
 

Unit – III 

Connected Spaces and Compact spaces 

Connected space 

Definition: Separation 

Let X be a Topological space separation of X is a pair U, V of disjoint, non-empty open 

subsets of X whose union is X. 

        U and V are open 

                          

The space X is said to be connected if they does not exist a separation of X. 

Result 

A Space X is connected iff the only subsets of X that are both open and closed in X are 

the empty sets and X itself. 

Proof: 

Assume X be connected. Let X be connected.  

Suppose      is both open and closed 

Let           

    (   ) 

     

Then U and V form a separation for X, which is a contradiction. 

Hence X is connected. 

Conversely, 

 Let X is disconnected. Assume that the only sets of X which are both open and closed 

are   and X. 

Since X is disconnected, there exist a separation, such that 

                            

                                   

Now A is open 



     .  So A is closed  

Therefore the A is both open and closed and A is a proper subset of X which is a 

contradiction. 

Hence X is connected. 

Hence the proof. 

Note: 

Connectedness is a Topological Property. Since it is formulated entirely in terms of the 

collection open sets of X. If X is connected so is any space homeomorphic to X. 

Examples: 

1. Let   *   + 

Let   *   +  The indiscrete Topology on X. Then there exist no separation of X. 

Therefore, X is connected. 

2. Consider   *     +. Let   *    * + * + * + *   + *   + *   ++ 

The discrete topology on X. This Topological space is not connected. 

Since all subsets of X both open and closed and then there a exist a separation 

  * + *   +  

Lemma 1: 

If Y is a subspace of X, a separation of Y is a pair of disjoint non-empty sets A and B 

whose union is Y neither of which contains a limit point of the other. The space Y is 

connected if there exists no separation of Y. 

Proof 

Suppose A and B form a separation of Y. 

A is both open and closed in Y 

        ̅    

   ̅                           (                          )  

 ̅          ,   ̅         ̅  (   ) 

            ̅    

           - 



B contains no limit point of A. 

Similarly A contains no limit point of /b. 

Conversely, Suppose that A and B are disjoint non-empty sets whose union in Y, 

neither of which contains the limit point of the other. 

 ̅                  ̅    

 ̅     ̅  (   )  ( ̅   )  (   ̅) 

       

  A is closed in Y. 

Similarly,  ̅      

  B is closed in Y. 

As       and        

Both A and B are open in Y. A and B Form a separation of Y. 

The space Y is connected if there exist no separation of Y. 

Example 1: 

Let X denote a two pint space in the indiscrete topology. Obviously there is no 

separation of X, So X is connected. 

Example 2: 

Let     the real line such that 

  ,    )  (   -. Both [-1, 0) and (0, 1] are disjoint non-empty and their union us Y. 

Both are open in Y [Not in R]. 

They form a separation of Y. 

,   )̅̅ ̅̅ ̅̅ ̅  ,    - 

(   -̅̅ ̅̅ ̅̅ ̅  ,   - 

Note that none of these sets contains the limit points of the other. 

Example 3: 

Let   ,    -    

  ,    -  ,   - 



This does not form separation of X, Since [-1, 0] is not open in X. Note that, here first 

set contains a limit zero of the second. Indeed there is no separation of the space [-1, 

1]. 

Example 4: 

The rationals Q is not connected. The only connected subsets of Q are the 1-pt set. Let 

Y be a subspace of Q containing two point p and q. In between p and q there always 

exist a irrational a. 

Consider   (    ) and   (   ). Both are disjoint non-empty open sets in Y, 

whose union in Y. 

  Y has a separation and hence it is not connected. 

Lemma 2: 

If the sets C and D form a separation of X and if y is a connected subspace of X, then Y 

lies entirely within either C or D. 

Proof 

Since C and D are both open in X.     and D   are both open in Y. 

(   )  (   )  (   )      

(C  )  (   )  (   )      

If both       and      , then     and     with form a separation of Y but Y 

is connected. 

  One of these should be empty. 

If       then     

If D     then     

Lemma 3: 

The union of a collection of connected subspaces of X, that have a point in common is 

connected. 

Proof: 

Let *  + be a collection of connected subspaces of X. 

Let       

Claim:       is connected. 

Suppose       is a separation of Y. 



Then             

Suppose     

Since    is connected. 

     or      (By Previous lemma) 

     because      and    . 

       for all A 

       which means (   )      

                  

     

        

       is connected. 

Theorem 4: 

Let A be a connected subspace of X. If      ̅  B is also connected. 

Proof: 

Let A is connected.  

Given      ̅ 

Claim: B is connected. 

      with            

       C and D are open. 

