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Connected Spaces and Compact spaces ' por?

Connected space
N

Definition: Separation

Let X be a Topological space:geparation of X is a pair U, V of disjoint, non-empty open
subsets of X whose union is X.

X=UuV, UandV are open

unv=0 U=+9, V+0
The space X is said to be connected if the%oes not exist a separation of X.
Result

A Space X is connected iff the only subsets of X that are both open and closed in X are
the empty sets and X itself.

oo, b, cY
Proof: ' X -(> s \7'
L
. LetXecommected.
Assume X be connected T- ((: 9, )(/ ‘Q‘E)j
Suppose A c X, is both open and closed

LetU=A4, V=X-A U-S‘C) {,’C,‘I/&/‘Eﬁ

X=AUX-A4)

=UuvV
Then U and V form a separation for X, which is a contradiction.
Hence Xis-cannected. £~ o AALCA Thall Ora— et TR
Conversely, 2o cldrd CA~ 9 v X .

Q_et Xis disconnected%ssume that the only sets of X which are both open and closed
are ¢ and X.

Since X is disconnected, there exist a separation, such that
X=AUB, Af£¢, B¢
oAS~
ANB=¢ A and B is open

Now A is open



N

A=X—-—B. SoAisclosed

Therefore the A is both open and closed and A is a proper subset of X which is a
contradiction.

Hence X is connected.
Hence the proof.
Note:

Connectedness is a Topological Property. Since it is formulated entirely in terms of the
collection open sets of X. If X is connected so is any space homeomorphic to X.

Examples:

1. Let X = {a, b}

Let T = {¢, X}. The indiscrete Topology on X. Then there exist no separation of X.
Therefore, X is connected.

2. Consider X = {a, b, c}. Lett = {¢, X, {a}, {b}, {c}, {b, c},{a, b}, {a,c}}

The discrete topology on X. This Topological space is not connected.

Since all subsets of X both open and closed and then there a exist a separation
X = {a}U{b, c}.

Lemma 1:

If Y is a subspace of X, a separation of Y is a pair of disjoint non-empty sets A and B
whose union is Y neither of which contains a limit point of the other. The space Y is A
connected if there exists no separation of Y.

Proof %

Suppose A and B form a separation of Y.

A is both open and closed in Y A(\/g - CP
cly A=AnY \’S(\_P_*'-:?
A=ANnY (+ AisclosedinY, cly, A=A)

ANB=¢ [A=AnY, AnB=An(Y.NB)
ANB=ANB

~ANB=4¢]



B contains no limit point of A.
Similarly A contains no limit point of A&.&

Conversely, Suppose that A and B are disjoint non-empty sets whose union in Y,
neither of which contains the limit point of the other.

ANB=¢ and ANB=¢

ANY=An(AUuB)=(ANB)U(ANB)

=AU¢p=A

~ Aisclosedin.

Similarly, BnY =B

~ Bisclosedin.

AsY—-B=AandY —A=B.

Both A and B are openin Y. A and B Form a separation of Y. =) \( V\ d/)NO N“”{’D
The space Y is connected if there exist no separation of Y.

Example 1:

o : - . .
Let X denote a two pint space in the indiscrete topology. Obviously there is no
separation of X, So X is‘Connected.

Example 2:

—F—— K
Let Y < R the real line such that -‘T \g -’\\

Y =[-1,0) v (0,1]. Both [-1, 0) and (O, 1] are disjoint non-empty and their union us Y.
Both are open in Y [Not in R].

They form a separation of Y.

[1,0) = [-1,0]

0,11=[01]

Note that none of these sets contains the limit points of the other.
Example 3:

LetX =[-1,1] c R

szLmu@ﬂ



This does not form separation of X, Since [-1, 0] is not open in X. Note that, here first
set contains a limit zero of the second. Indeed there is no separation of the space [-1,
1].

Example 4:

The rationals Q is not connected. The only connected subsets of Q are the 1-pt set. Let
Y be a subspace of Q containing two point p and g. In between p and g there always
exist a irrational a.

Consider Y N (—o,©) and Y N (a,). Both are disjoint non-empty open sets in Y,
whose unionin Y.

=Y has a separation and hence it is not connected.
Lemma 2:

If the sets C and D form a separation of X and if y is a connected subspace of X, then Y
lies entirely within either C or D. 7«

Proof
Since C and D are both openin X. C nY and DN Y are both openin. 1\
(Cny)yudnY)=(CuD)nY =Y
CnY)YNn(DNnY)=(CnND)nY =¢ _
Wil _ v C
IfbothCNnY #pand DNY # ¢, thenCNnY and D nY with form a separation of Y but Y Cﬁ"‘\"
is connected.
~ One of these should be empty.
fCNnY=¢thenY c D
IfDNY =¢thenY cC
Lemma 3:

The union of a collection of connected subspaces of X, that have a point in common is
connected.

Proof: . @ Q
Let {A,} be a collection of connected subspaces Ofé'.L C@
({, 1
Py

Letp enA,

—

Claim: Y =U A4, is connected.

Suppose Y = C U D is a separation of Y.




Thenp € Corp €D.

Supposep € C

Since 4, is connected.

A, c CorA,c D (ByPrevious lemma)

A, < D becausepe A, andp €C.

~ A, c Cforall A

=UA,c C whichmeans (UA,)ND =¢
YND=¢

=D=¢

=< D+¢

~Y =UA, is connected.

