UNIT IV

The Countabillity Axioms

DEFINITION:

A space X is said to have a countable basis at x if there is a countable collection \mathcal{B} of neighborhoods of x. Such that each neighborhood of x contains at least one of the elements of \mathcal{B} . A space that has a countable basis at each of its points is said to satisfy the first countability axiom or to be first countable.

THEOREM:

Let X be a topological space.

- (a) Let A be a subset of X. If there is a sequence of points of A. Convering to x, then $x \in \overline{A}$, the converse holds if X is first countable.
- (b) Let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X,

the sequence $f(x_n)$ converges to f(x). The converse holds if x is first countable.

PROOF:

Proof is similar to sequence lemma. And theorem following it.

X is metrizable \Rightarrow X is first countable

DEFINTION 2:

If a space X has a countable basis for its topology, then X is said to satisfy the second countability axioms or to be second – countable

Example: 1

The real line \mathbb{R} has a countable basis the collection of all open intervals (a, b) with rational end points. Likewise \mathbb{R}^n has a countable basis the collection of all products of intervals having rational end points. Even \mathbb{R}^{ω} has a countable basis the collection of all products of all products $\prod_{n \in \mathbb{Z}_+} U_n$, where U_n is an open interval with rational end points for finitely many values of n, and $U_n = \mathbb{R}$ for all other values of n.

Example: 2

In the uniform topology \mathbb{R}^{ω} satisfies the first countability axiom (being metrizable). However, it does not satisfy the second.

THEOREM:

A subspace of a first-countable space is first countable, and a countable product of first-countable space is first-countable. A subspace of a second-countable space is second countable, and a countable product of second countable spaces is second countable.

PROOF:

(i) Any subspaces of a first countable space is first countable
 let (x, τ) be a first countable and

let (A, τ_A) be a subspace.

Let there be a countable basis is at each point of x.

Let $x \in A$ be arbitrary then $x \in X$ then \mathcal{B} be a countable basis at x.

 \Rightarrow each neighborhood of x contains atleast one of the element of \mathcal{B}

 $x \in B \subset U_x$ where U_x is a neighbourhood of x and $B \in \mathcal{B}$

B and U_x are open in x.

 \Rightarrow B \cap A and $U_x \cap$ A are open in A

Also $x \in B \cap A \subset U_x \cap A$.

Since $x \in A$ is arbitrary, $\boldsymbol{\mathcal{B}}$ is a countable basis at each point of A.

 \Rightarrow (A, τ_A) is a first-countable

(ii) Countable product of first-countable spaces is first-countable.

Consider the product $\prod_{n \in \omega} X_n$ where each X_n is first-countable ($\omega \subseteq \mathbf{Z}_+$)

Let \mathcal{B}_n be a countable basis at each point of $X_n \forall \mathcal{n} \in \mathcal{O}$

Let $x_n \in X_n$.

 $\Rightarrow \boldsymbol{\mathcal{B}}_n$ is a countable basis at x_n

 $\Rightarrow x_n \in \mathcal{B}_n U_{\chi_n}, U_{\chi_n}$ is a neighbourhood of x_n

Consider the collection $\prod B_n, B_n \in \boldsymbol{\mathcal{B}}$

Then the collection $\{B_n\}$ is countable basis at $\prod X_n$, n=1, 2, ... (i.e.,) $n \in \omega$

 $\Rightarrow \prod X_n$ is first countable.

(iii) Any subspace of a second-countable space is second countable.

Let (x, τ) be second countable

Let (A, τ_A) be a subspace.

Let ${\boldsymbol{\mathcal{B}}}$ be a countable basis for $\,\tau\,$

Consider $\mathcal{B}' = \{B \cap A / B \in \mathcal{B}\}$

Then **B**' is a countable basis for τ_A . The subspace (A, τ_A) is second countable .

(iv) Countable product of second countable spaces is second countable.