Since A is a connected subset of B then by lemma, 

“If the sets C and D form a separation of D and if Y is a connected subspace of X, then 

Y lies entirely within either C or D.” 

     or     

Suppose     

Then  ̅   ̅ 

Then    ̅ 

 ̅      



Since D contains no limit point of C. 

     ̅      

     

        

  There exist no separation of B. 

In otherwords B is connected. 

Theorem 5: 

The image of connected space under a continuous map is connected. 

Proof 

Let       is continuous. 

Then       ( ( )) [since restriction to its range is continuous] 

Let       is a surjective continuous map. 

Claim: Z is connected. 

Suppose       where         

       A and B are open in Z. 

   ( )        ( )     [ g is surjective] 

   ( )     ( )     (   )    

      ( )     ( ) for, a separation of X 

  X is disconnected, which is a contradiction. 

  X has no separation. 

Hence    ( ) is connected. 

Theorem 6: 

A finite Cartesian product of connected spaces is connected. 

Proof 

Let us first prove for 2-spaces X and Y. 

Choose a base point     in    . 



The horizontal slice     is connected, being homeomorphic with X, and vertical slice 

    is connected being homeomorphic with Y. 

Each T- shaped space    (   )  (   ) is connected. 

Being the union of two connected spaces that have points a×b is common. 

Now, Consider 
 

   
      of all these T- shaped spaces.  

Since a×b is a common point. 

 
   

      is connected. 

But     
 

   
      

     is connected. 

Claim: To prove            is connected. 

Let us use index on X. 

If    , the result is true. 

Assume that the result for        

           is connected. 

If      now, 

           (            )     is connected. 

Since (            )     are connectd and product of 2-connected spaces are 

connected. 

Hence    is connected. 

Example 1: 

Consider the Cartesian product    in the box topology. We can write    as the union of 

the set A. Consisting of all bounded sequence of real numbers and the set B of all 

unbounded sequence. 

These sets are disjoint and each is open in the box topology for if a is a point of    the 

open set. 

  (          )  (          )    

Consider entirely of bounded sequences if A is bounded and of unbounded sequences 

if a if unbounded. 



Thus, eventhough   is connected,    is not connected in the box topology. 

 

Example 2: 

Now consider    in the product topology. 

Assuming that   is connected. We show that    is connected. 

Let   ̃ denote the subspace of   . Consisting of all sequences   (       ) such that 

             

The Space   ̃ is clearly homeomorphic to  , so that it is connected. 

By the preceeding theorem 

It follows that the space    i.e.,  the union of the space is   ̃ is connected, for these 

spaces have the point   (       ) in common. 

We show that the closure of    equals all of   , from which it follows that    is 

connected as well. 

Let   (         ) be a point of     let   ∏   be a basis element for the product 

topology that contains  .   

We show that U intersects. There is an integer, N there exist          then the 

point 

  (                  ) of     . Since       for all i.      for    . 

The argument just given generalizes to show that an arbitrary product of connected 

spaces is connected in the product topology. 

Definition: Totally Disconnected space 

A space is totally disconnected if its only connected spaces are one point subsets. 

Example: 

if X has discrete topology then x is totally disconnected. 

The set of Rationals Q is totally disconnected. 

Connected subspaces of the real line 

Linear Continuum: 

A simply ordered set L having more than one element is called a linear continuum if the 

following hold. 



(i) L has the least upper bound property. 

(ii) If     there exist   there exist      . 

Example: 

R is a linear continuum. 

   is not a linear continuum. 

Theorem 7: 

If L is a linear continuum in the order topology, then L is connected and so are intervals 

and rays in L. 

Proof: 

Let us prove that if Y is a convex subset of L. then Y is connected. 

Let Y be a convex subset of L. Suppose Y is disconnected then        where A and 

B are disjoint non-empty sets each of which is open in Y. 

Choose         say with a<b the interval ,   - of points of L is contained in Y. 

Hence ,   - is the union of disjoint sets. 

     ,   - 

     ,   - 

Where    and    are each open in [a,b] in the subspace topology, which is the same as 

the order topology. 

The sets    and    are non-empty because      and     . 

Thus    and    constitute a separation of [a,b]. 

Let         

We show that C belongs neither to    nor    which contradicts the fact that [a,b] is the 

union of    and   . 

Case (i) 

Suppose that      then      

So either     or       in either case it follows the fact that    is open in [a,b] that 

there is some intervals of the form (   -      



If    , we have contradiction at once for d is a smaller upper bound on , we have 

contradiction at once for d is a smaller upper bound on    than c. If c<b we note that 

(c,b] does not intersect    [because c is an upper bound on   ] 

Then (   -  (   -  (   - does not intersect     

Again d is a smaller upper bound on    then C contrary to construction. 