Theorem 4:

Let A be a connected subspace of X. If A ¢ B c 4, B is also connected.

Proof:

Let A is connected.

GivenAcBcA

Claim: B is connected.

B=CuDwith.-C #¢, D # ¢

CNnD=¢,CandD are open.

Since A is a connected subset of B then by lemma,

“If the sets C and D form a separation of ' and if Y is a connected subspace of X, then
Y lies entirely within either C or D.”

AcC orAcD —_— -

Ac l?,‘__f) AC B
Suppose A c C - T
ThenAdc C :
Then B c C BQW&:C

CnD-=¢



Since D contains no limit point of C.

BNnDcSCnND=¢

“D=¢

=« D #¢

~ There exist no separation of B.

In otherwords B is connected.

Theorem 5:

The image of connected space under a continuous map is connected.

Proof ﬁ A \(

Let f: X = Y is continuous.

2
Then f: X = Z = (f (X)) [since restriction to its range is continuous]
Let g: X — Z is a surjective continuous map.
Claim: Z is connected.
7("3 % | >’_Z.
Suppose Z = AU B where A # ¢,B + ¢
ANB ¥ ¢, AandB are open in Z. - :‘—U){L

g A # ¢, g (B) # ¢ [-gis surjective]

LF\ I,
g ANg B =g AnB) =¢ - AKD j g ) ot
~ X =g71(4) u g~1(B) for, a separation of X 0—?/«

C; X is disconnected, which is a contradiction.

o—
= X has re separation.
Hence Z = f (¥ is connected.
Theorem 6:
A finite Cartesian product of connected spaces is connected.
Proof
Let us first prove for 2-spaces X and Y’ 11—51\4,[

Choose a base pointaxbin X XY.



The horizontal slice X x b is connected, being homeomorphic with X, and vertical slice
x X Y is connected being homeomorphic with Y.

Each T- shaped space T, = (X X b) U (x X Y) is connected.

Being the union of two connected spaces that have points axb is common.

. U
Now, Consider EX T, of all these T- shaped spaces. \( - L 7\\(
Since axb is.a common PO !
EX T, is connected. w-H)(L
U )

ButXxY=xeX T,

XXYi ted & — v
~ X XY is connected. 4 L %

Claim: To prove X; X X, X ... X X,, is connected.
_wekien

Let us use index on X.

If n = 2, the result is true.

Assume that the result for nah— 1.

Xy X Xy X .. X Xn,if, connected.

If n ===k, NnOw,

X1 X Xy X .. X X = (X3 X X X ... X Xy 1) X X IS connected.

. . (A~ C—
See (X; XX, X ..XX,_,) X X, are connecﬁf aﬁ”ﬁr\oduct of 2-connected spaces are
connected. r-

Hence X,, is connected.
Example 1:

Consider the Cartesian product R® in the box topology. We can write R“ as the union of
the set A. Consisting of all bounded sequence of real numbers and the set B of all
unbounded sequence.

These sets are disjoint and each is open in the box topology for if a is a point of R® the
open set.

U=(al—l,al‘i‘l)X(az—l,a2+1)x...

Consider entirely of bounded sequences if A is bounded and of unbounded sequences
if a if unbounded.



Thus, eventhough R is connected, R® is not connected in the box topology.

Example 2:
Now consider R® in the product topology.
Assuming that R is connected. We show that R“ is connected.

Let R denote the subspace of R®. Consisting of all sequences x = (x;, x,, ...) such that
x; =0, i>n

The Space R™ is clearly homeomorphic toR™, so that it is connected.
By the preceeding theorem

It follows that the space R®i.e., the union of the space is R™ is connected, for these
spaces have the point 0 = (0,0, ...) in common.

We show that the closure of R* equals all of R®, from which it follows that R® is
connected as well.

Let a = (ay,a,,...) be a point of R®, let U = [[U; be a basis element for the product
topology that contains a.

We show that U intersects. There is an integer, N there exist U; = R,i > N then the
point

x =(ay,ay...,a,,0,0,..) of R* € U. Since a; € U; foralli. 0 € U; fori > N.

The argument just given generalizes to show that an arbitrary product of connected
spaces is connected in the product topology.

Definition: Totally Disconnected space

A space is totally disconnected if its only connected spaces are one point subsets.
_Example:
";ff X has discrete topologbl then )\is totally disconnected.

The set of Rationals Q is totally disconnected.
Connected subspaces of the real line

Linear Continuum:

A simply ordered set L having more than one element is called a linear continuum if the
following hold.
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(ii) If x < y there exist z there exist x < z < y. R 5= (g,@ ) U Cﬁ ,\5-)
Example: &U\O 5 - Sg

R is a linear continuum.

() L has the least upper bound property.

Z, is not a linear continuum.
Theorem 7:

If L is a linear continuum in the order topology, then L is connected and so are intervals

and rays in L. C gsv~v

Proof: - _ YD
_%/-"[ Y A

Let us prove that if Y is a convex subset of L. then Y is connected. | o= v

Let Y be a convex subset of L. Suppose Y is disconnected then Y = A U B, where A ahd
B are disjoint non-empty sets each of which is openinY.

Choose a € A, b € B say with a<b the interval [a, b] of points of L is contained in Y.

Hence [a, b] is the union of disjoint sets. M
Ay=AnN]ab c=

0 (@, b] . — w\@-J L
B, = BnJa,b] ' \(

Where A, and B, are each open in [a,b] in the subspace topology, which is the same as
the order topology.