Consider the product $\prod_{n \in \omega} X_n$ where X_n is second countable and $\omega \subseteq \mathbf{Z}_+$.

Let \mathcal{B}_n be a countable basis for the topology of $X_n \forall n \in \omega$

Consider the collection of all products $\prod U_n$ where $U_n \in \mathcal{B}_n$ for finitely many n and

 $U_n = X_n$ other values of n.

Then the collection $\{\prod U_n\}$ is a countable basis for the topology of $\prod_{n \in \omega} X_n$

 $\therefore \prod_{n \in \omega} X_n$ is second countable.

DEFINITION: Dense

A subset A of a space x is said to be dense in X if π =x

THEOREM:

Suppose that x had a countable basis then

- a) Every open covering of x contains a countable subcollection covering x.
- b) There exists a countable subset of x that is dense in X.

[We know that, $\overline{D} \subseteq X$. To prove: $X \subseteq \overline{D}$, let $x \in X$. Some $B_n \to x \in B_n$. Now $B_n \cap D \neq \emptyset$

as $x_n \in B_n \cap D$.]

PROOF:

Let $\{B_n\}$ be a countable basis for x.

- a) Let A be an open covering of x. For each positive integer n for which it is possible, choose an element A_n of A. Containing the basis element B_n . The collection A' of the sets A_n is countable, since it is indexed with a subset J of the positive integers. Furthermore, it covers x. Given a point $x \in X$. We can choose an element A of A containing x. Since A is open, there is a basis element B_n such that $x \in B_n \subset A$. Because B_n lies in an element of A that index n belongs to the set J. So A_n is defined, Since A_n contains B_n it contains x. Then A' is a countable sub collection of A that overs X.
- b) From each non-empty basis element B_n choose a point x_n . Let D be the set consisting of the points x_n . Then D is dense in x. Given any point x of X every basis element containing x intersects D, so x belongs to \overline{D} .

DEFINITION: Lindel of Space:

A space for which every open covering contains a countable subcovering is called a Lindel of space.

DEFINITION: Separable:

A space having a countable dense subset is often said to be separable.

SECTION: II The Separation Axioms

DEFINITION: Regular and Normal space:

Suppose that one point sets are closed in x.

- a) Then x is said to be regular if for each pair consisting of a point x, and a closed setB, disjoint open sets containing x and B respectively.
- b) The space \underline{X} is said to be normal if for each pair A, B of disjoint closed sets of \underline{X}

There exists disjoint open sets containing A and B respectively.

LEMMA:

Let X be a topological space. Let one-point sets in x be closed

- a) X is regular iff given a point x of X and a neighborhood U of x, there is a neighborhood v of x such that $\overline{V} \subset U$.
- b) X is normal iff given a closed set A and an open set U containing A, there is an open set V containing A such that $\overline{V} \subset U$.

PROOF:

a) Suppose that X is regular and suppose that the point x and the neighborhood U of x are given

Let B= X-U;

Then B, is a closed set.

By hypothesis, there exist disjoint open sets, V and W containing x and B, respectively. From \overline{V}

$$\overline{V} \cap B = \phi$$

For if $y \in B$. W is a neighborhood of y which is disjoint from V.

 $y \in W$, W

 \Rightarrow y $\notin \overline{V}$ (: there exists a neighborhood W of y \rightarrow W \cap V = ϕ)

$$\overline{V} \cap B = \phi \Longrightarrow \overline{V} \subset X - B = U$$
$$\therefore \overline{V} \subset U$$

To prove the converse,

Suppose that the point ${\bf x}$ and the closed set ${\bf B}$ not containing ${\bf x}$ are given

Let U=X-B

By hypothesis, there is a neighborhood v of x. Such that $\overline{V} \subset U$.

The open sets V and X- \overline{V} are disjoint open sets containing x and B, respectively. Then x is regular.

b) Suppose that X is normal and suppose that the closed set A and the neighborhood U of A are given

Let B= X-U

Then B is a closed set.