 

Case (ii): 

Suppose that     , then     so either     or        Because    is open in 

[a,b]. There must be some interval of the form ,   )    . 

Because of ordered property-2 of the linear continuum L, we can choose a point z of L 

such that        

Then     , contrary to the fact that c is an upper bound for     

Corollary: 

The Real line   is connected and so are intervals and says in    

Proof: 

We know that   is linear continuum then by above theorem, 

We can say that   is connected and so are intervals and rays in  . 

Theorem 8: (Intermediate Value Theorem) 

Let       be a continuum map where X is a connected space Y is an ordered set in 

the order topology. If a and b are two points of X and if r is a point of , lying between f(a) 

and f(b) then there exist a point c of X such that  ( )   . 

Note: The Intermediate Value Theorem of calculus is a special case of this theorem that 

occurs when we take X to be a closed interval in   and Y to be  . 

Proof 

Assume the hypothesis of the theorem the sets, 

   ( )  (    ) and    ( )  (   ) are disjoint ad they are non-empty. 

Because one contains f(a) and other contains f(b) 

Each is open in f(x), being the intersection of an open ray in Y, with f(x). 

If there were no point c of X such that  ( )   . Then f(x) would be the union of the sets 

A and B. 



Then A and B would constitute a separation of f(x), contradicting the fact that the image 

of a connected space under a continuum map is connected. 

Hence the proof. 

 

 

 

Example 1: 

One example of a linear continuum different from   is the ordered sequence. 

We check the least upper bound property (the 2nd property of the linear continuum is 

trial to check) the A be a subset of    . 

Let      ∏ ( )  

If   ∏ ( )  then A intersects the subset b×I of I×I. 

Because b×I has the order type of I, the set   (   ) will have a least upper bound 

b×c which will be the least upper bound of A. 

If   ∏ ( )  then     is the least upper bound of A, No element of the form     with 

     can be an upper bound for A for then b’ would be an upper bound for  ∏ ( ) . 

Example 2: 

If X is a well ordered set then   ,    - is a linear continuum in the dictionary order. 

This set can be thought of an having been constructed by “fitting in” a set of the order 

type of [0 , 1] immediately following each element of x. 

Note: 

Connectedness of intervals in   given rise to an especially useful criterion for showing 

that a space X is connected, namely the condition that every pair of points of X can be 

joined by a path in X. 

Definition 4: 

Given points x and y of the space X a path in X from x to y is a continuum map  

  ,   -    of some closed interval in the real line into X such that  ( )    and  

 ( )     

A space X is said to be path connected if every pair of points of X can be joined by a 

path in X. 



Result: 

Path connected   connected. 

Proof: 

It is easy to see that a path connected space X is connected. Suppose       is a 

separation of X. 

Let   ,   -    be any path in X. Being the continuum image of a connected set. The 

set  (,    -) is connected. 

So that, it lies entirely in either A or B. 

Therefore, there is no path in X joining a point of A to a point of B, contrary to the 

assumption that X is path connected. 

Example 1: 

Define the unit ball    in    by equation    *         + where  

      |              |  (  
    

    
        

 )   ’ 

The unit ball is path connected given any two points x and y of   , the straight line path. 

  ,    -     defined by  ( )  (   )     lies in    for if x and y are in    and t is in 

[0 , 1]. 

|  ( ) |  (   )|   |           

A similar argument show that every open ball   (   ) and every closed ball   
̅̅̅̅ (   ) in 

   is path connected. 

Example 2: 

Define punctured Euclidean space to be the space    * + where 0 is the origin     

If     this space is path connected given x and y different from O. 

We can join x and y by the straight line path between them. If that path does not go 

through the origin otherwise we can choose a point z, not on the line joining x and y and 

take the broken line path from x to z and then z to y. 

A connected space need not be a path connected. 

Example 3: 

The ordered square   
  is connected but not path connected. 

Being a linear continuum the order square is connected. 



Let       and       

We suppose there is a path   ,    -    
  joining p and q and derive a contradiction. 

The image set  (,   -) must contain every point     of   
 , by the intermediate value 

theorem. 

  for each      the set       (  (    )) is non-empty subset of [a,b] by continuity it 

is open in [a,b]. 

Choose for each     a rational number    belonging to   . Since the sets    are 

disjoint the map      is an injective mapping of I into Q. This contradicts the fact that 

the interval I is countable. 

Example 4: 

Let S denote the following subset of the plane  

  *     (   )        + 

Because S is the image of the connected set (0 ,1] under a continuum map, S is 

connected.  

  Its closure  ̅ in    is also connected. 