The sets 4, and B, are non-empty because a € A, and b € B,,.

Fuwle C~
Thus A, and B, constitute a separation of [a,b]. -’T['\LAA /-\o W\-d P>° Cenht ‘t
- Asporetion o (5,6

(A
Let § = sup 4,

c
We show that |2 belongs neither to A, nor B, which contradicts the fact that [a,b] is the
union of A, and B,.

Case (i)
C
Suppose that ¢ € B, then ¢ # a.

So either ¢ = b or a < ¢ < b in either case it follows the fact that B, is open in [a,b] that ~_

there is some intervals of the form (d, c] c B,,. E—’—""—’—E——a
- d
2o ©

- Mo
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If ¢ = b, we have contradiction at once for d is a smaller upper bound ons we have
contradiction at once for d is a smaller upper bound on A, than c. If c<b we” note that

(c,b] does not intersect A, [because c is an upper bound on Ay]
Then (d, b] = (d, c] U (c, b] does not intersect A,.

C
Again d is a smaller upper bound on 4, then Z contrary to construction.

C
.. C \ __./a
C : C '
ase (1) AR, m. b

Suppose that ¢ € Ay, then ¢ # b so either c = aor a < c < b. Because A, is open in
[a,b]. There must be some interval of the form [c,e) c A4,.

Because of ordered property-2 of the linear continuum L, we can choose a point z of L
suchthatc <z <e.

C .
Then z € A, contrary to the fact that c is an upper bound for 4,. U F_"TQ ' 1
O~
Corollary: Ao >

The Real line R is connected and so are intervals and says in R.
Proof:

We know that R is linear continuum then by above theorem,

We can say that R is connected and so are intervals and rays in R.
Theorem 8: (Intermediate Value Theorem)

Letf:X >Y bea continﬁéﬁ? map where X is a connected space Y is an ordered set in
the order topology. If a and b are two points of X and if r is a point of ¥lying between f(a)
and f(b) then there exist a point ¢ of X such that f(c) =r. ‘

Note: The Intermediate Value Theorem of calculus is a special case of this theorem that \{
occurs when we take X to be a closed interval in R and Y to be R.

Proof

Assume the hypothesis of the theorem the sets,

A=f() N (—o,r)and B = fx) N (r,) are disjoint ad they are non-empty. C,ox%,."\;w
BeeetSe one contains f(a) and other contains f(b) /

Each is open in f()Q, being the intersection of an open ray in Y7 with ).

If there were no point ¢ of X such thatf(%c) =r. Then fg@ would be the union of the sets

A and B. ,{L‘/D-— /,\U">
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Then A and B would constitute a separation of f(x), contradicting the fact that the image
of a connected space under a continug map is connected.

Hence the proof.

Example 1:
One example of a linear continuum different from R is the ordered sequence.

We check the least upper bound property (the 2" property of the linear continuum is
trial to check) the A be a subset of I X I.

Let b = sup[[;(4)
If b € [[1(A4) then A intersects the subset bxI| of IxI.

Because bxl has the order type of I, the set An (b x I) will have a least upper bound
bxc which will be the least upper bound of A.

If b ¢ [[,(A) then b x O is the least upper bound of A, No element of the form b X ¢ with
b’ < b can be an upper bound for A for then b’ would be an upper bound for [[;(4).

Example 2:

If X is a well ordered set then X x [0,1] is a linear continuum in the dictionary order.
This set can be thought of an having been constructed by “fitting in” a set of the order
type of [0, 1] immediately following each element of x.

Note:

Connectedness of intervals in R given rise to an especially useful criterion for showing
that a space X is connected, namely the condition that every pair of points of X can be
joined by a path in X.

Definition 4:
: . . . _oud
Given points x and y of the space X)a path in X from x to y is a continusn map
f:[a, b] = X of some closed interval in the real line into X such that f(a) = x and
fb) =y.
A space X is said to be path connected if every pair of points of X can be joined by a

path in X. 1 g_’q N §

L=

.}Uo\:‘},



Result:
Path connected = connected.
Proof:

It is easy to see that a path connected space X is connected. Suppose X =AUB is a
separation of X.

PV
Let f:[a, b] = X be any path in X. Being the continuam image of a connected set) 'i.he
set f([a,b]) is connected.

So that, it lies entirely in either Aor B.

Therefore, there is no path in X joining a point of A to a point of B, contrary to the
assumption that X is path connected.

@D e .
Example 1: BVUU C‘bw@% 7 ‘?
Define the unit ball R™ in R™ by equation B™ = {x/||x|| < 1} where
x| = |lIx1, %2, .o, x| = (62, %2, x3,..., x2)V/?

The unit ball is path connected given any two points x and y of B™, the straight line path.

f:10,1] - R™ defined by f(t) = (1 —t)x + ty liesin B™ forif xand y are in B and tis in
[0, 1].

IIF@OI < @ =0|lxl| + ellyll < 1

A similar argument show that every open ball B,(x, €) and every closed ball B;(x, €) in
R™ is path connected.

Example 2:
Define punctured Euclidean space to be the space R™ — {0} where 0 is the origin R™.
If n > 1 this space is path connected given x and y different from O.

We can join x and y by the straight line path between them. If that path does not go
through the origin otherwise we can choose a point z, not on the line joining x and y and
take the broken line path from x to z and then z to y.