By hypothesis, there exists disjoint open sets V and W containing A and B, respectively,

The set \overline{V} is disjoint from B, for if $y \in B$ the set W is a neighborhood of y disjoint from V.

 $\therefore \overline{V} \subset U$ as desired

To prove the converse,

Suppose that the closed set A and the closed set B not containing closed set A are given,

W

Let U= X-B.

By hypothesis, there is a neighborhood V of closed set A such that $\overline{V} \subset U$.

The open sets V and X- \overline{V} are disjoint open sets containing closed sets A and closed set B, respectively.

Thus X is normal.

THEOREM:

a) A subspace of a Hausdorff, a product of Hausdorff space is Hausdorff.

<u>Proof:</u>

i) Let X be Hausdorff

Let x and y be two point of the subspace Y of X.

If U and V are disjoint-neighborhood in X of x and y respectively, then $U \cap Y$ and $V \cap Y$ are disjoint neighborhood of x and y in Y.

(ii) Let $\{x_{\alpha}\}$ be a family of Hausdorff space.

Let $X = (x_{\alpha})$ and $Y = (y_{\alpha})$ be distinct points of the product space $\prod X_{\alpha}$. Because $x \neq y$, there is some index β . Such that $\chi_{\beta} \neq \gamma_{\beta}$

Choose disjoint open sets U and V in χ_{β} containing χ_{β} and γ_{β} respectively,

Then the sets $\prod_{\beta=1}^{n-1}(U)$ and $\prod_{\beta=1}^{n-1}(V)$ are disjoint open sets in $\prod x_{\alpha}$

Containing x and y respectively.

THEOREM:

b) A subspace of a regular space is regular a product of a regular space is regular. *PROOF:*

Let Y be a subspace of regular space X. Then one point sets are closed in Y. Let x be a point of y and let B be a closed subset of y disjoint from x.

Now $\overline{B} \cap Y = B$. Where \overline{B} denotes the closure of B in x.

Therefore, $x \notin \overline{B}$, so using regularity of x. We can choose disjoint open sets U and V of X containing x and \overline{B} respectively.

Then $U \cap Y$ and $V \cap Y$ are disjoint open sets in Y containing x and B, respectively.

ii) Let $\{x_{\alpha}\}$ be a family of regular space.

Let $X = \prod X_{\alpha}$ (By a) X is Hausdorff. So, that one point sets are closed in X. We use the preceding lemma to prove regularity of X.

Let $X = (x_{\alpha})$ be a point of X and let U be a neighborhood of x in X. Choose a basis element $\prod U_{\alpha}$ about x contained in U. Choose, for each α , a neighborhood V_{α} of x_{α} in X_{α} such that $\overline{V}_{\alpha} \subset U_{\alpha}$, if it happens that $U_{\alpha} = X_{\alpha}$, choose $V_{\alpha} = X_{\alpha}$. Then $V = \prod V_{\alpha}$ is a neighborhood of x in X. Since $\overline{V}_{\alpha} = \prod \overline{V}_{\alpha}$ by theorem, Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given either the product or the box topology, then

$$\prod \overline{A}_{\alpha} = \overline{\prod A_{\alpha}}$$

It follows at once that $\overline{V} \subset \prod U_{\alpha} \subset U$ so that X is regular.

Normal Space:

THEOREM:

Every regular space with a countable basis is normal.

PROOF:

Let X be regular space with a countable basis \mathcal{B} . Let A and B be disjoint closed subsets of x. Each point x of A has a neighborhood U not intersecting B using regularity, choose a neighborhood V of x. Whose closure lies in U. Finally, choose an element of \mathcal{B} containing x and contained in V. By choosing such a basis element for each x in A, we construct a countable covering of A by open sets. Whose closure do not intersect B. Since this covering of A is countable. We can index it with the positive integers.