The Set  ̅ is a classical example in Topology called the Topology’s sine curve 

It equals the union of s and the vertical interval   ,     - 

We show that  ̅ is not path connected. Suppose there is a path   ,    -   ̅  beginning 

at the origin and ending at the point of S. 

The Set of those t for which  ( )    ,     - is closed, so it has a largest element b. 

Then   ,    -   ̅ is a path that maps b into the vertical interval   ,     - and maps 

the other points of ,    - to points of S. 

Replace [b ,c] by [0 ,1] for convenience let  ( )  , ( )  ( )-. Then  ( )   , while 

 ( )    and  ( )    0
 

 ( )
1 for t>0. We show that there is a sequence of points     . 

Such that  (  )  (  ) . 

Then the sequence  (  ) does not converge, contradicting continuity of  . To find   , we 

proceed as follows given n, choose u with      .
 

 
/ such that    .

 

 
/  (  )   Then 

use the intermediate value theorem to find    with      
 

 
 such that  (  )   . 

Compact Spaces 



A collection   of subsets of a space X is said to cover X if the union of elements of   is 

equals to X. 

Here A is called the covering of X. 

  *             + where     X for all I and   
 
        

Open Covering  

The covering of X is called an open covering of X if its elements are open subsets of X. 

Compact Space 

A Space X is said to be compact if every open covering A of X contains a finite sub 

collection that also covers X. 

Example 1: 

The real line    is not compact 

Consider the open covering of  .   *(      )    +. This contains no finite 

collection. 

Example 2: 

Consider the subspace   * +  2
 

 
     3 of   . This is compact in  . Given an open 

covering   of X there is an element U of   containing zero The Set U contains all but 

finitely many points 1/n. 

Choose for each point of X not in U and element of   containing it. The collection 

consisting of these elements of   along with the element U is a finite sub collection of 

   that covers X. 

Example 3: 

Any space X containing only finitely many points is necessarily compact   ( ) every 

covering of X in this case is finite. 

Example 4: 

The interval (0 ,1] is not compact. 

Soln: 

The open covering   2.
 

 
  1      3 contains no finite sub collection that covers 

(0,1] 

Lemma 9: 



Let Y be a subspace of X then Y is compact iff every covering of Y by sets open in X 

contains a finite sub collection covering of Y. 

Proof: 

Suppose Y is compact. Let   *      + is a covering of Y. By sets open in X, then 

the collection, 

*        + is a covering of Y By sets open in Y. 

Since Y is compact there exist a finite sub collection 

{   
      

          
  } which covers Y. 

  
 
 

   
   

   

 4
 
 

   
   

 5  

  
 
 

   
   

 and     

Y=Y 

Then there exist a finite sub collection {   
    

        
}which covers Y. 

Conversely, Suppose the given condition holds. Let *        + be an open covering of 

Y by sets open in Y. 

For each      there exist an    which is open in X. 

Such that           

Ie,   
 

           

  
 

     
(    ) 

  .
 

          /    

  
 

          

By hypothesis there exist a finite sub collection {   
    

        
} that covers Y 

{   
     

         
 } is a sub-collection of *  

       + which covers Y. 



  Y is compact. 

Hence the proof. 

Theorem 10: 

Every closed subspace of a compact space is compact. 

Proof: 

Let Y be a closed subspace of the compact space X. 

Claim: Y is compact. 

Let *      + be an open covering of Y, By sets open in X.  

Now, since Y is closed, X-Y is open and   *   +  *   + is an open covering for X. 

Since X is compact, a finite sub-collection of   covers X. 

If this sub-collection contains the set X-Y, discard X-Y. 

Otherwise leave the sub-collection alone the resulting sub-collection is a finite sub 

collection of *        + which covers Y. 

  Y is compact. 

Hence the proof. 

Theorem 11: 

Every compact space of a Hausdorff space is closed. 

Proof: 

Let Y be a compact subspace of the Hausdorff space X. 

Claim: Y is closed. 

i.e, X-Y is open. 

Let          for each point y of Y. 

Let us choose disjoint neighbourhood    and    of the points    and y respectively. This 

is possible became the space X is Hausdorff. 

Now the collection {        } is an open covering of Y, by sets open in X. Since Y is 

compact, a finite sub collection    
    

        
 covers      

    
        

   

Note that V is an open set containing Y. 



Considering the intersection of the corresponding neighbourhood of   ,      
    

 

        
 where U is an open set containing   . 

      for     

        
 for some i 

      
 for some i 

        

Then U is a neighbourhood of    disjoint from Y. 

Then     

         

Hence the proof. 