A connected space need not be a path connected.
Example 3:
The ordered square 12 is connected but not path connected.

Being a linear continuum the order square is connected.



LetP=0x0andg=1x1
We suppose there is a path f:[a, b] = I3 joining p and g and derive a contradiction.

The image set f([a, b]) must contain every point x X Y of IZ, by the intermediate value
theorem.

- for each x € I,the set U, = f~1(x x (0,1)) is non-empty subset of [a,b] by continuity it
is open in [a,b].

Choose for each x € I a rational number g, belonging to U,. Since the sets U, are
disjoint the map x — g, is an injective mapping of | into Q. This contradicts the fact that
the interval | is countable.

Example 4:
Let S denote the following subset of the plane
S={xxsin(1/x)|0<x <1}

Because S is the image of the connected set (0O ,1] under a continuum map, S is
connected.

~ Its closure S in R? is also connected.
The Set S is a classical example in Topology called the Topology’s sine curve
It equals the union of s and the vertical interval 0 x [—1,1]

We show that S is not path connected. Suppose there is a path f:[a,c] = S beginning
at the origin and ending at the point of S.

The Set of those t for which f(t) € 0 x [-1,1] is closed, so it has a largest element b.

Then f:[b,c] - S is a path that maps b into the vertical interval 0 x [-1,1] and maps
the other points of [b, c] to points of S.

Replace [b ,c] by [0 ,1] for convenience let f(t) = [x(t),y(t)]. Then x(0) = 0, while
x(t) > 0 and y(t) = sin [%] for t>0. We show that there is a sequence of points t,, — 0.
Such that y(t,) = (-1)™

Then the sequence y(t,) does not converge, contradicting continuity of f. To find t,,, we
proceed as follows given n, choose u with 0 < u < x (%) such that sin G) = (=1™ Then

use the intermediate value theorem to find t,, with 0 < t,, < % such that x(t,,) = u.

Compact Spaces




A collection A of subsets of a space X is said to cover X if the union of elements of A is

equalg'to X. ﬁ

Here A is called the covering of X.

U _UA
A ={A1, A3, As,...,} where 4; € Xforallland X =, 7(-— oL

A;

Open Covering

The covering of X is called an open covering of X if its elements are open subsets of X.
Compact Space

A Space X is said to be compact if every open covering 4 of X contains a finite sub
collection that also covers X.

Example 1:

NN )r\ \S-‘ ) >
The real line R is not compact é—’w Ak 3 4

-

Consider the open covering of R. A ={(n,n+2)/n € Z}. This contains no finite
collection.

Example 2:

Consider the subspace X = {0} U {%/n € Z+} of R. This is compact in R. Given an open

covering A of X there is an element U of A containing zero The Set U contains all but
finitely many points 1/n.

Choose for each point of X not in U and element of A containing it. The collection
consisting of these elements of A along with the element U is a finite sub collection of
A that covers X.

Example 3:

Any space X containing only finitely many points is necessarily compact B'(o) every
covering of X in this case is finite.

Example 4: %_,__E{k r ¢ /”_ﬁ
The interval (0 ,1] is not compact. N >\ ' 3
(0.1] P - 7 I

3 \/ ‘/
Soln: 0 Y AL

The open covering A = {(%1] /n € Z+} contains no finite sub collection that covers
(0,1]

Lemma 9:



Let Y be a subspace of X then Y is compact iff every covering of Y by sets open in X
contains a finite sub collection covering g Y.

Proof:

Suppose Y is compact. Let A = {A,/a € J} is a covering of Y. By sets open in X, then
the collection,

{A,NnY/a €]} is acovering of Y By sets openin Y.
NYcUp
Since Y is compaot—fl'reﬁxist a finite sub collection -

{4, NY, A, NY,...,A, NY}which coversY.

Then there exist a finite sub collection {Aal,Aaz, . ..,Aan}which covers Y.

Conversely, Suppose the given condition holds. Let {Ag,ja € J} be an open covering of
Y by sets openin Y.

For each 4, there exist an 4, which is open in X.

Suchthatd, =4, nY

U !
Ie,YQaE]Aa

V)
VS e @an?)

Yg( Y

ae]Aa)nY

U
VS gesha

By hypothesis there exist a finite sub collection {4,,,A,,,...,4,, } that covers Y

{4, 4,,',..., A, "} is a sub-collection of {4}, /« €/} which covers Y.
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‘Proof:

~ Y is compact.

Hence the proof.

Theorem 10:

Every closed subspace of a compact space is compact.

Proof:

Let Y be a closed subspace of the compact space X.

Claim: Y is compact.

A

Let {A,/a € ]} be an open covering of Y, By sets open in X.

Now, since Y is closed, X-Y is open and B = {U A,} U {X — Y} is an open covering for X.

_—
Since X is compact, a finite sub-collection of B covers X.
If this sub-collection contains the set X-Y, discard X-Y.

Otherwise leave the sub-collection alone the resulting sub-collection is a finite sub
collection of {A, | « € J} which covers Y.

~ Y is compact.

Hence the proof.

Theorem 11:

Every compactépace of a Hausdorff space is closed.
~

Let Y be a compact subspace of the Hausdorff space X.

Claim: Y is closed.

i.e, X-Y is open.
Let x, € @=% X —Y.for each point y of Y)

J_et us choose disioint neighbourhood:U,, and V,, of the points x, and y respectively. This
is possible became the space X is Hausdorff.

