$ 

We have f(c) = m and f(d) = M for some  $c, d \in X$ 

 $\therefore f(c) \le (x) \le f(d)$ , for all  $x \in X$ 

Hence the proof.

# Definition: The distance from x to A

Let (x, d) be a metric space. Let A be a nonempty subset X. For each  $x \in X$ , We define the distance from x to A by the equation.

 $d(x, A) = \inf\{d(x, a) | a \in A\}$ 

### **Definition:**

The diameter of a bounded subset A of a metric space (x, d) is the number

 $\sup\{d(a_1, a_2) | a_1, a_2 \in A\}.$ 

#### Lemma 20:

#### The lebesque number lemma.

Let  $\mathcal{A}$  be an open covering of the metric space (x, d). If X is compact, there is a  $\delta > 0$  such that for each subset of X having diameter less than  $\delta$ , there exist an element of  $\mathcal{A}$  containing it. The number  $\delta$  us called a lebesgue number for the covering  $\mathcal{A}$ .

#### Proof:

Let  $\mathcal{A}$  be an open covering of X. Suppose  $x \in \mathcal{A}$ . Then any positive number is a lebesgue number for  $\mathcal{A}$ . So assume  $x \notin \mathcal{A}$ .

As X is compact, there exist a finite Sub-collection  $\{A_1, A_2, ..., A_n\}$  of  $\mathcal{A}$  that covers X.

Let  $C_i = X - A_i$ , i = 1, 2, ..., n

Define  $f: X \to \mathbb{R}$  by

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(c, x_i)$$

Then f(x) > 0 for all x, for if  $x \in X$ . Choose *i* so that  $x \in A_i$ . Then choose the  $\epsilon$  neighbourhood of x that lies in A.

Then  $d(x_i, c) \ge \epsilon$ 

$$f(x) \ge \frac{\epsilon}{n}$$

Since *f* is continuous it has a minimum value  $\delta$ .

Claim:  $\delta$  is one required lebesque number. Let B be a subset of X of diameter less than  $\delta$ .

Let  $x_0 \in B$ .

Now B lies in the Neighbourhood of  $x_0$ . Now,

$$\delta \le f(x_0) = \frac{1}{n} [d(x_0, c_1), d(x_1, c_2), \dots, d(x_0, c_n)]$$

$$\leq d(x_0, c_m)$$

where  $d(x_0, c_m)$  is the largest of the numbers  $d(x_0, c_i)$ .

Now the  $\delta$  –neighbourhood of  $x_0$  is contained in  $A_m = X - C_m$  of the covering  $\mathcal{A}$ .

#### **Definition: Uniformly Continuous**

A function *f* from the metric space  $(X, d_x)$  is said to be uniformly continuous if given  $\varepsilon > 0$  there is a  $\delta > 0$  such that for every pair of points  $x_0, x_1$  of *X*.

$$d_x(x_0, x_1) < \delta \Longrightarrow d_x(f(x_0), f(x_1)) < \varepsilon.$$

# Theorem 21:

# **Uniform Continuity Theorem**

Let  $f: X \to Y$  be a continuous map of the compact metric space  $(X, d_x)$  to the metric space  $(Y, d_y)$ . Then f is uniformly continuous.

Proof:

Given  $\varepsilon > 0$  take the open covering of Y. By balls  $B(y, \varepsilon/2)$  of radius  $\varepsilon/2$ .

Let  $\mathcal{A}$  be the open covering of X by

 $\{f^{-1}(B(y, \varepsilon/2))/y \in Y\}$ . Let r be the lebesgue number for the covering  $\mathcal{A}$ . To prove f is uniformly continuous. Let  $x_1, x_2 \in X$  such that  $d_x(x_1, x_2) < \delta$ . Then the set  $\{x_1, x_2\}$  has diameter less than  $\delta$ .

So that there exist some element in  $\{f^{-1}(B(y, \varepsilon/2)) | y \in Y\}$  such that

$$\{x_1, x_2\} \subset f^{-1}\big(B(y, \varepsilon/2)\big)$$

 $\Rightarrow f(\{x_1, x_2\}) \subseteq B\left(y, \frac{\varepsilon}{2}\right) \text{ for some } y.$  $\Rightarrow f(x_1), f(x_2) \subseteq B\left(y, \frac{\varepsilon}{2}\right) \text{ for some } y.$  $\Rightarrow d\left(y, f(x_1)\right) < \frac{\varepsilon}{2}.$ 

Now

$$d_{y}(f(x_{1}), f(x_{2})) < d(f(x_{1}), y) + d(y, f(x_{2}))$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$d_x(x_1, x_2) < \delta \Longrightarrow d_y(f(x_1), f(x_2)) < \varepsilon$$

 $x_1, x_2 \in X$  are arbitrary.