Lemma 12: 

If Y is a compact subspace of the Hausdorff space X and    is not in Y, there exist 

disjoint open sets U and V of X, containing    and Y respectively. 

Proof: 

This proof follows from the previous theorem. 

Example: 

The intervals of the type (a , b), [a, b), [a, b] are not compact in  . Because they are not 

closed in the Hausdorff space    

Theorem 13: 

The image of compact space under a continuous map is compact. 

Proof: 

Let        be continuous and X be compact. 

Claim: f(x) is compact. 

Let *        + be an open covering by sets open in Y. 

 *   (  )    + is an open covering of X, by sets open in X. 

Since f is continuous. 

i.e.,   
 

      
  (  ) 



   
 
 

   
   (   

) [   is compact ] 

 ( )  
 
 

   
 .   (   

)/ 

 ( )  
 
 

   
    

 0  .   (   
)/     

1 

  ( ) is compact. 

 

 

 

Theorem 14: 

Let       be a bijective continuous function. If X is compact and Y is a Hausdorff 

then f is a homeomorphism. 

Proof: 

Given that f is one-one and onto and continuous. 

To prove that f is a homeomorphism. 

It remains to prove that f is an open map (or)     is continuous for this it is enough to 

prove that the image under   of each closed set is closed. 

Let A be a closed subset of X which is compact. 

  A is compact. 

   ( ) is compact. 

Since f is continuum. [  closed subset of compact set is compact and continuum image 

of a compact set is compact] 

f(A) is compact subset of Y. 

   ( ) is closed. 

Since compact subset of a Hausdorff space is closed. 

   is a homeomorphism. 

Theorem 15: 

The product of finitely many compact spaces is compact. 



Proof: 

We prove this theorem for 2-spacesthen it follows for finitely many spaces. 

By induction hypothesis 

Step 1: 

The tube lemma 

Consider the product space X×Y, where Y is compact. 

If N is an open set of X×Y, containing the slice      of    . The N contains some 

tube W×Y about      where W is an neighbourhood of    in X. 

Proof: 

X and Y are tow spaces where Y is compact. Let    be a point of X and N be an open 

subset of X×Y containing the slice     . 

To prove there exist a neighbourhood W of    in X. such that N contains W×Y. 

W×Y is called a Tube about      first, let us cover      by a basis elements U×V for 

the topologies of X×Y lying in N. 

Given Y is compact, the space      is homeomorphic to Y and therefore it is compact. 

  Each open cover of      by finitely many such basis elements (U×V) 

     ,      , . . . ,       

We assume that each basis elements       intersects     . 

Define              

Then W is open since   
   are open also      W 

 Since       intersects     . 

We claim that the sets       which cover the slice      actually covers the tube 

W×Y. 

For let          

Consider the point      of     . 

Now            for some i. 

       

But      for all j [    - 



           

Since all the sets                    they cover W×Y. We have      . 

Step 2: 

Let X and Y be compact spaces to prove     is compact. 

Let   be an open covering of    . Let       Then the slice      is homeomorphic 

to Y, Y is compact. 

  Each open covers of      has a finite number of elements of   say (             ) 

If                

Then        

By step -1 the open set N contains a tube W×Y about      where W is open in X then 

W×Y is covered by finitely many elements. 

(            )  of   thus for each   in X. 

We can choose a neighborhood    of x, such that the tube      can  be covered by 

finitely many elements of  . 

The collection of all such neighbourhood    is an open covering of X. 

Since X is compact, there exist a finite sub cover for X. 

Namely *            + the union of the tube *                  + equals X×Y 

ie., there exist a finite such cover for X×Y. 

  X×Y is compact. 

We can extent this result to a finite number of spaces. 

(            ) by using induction hypothesis. 

Suppose              are compact. To Prove that             is compact. 

The result is true for n=2. 

       is compact. 

Assume the result to be true for     

(              ) is compact. 

Now (            ) is compact, and    is compact. 

(            )     is compact. 



(            ) is compact. 

Definition: 

A collection   of subsets of X is said to have the finite intersection property if for every 

finite sub collection *             + of  . 

The intersection             is non empty. 

 

 

 

 

Theorem 16: 

Let X be a topological space then X is compact iff every collection   of closed sets in X 

having the finite intersection property. The intersection 
 

    
   of all the elements of   is 

non-empty. 

Proof: 

Given a collection   of subsets of X. 

Let   *       + be the collection of their compliments then the following 

statements hold. 

  is a collection of open sets iff   is a collection of closed sets. 

The collection   covers X iff 
 

    
      

  covers     
 

     
    

Take complements on both sides, 

      
 

     
    

 
 

     
  (   )  [By Demorgan’s Law] 

   
 

    
   

The finite subcollection *            + of   covers X iff                



  
 
 

   
   if the finite sub collection covers X. 