Now the collection {V;, | y € Y} is an open covering of Y, by sets open in X. Since Y is
compact, a finite sub collection v, ,V,,,...,V,, coversY €V, UV, U..Ul, =V

Note that V is an open set containing Y.



Considering the intersection of the corresponding neighbourhood of x,, U = U,, N U,, N
...n U, where U is an open set containing x,.

v
Un/Yzq,')forzeV .
AUy =
= z €V, for some | \/‘3, \j: 7’
= z ¢ U, forsomei

=z&U

\V}
Then U is a neighbourhood of x, disjoint from &
ThenY cV
Xo EUCX-Y

Hence the proof.
Lemma 12:

If Y is a compact subspace of the Hausdorff space X and x, is not in Y, there exist
disjoint open sets U and V of X, containing x, and Y respectively.

Proof:
This proof follows from the previous theorem.
Example:

The intervals of the type (a, b), [a, b), [a, b] are not compact in R. Because they are not
closed in the Hausdorff space R.

Theorem 13:

The image of compact space under a continuous map is compact.
Proof:

Let f: X — Y be continuous and X be compact.

Claim: f(x) is compact.

Let {A,| a € J} be an open covering by sets openinY.

= {f~1(4,)|« € J} is an open covering of X, by sets open in X.

Since f is continuous.

e, Xc ai]f‘l(A(;)



n
=Xxc YV f1(4,) [ X is compact ]
i=1

70 < | g S(r40)

floe Uoan [r(ran) ead

= f{») is compact.

Theorem 14:

Let f:X - Y be a bijective continuous function. If X is compact and Y is a Hausdorff
then f is a homeomorphism.

.y |
Proof: Jr : \‘ — X
Given that f is one-one and onto and continuous.

1\~ C
To prove that f is a homeomorphism. C? ) (L) - -f—(_C)

It remains to prove.that f is an open map (or) f~! is continuous for this it is enough to
prove that the image under f of each closed set is closed.

Let A be a closed subset of X,which IS compact.
~ A is compact.
~ f(A) is compact.

ce f is continuam: [ closed subset of compact set is compact and continuum image
of a compact set is compact] '

f(A) is compact subset of Y.

~ f(A)is close_d.lij-) )

(gince compact subset of a Hausdorff space is closed.

=~ f is a homeomorphism.
Theorem 15:

The product of finitely many compact spaces is compact.



Proof:
We prove this theorem for 2- space§fhen it follows for finitely many spaces/
l%y induction hypothesis '
Step 1:

The tube lemma
Consider the product space XxY, where Y is compact. - Lo %o eX

If N is an open set of XxY, containing the slice x, XY of X X Y. ThesN contains some
tube WxY about x, X Y where W is an neighbourhood of x, in X.

Proof o
Xand Y are ms where Y is compact. Let x, be a point of X and N be an open
subset of XxY containing the slice x, X Y.

To prove there exist a neighbourhood W of x, in X, such that N contains WxY.

o
WxY is called a Tube about x, % v.first, let us cover Xo X Y by a basis elements UX\,Gor
the topologies of Xx\blying in N.

Given YLis compact, the space x, x Y is homeomorphic to Y and therefore it is compact.
Eath-opec;?over e x, X Y by finitely many such basis elements (UxV)

Uy XV, U, XV, ..., U, XV

We assume that each basis elements U; X V; intersects x, X Y.

DefineW =U;nU,Nn..NnU,

Then W is open since U;s are openl.,also Xg € W

_;Bince U; X V; intersects x, X Y.

We claim that the sets U; x V; which cover the slice x, X Y actually covers the tube
WxY.

Forletxxy e W xY

Consider the point x, X y of xq X Y.
Now x, X y € U; x V; for some i.
LYy EV;

Butx € U; forall j [+ x € W]



~xXy€eU; XV

Since all the sets U; X V; lie in N and they cover WxY. We have W XY c N.
Step 2:

Let X and Y be compact spaces to prove x x Y is compact.

Let A be an open covering of X x Y. Let x, € X. Then the slice x, X Y is homeomorphic
to Y, Y is compact.

=~ Each open covers of x, X Y has a finite number of elements of A say (4, 45,...,4An)
IfN =4, UA, U...UA,,
Thenxy, XY c N

By step -1 the open set N contains a tube WxY about x, x Y where W is open in X then
WxY is covered by finitely many elements.

(A1, A4,,...,A,) of A thus for each x in X.

We can choose a neighborhood W, of x, such that the tube W, x Y can be covered by
finitely many elements of A.

The collection of all such neighbourhood W, is an open covering of X.
Since X is compact, there exist a finite sub cover for X.

Namely {W;,W,,...,W,} the union of the tube {W; XY, W, xXY,...,W, x Y} equals XxY
ie., there exist a finite such cover for XxY.

~ XxY is compact.

We can extent this result to a finite number of spaces.

(X1 X X, X...X X;;) by using induction hypothesis.

Suppose X;,X,,..., X, are compact. To Prove that X; x X, X...x X,is compact.
The result is true for n=2.

= X; X X, is compact.

Assume the result to be true forn — 1

(X1 X X, X...xX X,,_1) is compact.

Now (X; X X, X...X X;,) is compact, and X,, is compact.

(X1 X Xy X...X X)) X X, is compact.



(X X X, X...x X};) is compact.
Definition:

A collection C of subsets of X is said to have the finite intersection property if for every
finite sub collection {C,,C,,...,C, } of C.