Let us denote it by $\{U_n\}$ similarly, choose a countable collection $\{V_n\}$ of open sets covering B. Such that each set $\overline{V_n}$ is disjoint from A. The sets $U = \bigcup U_n$ and $V = \bigcup V_n$ are open sets containing A and B, respectively but they need not be disjoint. We perform the following simple, tricks to construct two open sets that are disjoint.

NOTE:

Regular with countable basis \Rightarrow Normal

Normal \Rightarrow Regular \Rightarrow Hausdorff.

Given n, define

 $U_n' = U_n - \bigcup_{i=1}^n \overline{V_i}$ and $V_n' = V_n - \bigcup_{i=1}^n \overline{U_i}$ note that each set U_n' is open being the difference of open set U_n and a closed set $\bigcup_{i=1}^n \overline{V_i}$. Similarly, each set V_n' is open.

The collection { U_n '} covers A, because each x in A belongs to U_n for some n, and x belongs to none of the sets $\overline{V_i}$.

Similarly, the collection $\{V_n'\}$ covers B.

Diagram

Finally the open sets

 $U' = \bigcup_{n \in Z_+} U'_n$ and $V' = \bigcup_{n \in Z_+} V'_n$ are disjoint. For if $x \in U' \cap V'$, then

 $\mathbf{x} \in U'_j \cap V'_k$ for some j and k.

Suppose that $j \leq k$.

If follows from the definition of U'_j that $x \in U_j$ and since $j \le k$ it follows from the definition of V'_k that $x \notin \overline{U_j}$.

A similar contradiction arises if $j \ge k$.

THEOREM:

Every metrizable space is normal.

<u>PROOF:</u>

Let X be metrizable space with metric d. Let A and B be disjoint closed subsets of X. For each $a \in A$,

Choose ε_a so that the ball B (a, ε_a) does not intersect B.

Similarly, for each $b \in B$. choose ε_b so that the ball B(b, ε_b) does not intersect.

Define

U=
$$\bigcup_{a \in A} B(a, \varepsilon_a/2)$$
 and
V= $\bigcup_{b \in B} B(a, \varepsilon_b/2)$

Then U and V are open sets A and B respectively, we assert they are disjoint for if $z \in U \cap V$, then

 $z \in B(a, \varepsilon_a/2) \cap B(a, \varepsilon_b/2)$ for some $a \in A$ and some $b \in B$. The triangle inequality applies to show that

d (a, b) <
$$(\varepsilon_a + \varepsilon_b)/2$$

If $\varepsilon_a \leq \varepsilon_b$, then d(a, b)< ε_b so that the ball B(b, ε_b) contains the point a. If $\varepsilon_b \leq \varepsilon_a$, then d(a, b)< ε_a so that the ball B (a, ε_a) contains that b. Neither situation is possible.

THEOREM:

Every well ordered set X is normal in the order topology.

PROOF:

Let X be a well ordered set

To prove: X is normal

First, we need to prove that, every interval of the form.

(x, y] is open in X.

If X has the largest element and y is that element.

 \Rightarrow (x, y] is just a basis element about y. If y is not largest element of X.

Then (x, y] = (x, y'] where y' is the immediate success of y.

```
\therefore The interval of the form (x, y] is open in X.
```

Let A and B be disjoint closed sets in X. Assume that neither A nor B containing the smallest element a_0 of X for each $a \in A$, there exist a basis element about 'a' disjoint from B.

 \Rightarrow a \in U \subset A and U \cap B = Ø for each b \in B, \exists a basis element about 'b' disjoint from A.

⇒ b∈U⊂B and V∩A = Ø. Here, U= $\bigcup_{a \in A} (x_a, a]$ and V= $\bigcup_{b \in B} (y_b, b]$ i.e,) U and V are open sets containg A and B respectively.