 $\therefore$  f is uniformly continuous.

**Definition: Isolated Point** 

If X is a space a point x of X is said to be an isolated point of X. If the one point set  $\{x\}$  is open in X.

### Theorem 22:

Let X be a non-empty compact Hausdorff space. If X has no isolated points then X is uncountable.

# Proof:

# Step 1:

We show first that given any non-empty openset U of X and any point x of X there exist a non-empty open set  $V \subset U$  such that  $x \notin \overline{V}$ .

Choose a point of y of U different from x.

If  $x \in U$ , then  $U \neq \{x\}$  as x is not an isolated point of X. There exist  $y \in U$ .

If  $x \notin U$ , then as  $U \neq \phi$ , there exist  $y \in U$ .

Now  $x \neq y$  and X is Hausdorff.  $\therefore$  disjoint non-empty open sets  $W_1$  and  $W_2$  about x and y respectively.

Let  $V = U \cap W_2$ . Then V is open (being intersection of open sets).

 $V \neq \phi$  as (y  $\in V$ ).

 $x \notin \overline{V}$  (as there exist a neighbourhood  $W_1$  of  $x W_1 \cap Y = \phi$ ).

# Step 2:

To Prove: X is uncountable.

To Prove  $f: \mathbb{Z}_+ \to X$  is not surjection.

Let  $f(n) = x_n$ .

Now  $x_1 \in X$  and take U = X.

By step 1, there exist an open set  $V_1 = \phi$ 

$$V_1 \subset X, x_1 \notin \overline{V_1}.$$

Now  $x_2 \in X$  and  $V_1$  is open in *X*, there exist  $V_2 \subset V_1$  such that  $x_2 \notin X$  there exist an oopen set  $V_n \neq \phi$ .

 $V_n \subset V_{n-1}$  and  $x_n \notin \overline{V_n}$ 

Consider the nested sequence.

 $\overline{V_1} \supset \overline{V_2} \supset \overline{V_3} \supset \cdots \supset \overline{V_n}$  of non-empty closed sets.

Therefore they satisfy finite intersection property  $\overline{V_n} \neq \phi$ .

By theorem.

Let  $x \in \cap \overline{V_n}$ 

 $x \in \cap \overline{V_n}$  for all n and  $x_n \notin \overline{V_n}$  for all n.

 $x \neq x_n$  for any n.

There exist no principle for x under f.

 $\therefore$  *f* is not surjective.

f is not bijective and so.

X is uncountable.

#### Limit Point Compactness

#### **Definition:**

A space X is said to be limit point compact, if every infinite subset of X has a limit point.

# Theorem 23:

Compactness implies limit point compactness but not conversely.

#### Proof:

Let X be a compact space. Given a subset A of X, we wish to prove that if A is infinite, then A has a limit point.

We prove the contrapositive if *A* has no limit point, then *A* must be finite.

So, suppose *A* has no limit point. Then *A* contains all its limit points so that *A* is closed.

Furthermore, for each  $a \in A$ . We can choose a neighbourhood  $U_a$  of a such that  $U_a$  intersects *A* in the point a alone.

The space X is covered by the open sets X - A and the open sets  $U_a$  being compact, it can be covered by finitely many of the sets.

Since x-a does not intersect A and each set  $U_a$  contains only one point of A, the set a must be finite.

### Example 1:

Let Y consists of two points give Y the topology consisting of T and the empty set then the space,  $X = Z_+ \times Y$  is limit point compact, for every non-empty subset of X has limit point. It is not compact for the covering of X by the open sets,

 $U_n = \{n\} \times Y$  has no finite subcollection covering of X.

# Definition

Let X be a topological space. If  $(x_n)$  is a sequence of points of X, and if  $n_1 < n_2 < \cdots < n_i < \cdots$  is an increasing sequence of positive integers then the sequence  $(y_i)$  defined by setting  $y_i = x_{ni}$  is called a subsequence of the sequence  $(x_n)$ .

The space X is said to be sequentially compact if every sequence of points of X has a convergent subsequence.

#### Theorem 24:

Let X be a metrizable space. Then the following are equivalent.