The intersection C; N C, N ....N C,, iS non empty.

Theorem 16:
o~

Let X be a topological space then X is compact iff every collection C of closed sets in X

having the finite intersection property, the intersection C?C C of all the elements of C is

non-empty.
Proof:
Given a collection A of subsets of X.

Let ¢ ={X — A|A € A} be the collection of their compliments then the following
statements hold.

(v) A is a collection of open sets iff C is a collection of closed sets.

: e N
\_7/7 The collection A covers X iff CeC C = ¢.

U
choversX=>X—AEcﬂA

Take complements on both sides,

U
X_X_X_Aec/ZA
N :
= Aed X -4 [By Demorgan’s Law]
N
¢ = CeCC

L}) The finite subcollection {4,,A4,,...,A4,} of A covers Xiff C, nC, N ....n C,, = ¢.



n
X = U A4, if the finite sub collection covers X.

i=1
n n
X— U 4= N (X-4)
i=1 i=1
n
p= N G
i=1

Suppose X is compact, that
= Each open cover of X has a finite sub cover.

= If A is a family of open sets in X such that A covers X then some finite sub
collection of A covers X.

=If no finite sub-collection of A covers X then A also does not cover X.
Let C = {X — A|A € A}

Then by (1) C is a family of closed sets.

By (3), No finite sub collection of A covers X, means
{c;nC,n...nC,}of C.

By (2) A does not cover X means

N
CeC

property then

C # ¢. Cis a collection of closed sets satisfying the finite intersection

N
CeC

C # ¢.

Refracting the steps we can prove this converse.

Note:

A special case of the above theorem occurs when we have a nested sequence.

Cc, o C,>...0C, D C,,, Of closed sets in a compact space X. If each of the sets C,, is
non-empty then the collection € = {C, }nez,

Automatically has the finite intersection property then the intersection is non-empty.

n C
nezZ, "
Compact Subspaces of Real line:

Theorem 17:



Let X be a Simply ordered set having the Least upper bound property in the ordered
topology, each closed interval in X is compact.

Proof:
Leta<b, abeX

Consider the interval [a, b] in X. Let A be an open covering of [a, b] by sets openin [a, b]
in the subspace topology which is the sane as the ordered topology.

To prove that there exist a finite sub-collection of A which covers (a,b] will be compact.
Step 1:

To prove that “If x is a point of [a,b], x # b. Then there exist a point y > x in [a,b] such
that [x,y] can be covered by atmost two elements of A”.

Suppose x has an immediate successor in X, then [X,y] consists of the two points x and
y.

[x,y] can be covered by atmost two elements of A.

Suppose x has a no-immediate successor in X. Then choose an element A € A
containing X.

Now x # b and A is open.

~ A contains an interval of the form [x,c) for some c € [a, b]. Choose a pint y in [x,c).
Then [x,y] is covered by A € A.

Step 2:

Let C be the set of all points y > a of [a,b] such that [a,y] can be covered by finitely
many elements of A.

i.e., C ={yela,bl|(a,y]can be covered by finitely many elements}
Apply step 1, by taking x = a. Then there exist atleast one such y.

C is not empty. Let C be the least upper bound of €. Thena < ¢ < b.
Step 3:

To prove thatc € C

To prove that [a,c] can be covered by finitely many elements of A. Choose an element
A € A containing C.

A 'is open A contains an interval of the form (d , c] for some d in [a,b].

Suppose c ¢ C.



Then there is a point z € C such that z € (d,c] (for otherwise d would be a smaller
upper bound of C than = «.

Since z € C, [a, z] can be covered by finitely many elements of A (By definition of C).
Say n elements 44, 4,, ..., A,.

Now [z, c] lies in the single element A € A.

~la,c]l =1la,z]V|zc]

=~ [a,c] can be covered by finitely many elements (n+1 elements of A)

~CEeC

=<« to our assumption that C ¢ C.

~ C €EC.

Step 4:

Claim:c=»b

Suppose c < b

Apply step 1 by taking x = ¢

Then there exist a point y > ¢ of [a, b].

Such that [c,y] can be covered by finitely many elements of A .
By step 3, C €C.

=~ [a, c] can be covered by finitely many elements of A.

~la,yl =la,c]ulcy]

=~ [a, y] can be covered by finitely many elements of A.

~ YEC.

This is a contradiction to the fact that C is the least upper bound of C.
L c=bh.

=~ [a, b] can be covered by finitely many elements of A.

=~ [a, b] is compact.

Corollary:



Prove that closed interval in R is compact.

Proof:

The R = X, R is linearly ordered set with least upper bound property.
Every closed interval in R is compact.

Theorem 18: Characterization of Compact subset of R"

A subspace A of R" is compact if and only if it is closed and bounded in the Euclidean
metric d or the square metric p.

Proof:

We know that p(x,y) < d(x,y) < Vn p(x,y).

A is bounded under p iff it is bounded under d.

=~ Let us consider the metric p

(i) Suppose A is compact.

To prove that A is closed and bounded R™ is Hausdorff.

~ A'is closed.

[- Compact subset of Hausdorff space is closed.]

It remains to prove that A is bounded.

Consider the collection of open sets {Bp(O, m)|m € Z,} whose union is all R".
i.e., This is an open covers for R".

A is a subset of R".

We can consider this is an open covers for A, also A is compact.
There exist a finite subcover for A.

~ A c B,(0,m) for some M.