Next, we have to prove

 $U \cap V = \emptyset$ (i.e, they are disjoint) Suppose $z \in U \cap V$

 \Rightarrow z \in (x_a, a] \cap (y_b, b] for some a \in A and b \in B.

Assume that, a
d intervals if a $\leq y_b \Rightarrow$ (The two intervals are disjoint) (x_a, a] and (y_b, b] are disjoint while a> $y_b \Rightarrow a \in (y_b, b] \Rightarrow a \in B$ which is a contradiction ($\because a \in A$)
Similarly for b< a \Rightarrow contradiction.

Finally, \therefore U \cap V=Ø

Assume that A & B are disjoints sets in X and A containing the smallest element of a_0 of X.

The set $\{a_0\}$ is both open and closed in X.

 $\therefore \exists$ disjoint open sets U and V containing the closed sets. A-{ a_0 } and B respectively then, U \cup { a_0 } & V are disjoint open sets containing A and B respectively.

THEOREM:

Every compact Hausdorff space is normal.

PROOF:

Let X be a compact Hausdorff space.

We have already essentially proved that X is regular.

For if x is a point of X and B is closed set in X not containing x, then B is compact.

By theorem,

Every closed subspace of a compact space is compact.

Applying lemma,

"If Y is compact subspace of a Hausdorff space X and x_0 is a point not in Y then there exist open sets U and V containing x_0 and Y respectively."

... There exist open sets containing x and B respectively.

∴X is regular.

Essentially the same argument as given in that lemma can be used to show that

X is normal.

Given disjoint closed sets A and B in X.

Choose for each point "a" of A, disjoint open sets U_a and B containing a and B respectively.

The collection { U_a } covers A, because A is compact.

A may be covered by finitely many sets $U_{a_1}, U_{a_2}, \ldots, U_{a_n}$

Then $U=U_{a_1}\cup\ldots\ldots\cup U_{a_n}$ and

V= $V_{a_1} \cap \dots \cap V_{a_m}$ are disjoint open sets containing A and B respectively.

Hence X is normal.

SECTION: III URYSOHN lemma:

THEOREM: 10

Let X be a normal space, let A and B be disjoint closed subsets of X. Let [a, b] be a closed intervals in the real line. Then there exist a continuous map.

 $f: X \rightarrow [a, b]$ such that

f(x) = a for every x in A and f(x)=b for every x in B.

PROOF:

We consider the particular interval [0, 1] to prove the lemma,

First we construct a certain family U_p of open sets of X indexed by rational numbers. We can use the sets to define the continuous function f.

STEP 1: Let P be the set of all rational numbers in the interval [0,1]. We shall define, for each p in P, an open set U_p of x, in such a way that whenever p<q, we have $\overline{U_p} \subset U_q$.

Thus, the sets U_p will be simply ordered by inclusion in the same way their subscripts are ordered by the usual ordering in the real line.

Because P is countable, we can use induction to define the sets U_p (or rather, the principle of reccursive definition. U_1 = X-B (including α)

Arrange the elements of the sequence infinite sequence in some way for convenience. Let us suppose that the numbers 1 and 0 are the first two elements of the sequence.

Now define the sets U_p first define $U_1 = X - B$ second, because A is a closed set contained in the open set U_1 we may be normality of x choose an open set U_0 such that

 $A \subset U_0 \text{ and } \overline{U_0} \subset U_1$

In general, let P_n denote the set consisting of the first n rational numbers in the sequence. Suppose that U_p is defined for all rational numbers p belonging to the set P_n satisfying the condition

$$\mathsf{P} < \mathsf{q} \Rightarrow \overline{U_p} \subset U_q \longrightarrow (*)$$

Let r denote the next rational number in the sequence; we wish to define U_r .

Consider the set $P_{n+1} = P_n \cup \{r\}$. It is a finite subset of the interval [0, 1] and as such it has a simple ordering derived from the usual order relation < on the real line. In a finite simply ordered set, every element (other than the smallest predecessor and the largest) has an immediate predecessor and an immediate successor.