- (i) X is compact.
- (ii) X is limit point compact.
- (iii) X is sequentially compact.

# Proof:

# <u>To Prove: (i) ⇒(ii)</u>

Refer Theorem-23.

# <u>To Prove: (ii) ⇒(iii)</u>

Assume X is a limit point compact.

To prove that X is sequentially compact. Given a sequence  $(x_n)$  of points of X

Consider the set  $A = \{x_n | n \in Z_+\}$ . If the set A is finite then there is a point x such that  $x = x_n$ .

For finitely many values of n.

In this case, the sequence  $(x_n)$  has a subsequence that is constant.

: Converges trivially.

If A is infinite, then A has limit point x.

We define a subsequence of  $(x_n)$ . Converging to x.

First Choose  $n_1, x_{n_1} \in (x, 1)$ 

Suppose that the positive integers  $n_{i-1}$  is given. Because the ball  $B\left(x, \frac{1}{i}\right)$  intersects A in infinitely many points.

We can choose  $n_i > n_{i-1}$  such that

$$x_{n_i} \in \left(x, \frac{1}{i}\right)$$

U contains  $x_{n_i}$  for all  $i \ge N$ . Then the subsequence  $x_{n_1}, x_{n_2}, ...$  converge to x.

# <u>To Prove: (iii) ⇒ (i)</u>

First we show that X is sequentially compact then the lebesgue number lemma holds for X. Let A be an open covering of X. Assume that there is a  $\delta$ >0 such that each set of diameter less than  $\delta$  has an element of  $\mathcal{A}$  containing it and derive a contradiction our assumption.

In Particular that for each positive integers n there exist a set of diameter less than 1/n that is not contained in any element of A.

Let  $C_n$  be such a set. Choose a point  $x_n \in C_n$  for each n. By hypothesis,

Some subsequence  $(x_{n1})$  of the sequence  $(x_n)$  converges say to the point *a*.

Now a belongs to some element A of the collection  $\mathcal{A}$ , because A is open.

We may choose an  $\varepsilon > 0$  such that  $B(a, \varepsilon) \subset A$ .

It is large enough that  $\frac{1}{n_i} < \frac{\varepsilon_0}{2}$ . Then the set  $C_{ni}$  lies in the  $\frac{\varepsilon}{2}$ -neighbourhood of  $x_{n_i}$ .

If i is also chosen large enough that

$$d(x_{n_i},a) < \frac{\varepsilon}{2}$$

Then  $C_{n_i}$  lies in the  $\varepsilon$ -neighbouhood of A.

 $C_{n_i} \subset A$ 

Contrary to hypothesis

Second we show that if X is sequentially compact given  $\varepsilon > 0$  there exist a finite covring of X by open  $\varepsilon$ -balls.

Once again we proceed by contradiction, Assume that there exist an  $\varepsilon > 0$  such that X cannot be covered by finitely many  $\varepsilon$ -balls.

Construct a sequence of points  $x_n$  of X follows

First we choose x to be any point of X Nothing that the ball  $B(x, \varepsilon)$  is not all of X/

Otherwise X could be covered by a single  $\varepsilon$  –ball.

Choose  $x_2$  be a point off X not in  $B(x, \varepsilon)$ .

In general, given  $x_1, x_2, ..., x_n$ . Choose  $x_{n+1}$  to be point not in the union.

 $B(x_1, \varepsilon), B(x_2, \varepsilon), \dots, B(x_n, \varepsilon)$ . Using the fact that these balls do not cover X.

Note by construction  $d(x_{n+1}, x_i) \ge \varepsilon$  for i=1,2,...,n.

The sequence  $(x_n)$  can have no convergent subsequence.

In fact any ball of radius  $\varepsilon/2$  can contain  $x_n$  for at least one value n which is a contradiction.

Finally, we show that if X is sequentially compact, X is compact.

Let A be an open covering X because  $\frac{1}{\delta}$  is sequentially compact. Then the open covering A has a lebesgue number  $\delta$ . Let  $\varepsilon = \delta/3$ . Use sequential compactness of X to find a finite converging of X by open  $\varepsilon$  – balls.

Each of these balls has diameter at most  $\frac{2\delta}{3}$  so lies in an element of  $\mathcal{A}$ .

Choosing one such element of  $\mathcal{A}$  for each of those  $\varepsilon$  – balls; we obtain a finite sub collection of  $\mathcal{A}$  covers *X*.

∴ X is compact.

Hence the proof.

\*\*\*\*\*\*\*