Suppose x,y € A. Then x,y € B,(0,m)

= p(0,x) <M and

p(0,y) <M

= p(x,y) <p(0,x) +p(0,y) <2M

~ Ais bounded under the metric p. Then A is closed and bounded.



(li) Suppose A is closed and bounded under p

To prove that A is compact

A is bounded, let us assume that p(x,y) < N for all pair x,y € A
Choose a point x, of A and let p(x,,0) = b

p(x0,0) < p(x, x0) + p(xo,0)

<N+b

LetP=N+b

Consider [—P, P]". Then A is a subset of [-P, P]™.

~ [-P, P]"™ is a compact.

So A is closed compact subset of a compact space is compact.
Theorem 19: (Extreme value theorem)

Let f:X — Y be continuous where Y is an ordered set in the order topology. If X is
compact, then there exist points ¢ and d in X such that

f(c) £ f(x) < f(d) for everyx € X.

Proof:

Given f: X — Y is continuous and X is compact.

f(x) is compact.

Let f(x) is compact.

Letf(x) =4

To prove that A has a largest element M and a smallest element m.
Suppose A has no larger element ,

Then the collection

{(—o0,a)|a € A} is an open covering for A.

A is compact. Therefore there exist a finite sub cover.

ie., the finite subcollection { (=, a,), (—x, a,),.., (—x,a,)} covers A.
Suppose a; = max{a,, a,,...,a,}. Then a; must belong to A.

But A has no larger element which is a contradiction.



Therefore, A has a largest element.

Similarly we can prove that A has a smallest element.
Hence A has a larger element M and a smallest element m.
e, mMEeA

We have f(c) = mand f(d) = M for some ¢,d € X
~fle)<(x) <f(d),foralxeX

Hence the proof.

Definition: The distance from x to A

Let (x,d) be a metric space. Let A be a nonempty subset X. For each x € X, We define
the distance from x to A by the equation.

d(x,A) = inf{d(x,a)|a € A}

Definition:

The diameter of a bounded subset A of a metric space (x, d) is the number
sup{d(a;,a,)|a;, a, € A}.

Lemma 20:

The lebesque number lemma.

Let A be an open covering of the metric space (x,d). If X is compact, thereisa § > 0
such that for each subset of X having diameter less than §, there exist an element of A
containing it. The number & us called a lebesgue number for the covering A.

Proof:

Let A be an open covering of X. Suppose x € A. Then any positive number is a
lebesgue number for A. So assume x & A.

As X is compact, there exist a finite Sub-collection {4, A,, ..., A4,,} of A that covers X.
Let Ci =X —Al‘, i=12,..,n

Define f: X - R by
0 =23 dtex)
fx _n._l C, X;

Then f(x) >0 for all x, for if x € X. Choose i so that x € A;. Then choose the ¢
neighbourhood of x that lies in A.



Thend(x;,c) =€
€
fx) =~
Since f is continuous it has a minimum value 9.

Claim: é is one required lebesque number. Let B be a subset of X of diameter less than
0.

Let x, € B.

Now B lies in the Neighbourhood of x,. Now,

1
5 < f(XO) = E [d(on Cl)i d(xli CZ)) ) d(xo: CTL)]

< d(x9,Cm)

where d(x,, c,,) is the largest of the numbers d(x,, ¢;).

Now the § —neighbourhood of x, is contained in 4,, = X — C,, of the covering A.
Definition: Uniformly Continuous

A function f from the metric space (X, d,)is said to be uniformly continuous if given & >
0 there is a § > 0 such that for every pair of points x,, x;0f X.

d,(xp, %) <8 = dx(f(xo),f(xl)) <e.
Theorem 21:
Uniform Continuity Theorem

Let f:X - Y be a continuous map of the compact metric space (X,d,) to the metric
space (Y,d, ). Then f is uniformly continuous.

Proof:
Given ¢ > 0 take the open covering of Y. By balls B(y, £/2) of radius &/2.
Let A be the open covering of X by

{f 2(B(y,£/2))/y € Y}. Let r be the lebesgue number for the covering A. To prove f is
uniformly continuous. Let x,;,x, € X such that d,(x,,x,) < §. Then the set {x;,x,} has
diameter less than d.

So that there exist some element in {f ~*(B(y,/2))|y € Y} such that

{x1, 2} © [T (B(y,¢/2))



= f({x1,x,}) €SB (y, g) for some y.
= f(x1),f(x2) € B (y, %) for some y.

= d(y, f(x1)) < Z

Now

dy, (f (e, f()) < d(f(x1),y) + d(y, £ (x2))
& & _

< E + E =&

dy (%1, %) <6 = dy(f(x1)'f(x2)) <e¢
X1, X, € X are arbitrary.

=~ fis uniformly continuous.

Definition: Isolated Point

If X is a space a point x of X is said to be an isolated point of X. If the one point set {x}
is open in X.

Theorem 22:

Let X be a non-empty compact Hausdorff space. If X has no isolated points then X is
uncountable.

Proof:
Step 1:

We show first that given any non-empty openset U of X and any point x of X there exist
a non-empty open set V c U such that x ¢ V.

Choose a point of y of U different from x.
If x € U, then U= {x} as x is not an isolated point of X.There exist ye U.
If x € U, then as U+ ¢, there exist ye U.

Now x # y and X is Hausdorff. .. disjoint non-empty open sets W, and W, about x and y
respectively.