"Theorem 10.1. Every nonempty finite ordered set has the order type of a section {1, ..., n} of Z+, so it is well-ordered."

(see theorem 10.1). The number 0 is the smallest element, and 1 is the largest element of the simply ordered set P_{n+1} , and r is neither 0 nor 1. So r has an immediate predecessor p in P_{n+1} and an immediate successor q in P_{n+1} . The sets U_p and U_q are already defined and $\overline{U_p} \subset U_q$ by the induction hypothesis usinf normality of X. We can find an open set U_r of X such that

$$\overline{U_p} \subset U_r \text{ and } \overline{U_r} \subset U_q$$

We assert that (*) now holds for every pair of elements of P_{n+1} . If both elements lie in P_n , (*) holds by the induction hypothesis. If one of them is r and the other is a point s of P_n , then either s $\leq p$, in which case,

$$\overline{U_s} \subset \overline{U_p} \subset U_r$$

or $s \ge q$, in which case

$$\overline{U_r} \subset U_q \subset U_s$$
.

Thus for every pair of elements of P_{n+1} , relation (*) holds.

By induction, we have U_p defined for all $p \in P$.

To illustrate let us suppose we started with the standard way of arranging the elements of P in an infinite sequence.

After definition U_0 and U_1 we would define $U_{1/2}$ so that $\overline{U_0} \subset U_{1/2}$ and $\overline{U_{1/2}} \subset U_1$.

Thus we would fit in $U_{1/3}$ between U_0 and $U_{1/2}$ and $U_{1/3}$ between $U_{1/2}$ and U_1 . And so on.

At the eight step of the proof we would have the situation pictured in figure. And the ninth step would consist of choosing an open set $U_{2/5}$ to fit in between $U_{1/3}$ and $U_{1/2}$. And so on.

STEP 2: Now we have defined U_p for all rational numbers P in the interval [0, 1] we extend this definition to all rational numbers P in R, by defining,

$$U_p = \emptyset$$
 if p<0
 $U_p = X$ if p<1

It is still true (as you can check) that for any pair of rational numbers p and q.

 $P < q \implies \overline{U_p} \subset U_q$

STEP3: Given a point x of X. Let us define $\mathbb{Q}(x)$ be the set of those rational numbers p. Such that the corresponding open sets U_p contains x.

$$\mathbb{Q}(\mathbf{x}) = \{ \mathbf{p} / \mathbf{x} \in U_p \}$$

This set contains no number less than 0, since no x is in U_p for p < 0. And it contains every number greater than 1. Since every x is in U_p for p>1.

 $\therefore \mathbb{Q}(x)$ is bounded below, and greatest lower bound is a point of is [0,1]. Define

$$f(\mathbf{x}) = \inf \mathbb{Q}(\mathbf{x})$$
$$= \inf \{p/\mathbf{x} \in U_p\}$$

<u>STEP4</u>: We show that f is the desired. If $x \in A$, then $x \in U_p$ for every $p \ge 0$. So that $\mathbb{Q}(x)$ equals the set of all non-negative rational, and $f(x) = \inf \mathbb{Q}(x)$. Similarly, if $x \in B$, then $x \in U_p$ for no $p \le 1$, so that $\mathbb{Q}(x)$ consists of all rational numbers greater than 1 and f(x)=1.

All this is easy. The only hard part is to show that f is continuous.

For this purpose, we first prove the following elementary facts:

(1)
$$\mathbf{x} \in \overline{U_r} \Rightarrow \mathbf{f}(\mathbf{x}) \le \mathbf{r}$$

(2)
$$x \notin U_r \Rightarrow f(x) \ge r$$

To prove: (1) note that if $x \in \overline{U_r}$ then $x \in U_s$ for every s>r

 \therefore Q(x) contains all rational numbers greater than r, so that by definition we have f(x)= inf Q(x) \leq r

To prove (2), note that $x \notin U_r$ then x is not in U_s for any s<r.