  
 
 

   
   

 
 

   
(    ) 

  
 
 

   
   

Suppose X is compact, that  

  Each open cover of X has a finite sub cover. 

  If   is a family of open sets in X such that   covers X then some finite sub 

collection of   covers X. 

 If no finite sub-collection of   covers X then   also does not cover X. 

Let   *       + 

Then by (1)   is a family of closed sets. 

By (3), No finite sub collection of   covers X, means 

*           + of  . 

By (2)   does not cover X means 

 
    

        is a collection of closed sets satisfying the finite intersection           

property then 
 

    
    . 

Refracting the steps we can prove this converse. 

Note: 

A special case of the above theorem occurs when we have a nested sequence. 

                  of closed sets in a compact space X. If each of the sets    is 

non-empty then the collection   *  +    
 

Automatically has the finite intersection property then the intersection is non-empty. 

 
    

    

Compact Subspaces of Real line: 

Theorem 17: 



Let X be a Simply ordered set having the Least upper bound property in the ordered 

topology, each closed interval in X is compact. 

Proof: 

Let                

Consider the interval ,   - in X. Let   be an open covering of ,   - by sets openin ,   - 
in the subspace topology which is the sane as the ordered topology. 

To prove that there exist a finite sub-collection of   which covers (a,b] will be compact. 

Step 1: 

To prove that “If x is a point of [a,b],    . Then there exist a point     in [a,b] such 

that [x,y] can be covered by atmost two elements of A”. 

Suppose x has an immediate successor in X, then [x,y] consists of the two points x and 

y. 

[x,y] can be covered by atmost two elements of  . 

Suppose x has a no-immediate successor in X. Then choose an element     

containing x. 

Now     and A is open. 

  A contains an interval of the form ,   ) for some   ,   -. Choose a pint y in ,   ). 
Then ,   - is covered by     . 

Step 2: 

Let   be the set of all points     of [a,b] such that [a,y] can be covered by finitely 

many elements of  . 

            *  ,   - (   -                                         + 

Apply step 1, by taking    . Then there exist atleast one such y. 

  is not empty. Let C be the least upper bound of  . Then      . 

Step 3: 

To prove that      

To prove that [a,c] can be covered by finitely many elements of  . Choose an element 

    containing C. 

  A is open A contains an interval of the form (d , c] for some d in [a,b]. 

Suppose     . 



Then there is a point      such that   (    - (for otherwise d would be a smaller 

upper bound of   than   . 

Since     , [a , z] can be covered by finitely many elements of   (By definition of  ). 

Say n elements           . 

Now ,   - lies in the single element      

 ,   -  ,   -  ,   - 

  [a,c] can be covered by finitely many elements (n+1 elements of  ) 

      

   to our assumption that    . 

       

 

Step 4: 

Claim:     

Suppose     

Apply step 1 by taking     

Then there exist a point     of ,   -. 

Such that [c,y] can be covered by finitely many elements of   . 

By step 3,      

 ,   - can be covered by finitely many elements of    

 ,   -  ,   -  ,   - 

 ,   - can be covered by finitely many elements of    

  y    

This is a contradiction to the fact that C is the least upper bound of    

       

 ,   - can be covered by finitely many elements of    

 ,   - is compact. 

Corollary: 



Prove that closed interval in   is compact. 

Proof: 

The        is linearly ordered set with least upper bound property. 

Every closed interval in   is compact. 

Theorem 18: Characterization of Compact subset of    

A subspace A of    is compact if and only if it is closed and bounded in the Euclidean 

metric d or the square metric  . 

Proof: 

We know that  (   )   (   )  √   (   ). 

A is bounded under   iff it is bounded under d. 

  Let us consider the metric   

(i) Suppose A is compact. 

To prove that A is closed and bounded    is Hausdorff. 

  A is closed. 

[  Compact subset of Hausdorff space is closed.] 

It remains to prove that A is bounded. 

Consider the collection of open sets {  (   )     } whose union is all     

i.e., This is an open covers for     

A is a subset of     

We can consider this is an open covers for A, also A is compact. 

There exist a finite subcover for A. 

      (   ) for some M. 

Suppose      . Then        (   ) 

   (    )    and  

 (    )    

   (    )   (    )   (    )     

  A is bounded under the metric  . Then A is closed and bounded. 



(Ii) Suppose A is closed and bounded under   

To prove that A is compact 

A is bounded, let us assume that  (   )    for all pair       

Choose a point    of A and let  (    )    

 (    )   (    )   (    ) 

     

Let       

Consider ,    - . Then A is a subset of ,    - . 