LetV = U nW,. Then V is open (being intersection of open sets).
V # ¢ as (ye V).

x & V (as there exist a neighbourhood W, of x W, nY = ¢).



Step 2:

To Prove: X is uncountable.

To Prove f:Z, — X is not surjection.

Let f(n) = x,,.

Now x; € X and take U = X.

By step 1, there exist an open setV; = ¢
V,cX,x, &V].

Now x, € X and V; is open in X, there exist V, c V; such that x, € X there exist an
oopen set , # ¢.

V,cV,_;and x, ¢ V,

Consider the nested sequence.

V, oV, oV; o>V, of non-empty closed sets.
Therefore they satisfy finite intersection property 1, # ¢.
By theorem.

Letx e,

x €NV, for all n and x,, ¢ V, for all n.

x # x, for any n.

There exist no principle for x under f.

~ fis not surjective.

f is not bijective and so.

X is uncountable.

Limit Point Compactness

Definition:

A space X is said to be limit point compact, if every infinite subset of X has a limit point.
Theorem 23:

Compactness implies limit point compactness but not conversely.

Proof:



Let X be a compact space. Given a subset A of X, we wish to prove that if A is infinite,
then A has a limit point.

We prove the contrapositive if A has no limit point, then A must be finite.
So, suppose A has no limit point. Then A contains all its limit points so that A is closed.

Furthermore, for each a € A. We can choose a neighbourhood U, of a such that U,
intersects A in the point a alone.

The space X is covered by the open sets X — A and the open sets U, being compact, it
can be covered by finitely many of there sets.

Since x-a does not intersect A and each set U, contains only one point of A, the set a
must be finite.

Example 1:

Let Y consists of two points give Y the topology consisting of T and the empty set then
the space, X = Z, X Y is limit point compact, for every non-empty subset of X has limit
point. It is not compact for the covering of X by the open sets,

U, = {n} X Y has no finite subcollection covering of X.
Definition

Let X be a topological space. If (x,) is a sequence of points of X, and if n; <n, < -+ <
n; < .-+ is an increasing sequence of positive integers then the sequence (y;) defined by
setting y; = x,,; is called a subsequence of the sequence (x,,).

The space X is said to be sequentially compact if every sequence of points of X has a
convergent subsequence.

Theorem 24:

Let X be a metrizable space. Then the following are equivalent.
(i) Xis compact.

(i) Xis limit point compact.

(ii) X is sequentially compact.

Proof:

To Prove: (i) =(ii)

Refer Theorem-23.



To Prove: (ii) =(iii)

Assume X is a limit point compact.
To prove that X is sequentially compact. Given a sequence (x,,) of points of X

Consider the set A = {x,|n € Z.}. If the set A is finite then there is a point x such that
X = Xp.

For finitely many values of n.

In this case, the sequence (x,) has a subsequence that is constant.

=~ Converges trivially.

If A is infinite, then A has limit point x.

We define a subsequence of (x,). Converging to x.

First Choose ny, x,,, € (x,1)

Suppose that the positive integers n;_; is given. Because the ball B (x %) intersects A in
infinitely many points.

We can choose n; > n;_; such that

1
€ (v7)

U contains x, for all i = N.Then the subsequence x,_, x,,, ... converge to x.

To Prove: (iii) = (i)

First we show that X is sequentially compact then the lebesgue number lemma holds for
X. Let A be an open covering of X. Assume that there is a >0 such that each set of

diameter less than d has an element of A containing it and derive a contradiction our
assumption.

In Particular that for each positive integers n there exist a set of diameter less thanl/n
that is not contained in any element of A.

Let C,, be such a set. Choose a point x,, € C, for each n. By hypothesis,
Some subsequence (x,,) of the sequence (x,,) converges say to the point a.
Now a belongs to some element A of the collection A, because A is open.

We may choose an ¢ > 0 such that B(a, ) c A.

It is large enough that% < 82—" . Then the set C,; lies in the % neighbourhood of x,,.



If i is also chosen large enough that
&
d(xp,a) <=
: 2
Then C,, lies in the e-neighbouhood of A,
Cy,cA

Contrary to hypothesis

Second we show that if X is sequentially compact given € > 0 there exist a finite covring
of X by open e-balls.

Once again we proceed by contradiction, Assume that there exist an € > 0 such that X
cannot be covered by finitely many e-balls.

Construct a sequence of points x,, of X follows

First we choose x to be any point of X Nothing that the ball B(x, €) is not all of X/
Otherwise X could be covered by a single ¢ —ball.

Choose x, be a point off X not in B(x, €).

In general, given x4, x,, ..., x,. Choose x,,,; to be point not in the union.
B(xy,€),B(xy,¢), ..., B(xy,, €). Using the fact that these balls do not cover X.

Note by construction d(x,41,x;) = € fori=1,2,...,n.

The sequence (x,) can have no convergent subsequence.

In fact any ball of radius /2 can contain x, for at least one value n which is a
contradiction.

Finally, we show that if X is sequentially compact}X is compact.

Let A be an open covering X because 1\ Is sequentially compact. Then the open
covering A has a lebesgue number §. Let ¢ = §/3. Use sequential compactness of X to
find a finite converging of X by open ¢ — balls.

Each of these balls has diameter at most ? so lies in an element of A.

Choosing one such element of A for each of those ¢ — balls; we obtain a finite sub
collection of A covers X.

=~ X is compact.

Hence the proof.
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