 ,    -  is a compact. 

So A is closed compact subset of a compact space is compact. 

Theorem 19: (Extreme value theorem) 

Let       be continuous where Y is an ordered set in the order topology. If X is 

compact, then there exist points c and d in X such that  

 ( )   ( )   ( ) for every   . 

Proof: 

Given       is continuous and X is compact. 

 ( ) is compact. 

Let  ( ) is compact. 

Let  ( )    

To prove that  A  has a largest element M and a smallest element m. 

Suppose A has no larger element , 

Then the collection 

*(    )    + is an open covering for A. 

A is compact. Therefore there exist a finite sub cover. 

ie., the finite subcollection * (     ) (     )    (     )+ covers A. 

Suppose       *            +. Then    must belong to A. 

But A has no larger element which is a contradiction. 



Therefore, A has a largest element. 

Similarly we can prove that A has a smallest element. 

Hence A has a larger element M and a smallest element m. 

i.e.,       

We have  ( )    and  ( )    for some       

   ( )  ( )   ( )  for all     

Hence the proof. 

Definition: The distance from x to A 

Let (   ) be a metric space. Let A be a nonempty subset X. For each    , We define 

the distance from   to A by the equation. 

 (   )     * (   )    + 

Definition: 

The diameter of a bounded subset A of a metric space (   ) is the number  

   * (     )        +. 

Lemma 20: 

The lebesque number lemma. 

Let   be an open covering of the metric space (   ). If X is compact, there is a     

such that for each subset of X having diameter less than  , there exist an element of   

containing it. The number δ us called a lebesgue number for the covering  . 

Proof: 

Let   be an open covering of X. Suppose      Then any positive number is a 

lebesgue number for  . So assume       

As X is compact, there exist a finite Sub-collection *          + of   that covers X. 

Let        ,           

Define       by  

 ( )  
 

 
∑ (    )

 

   

 

Then  ( )    for all x, for if    . Choose   so that     . Then choose the   

neighbourhood of   that lies in  . 



Then  (    )     

 ( )  
 

 
  

Since   is continuous it has a minimum value δ. 

Claim:   is one required lebesque number. Let B be a subset of X of diameter less than 

δ. 

Let     . 

Now B lies in the Neighbourhood of   . Now, 

   (  )  
 

 
, (     )  (     )      (     )- 

  (     )  

where  (     ) is the largest of the numbers  (     ). 

Now the   neighbourhood of    is contained in         of the covering  . 

Definition: Uniformly Continuous 

A function   from the metric space (    )is said to be uniformly continuous if given   
  there is a     such that for every pair of points   ,   of  . 

  (     )      ( (  )  (  ))     

Theorem 21: 

Uniform Continuity Theorem 

Let       be a continuous map of the compact metric space (    ) to the metric 

space (    )  Then f is uniformly continuous. 

Proof: 

Given     take the open covering of Y. By balls  (     ) of radius      

Let   be the open covering of X by 

{   ( (     ))    }  Let r be the lebesgue number for the covering  . To prove   is 

uniformly continuous. Let         such that   (     )   . Then the set {     } has 

diameter less than δ. 

So that there exist some element in {   ( (     ))    } such that  

*     +     ( (     )) 



  (*     +)   .  
 

 
/               

  (  )  (  )   .  
 

 
/              

  (   (  ))  
 

 
. 

Now 

  ( (  )  (  ))   ( (  )  )   (   (  )) 

 
 

 
 

 

 
   

  (     )      ( (  )  (  ))    

        are arbitrary. 

  f is uniformly continuous.  

Definition: Isolated Point 

If X is a space a point   of   is said to be an isolated point of X. If the one point set * + 
is open in X. 

Theorem 22: 

Let X be a non-empty compact Hausdorff space. If X has no isolated points then X is 

uncountable. 

Proof: 

Step 1: 

We show first that given any non-empty openset U of X and any point   of X there exist 

a non-empty open set     such that    ̅  

Choose a point of   of   different from                                                                                         

If      then U * + as x is not an isolated point of X.There exist y    

If      then as U  , there exist y  . 

Now     and X is Hausdorff.   disjoint non-empty open sets    and    about   and   

respectively. 

Let       . Then V is open (being intersection of open sets). 

    as (y  ). 

   ̅ (as there exist a neighbourhood    of         )  



Step 2: 

To Prove: X is uncountable. 

To Prove        is not surjection. 

Let  ( )    . 

Now      and take      

By step 1, there exist an open set      

          ̅. 

Now      and    is open in  , there exist       such that      there exist an 

oopen set       

         and      ̅ 

Consider the nested sequence. 

  ̅    ̅    ̅      ̅ of non-empty closed sets. 

Therefore they satisfy finite intersection property   ̅   . 

By theorem. 

Let       ̅ 

      ̅ for all n and      ̅ for all n. 

     for any n. 

There exist no principle for x under     

    is not surjective. 

  is not bijective and so. 

X is uncountable. 

Limit Point Compactness 

Definition: 

A space X is said to be limit point compact, if every infinite subset of X has a limit point. 

Theorem 23: 

Compactness implies limit point compactness but not conversely. 

Proof: 



Let X be a compact space. Given a subset   of X, we wish to prove that if   is infinite, 

then   has a limit point. 

We prove the contrapositive if   has no limit point, then   must be finite.  

So, suppose   has no limit point. Then   contains all its limit points so that   is closed. 

Furthermore, for each    . We can choose a neighbourhood    of a such that     

intersects   in the point a alone. 

The space X is covered by the open sets     and the open sets    being compact, it 

can be covered by finitely many of there sets. 

Since x-a does not intersect A and each set    contains only one point of A, the set a 

must be finite. 

 

Example 1: 

Let Y consists of two points give Y the topology consisting of T and the empty set then 

the space,        is limit point compact, for every non-empty subset of X has limit 

point. It is not compact for the covering of X by the open sets, 

   * +    has no finite subcollection covering of X. 

Definition  

Let X be a topological space. If (  ) is a sequence of points of X, and if          
     is an increasing sequence of positive integers then the sequence (  ) defined by 

setting        is called a subsequence of the sequence (  ).  

The space X is said to be sequentially compact if every sequence of points of X has a 

convergent subsequence. 

Theorem 24: 

Let X be a metrizable space. Then the following are equivalent. 

(i)  X is compact. 

(ii)  X is limit point compact. 

(iii) X is sequentially compact. 

Proof: 

To Prove: (i)  (ii) 

Refer Theorem-23. 



To Prove: (ii)  (iii) 

Assume X is a limit point compact. 

To prove that X is sequentially compact. Given a sequence (  ) of points of X 

Consider the set   *       +. If the set A is finite then there is a point x such that 

      

For finitely many values of n. 

In this case, the sequence (  ) has a subsequence that is constant. 

  Converges trivially. 

If A is infinite, then A has limit point x. 

We define a subsequence of (  ). Converging to  . 

First Choose   ,    
 (   ) 

Suppose that the positive integers      is given. Because the ball  .  
 

 
/ intersects A in 

infinitely many points. 

We can choose         such that 

   
 (  

 

 
) 

U contains    
for all    .Then the subsequence    

,    
   converge to    

To Prove: (iii)   (i) 

First we show that X is sequentially compact then the lebesgue number lemma holds for 

X. Let A be an open covering of X. Assume that there is a δ>0 such that each set of 

diameter less than δ has an element of   containing it and derive a contradiction our 

assumption.  

In Particular that for each positive integers n there exist a set of diameter less than1/n 

that is not contained in any element of  . 

Let    be such a set. Choose a point       for each n. By hypothesis, 

Some subsequence (   ) of the sequence (  ) converges say to the point    

Now   belongs to some element A of the collection  , because A is open. 

We may choose an     such that  (   )     

It is large enough that 
 

  
 

  

 
 . Then the set     lies in the 

 

 
- neighbourhood of    

. 



If   is also chosen large enough that  

 (   
  )  

 

 
 

Then    
 lies in the  -neighbouhood of A. 

   
   

Contrary to hypothesis 

Second we show that if X is sequentially compact given     there exist a finite covring 

of X by open  -balls. 

Once again we proceed by contradiction, Assume that there exist an     such that X 

cannot be covered by finitely many  -balls. 

Construct a sequence of points    of X follows 

First we choose   to be any point of X Nothing that the ball  (   ) is not all of X/ 

Otherwise X could be covered by a single   ball. 

Choose    be a point off X not in  (   ). 

In general, given           . Choose            point not in the union. 

 (    )  (    )    (    ). Using the fact that these balls do not cover X. 

Note by construction  (       )    for i=1,2,…,n. 

The sequence (  ) can have no convergent subsequence. 

In fact any ball of radius     can contain    for at least one value n which is a 

contradiction. 

Finally, we show that if X is sequentially compact X is compact. 

Let A be an open covering X because   is sequentially compact. Then the open 

covering A has a lebesgue number    Let        Use sequential compactness of X to 

find a finite converging of X by open    balls. 

Each of these balls has diameter at most 
  

 
 so lies in an element of  . 

Choosing one such element of   for each of those    balls; we obtain a finite sub 

collection of   covers  . 

  X is compact. 

Hence the proof. 
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