 \therefore Q(x) contains no rational numbers less than r, so that $x \in \overline{U_r}$, r<s,

$$\overline{U_r} \leq U_s.$$

$$f(x) = \inf \mathbb{Q}(x) \ge r$$

Now we prove continuity of f given a point x_0 of X and an open intervals (c, d) in \mathbb{R} containing the point $f(x_0)$. We wish to neighborhood U of x_0 such that $f(x) \le r$

$$f(U) \subset (c, d)$$

Choose rational numbers p and q such that c .

We assert that the open set U = $U_q - \overline{U_p}$ is desired neighborhood of x_0

First, we note $x_0 \in U$. For the fact that $f(x_0) < q$ implies by condition (2) that $x_0 \in U_q$, while the fact that $f(x_0) > p$ implies by (1) that $x_0 \notin \overline{U_p}$

Second, we show that $f(U) \subset (c, d)$. Let $x \in U$. Then $x \in U_q \subset \overline{U_q}$. So that $f(x) \leq q$ by (1)

And $x \notin \overline{U_p}$. So that $x \notin U_q$ and $f(x) \ge p$, by (2)

Thus, $f(x) \in [p, q] \subset (c, d)$ as desired

Separated by a continuous function

If A and B are two subsets of the topological space X, and if there is a continuous function f: $X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. We say that A and B can be separated by a continuous function.

Completely regular:

A space X is completely regular if one-point sets are closed in X and if for each point x_0 and each closed set A not containing x_0 , there is a continuous function f: X \rightarrow [0, 1] such that $f(x_0)=1$ and f(A)=0.

THEOREM:

(i) A subspace of a completely regular space is completely regular.

PROOF:

Let X be completely regular, let Y be a subspace of X. Let x_0 be a point of Y, and let A be a closed set of Y disjoint from x_0 .

Now $A = \overline{A} \cap Y$

When \overline{A} is the closure of A in X.

 $\therefore x_0 \in \overline{A}$ Since x is completely regular we can choose the continuous function. f: X \rightarrow [0, 1] such that $f(x_0)=1$ and $f(\overline{A})=\{0\}$

The restriction of f to Y i.e, f_0 i which s the continuous function $Y \rightarrow [0, 1]$

$$f_0$$
i = Y \rightarrow [0, 1]

 $(f_0i)(x_0) = f(x_0) = 1$ and

$$(f_0i)(A) = -f(A) = f(\overline{A}) = \{0\}$$
 $(A \subset \overline{A})$

Y is completely regular space.

(ii) A product of completely regular space is completely regular.

PROOF:

Let $X = \prod_{\alpha \in \tau} X_{\alpha}$ be the product of completely regular space.

Let b= $(b_{\alpha})_{\alpha \in \tau}$ be a point of X, disjoint from b, choose a basis element.

 $\prod U_{\alpha} \subset b$ that does not intersect A, then $U_{\alpha} = X_{\alpha}$ except for finitely many α .

Say $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n$ given i =1, 2 ... n

Choose a continuous function

 $f_i: X_{\alpha_i} \rightarrow [0, 1]$ such that $f_i(b_{\alpha_i}) = 1$ and $f_i(X_\alpha - U_{\alpha_i}) = \{0\}$

Let $\varphi_i(\mathbf{x}) = f_i(\pi_{\alpha_i}(\mathbf{x}))$

Then $\varphi_i: X \rightarrow R$ and vanishes outside

$$\pi_{\alpha_i}^{-1} (U_{\alpha_i}) = \pi U_{\alpha}$$
$$[:: \varphi_i (X - \pi U_{\alpha}) = f_i (\pi_{\alpha_i} (X - \pi U_{\alpha}))$$

 $=f_i (X_{\alpha_i} - U_{\alpha_i}) = \{0\}]$

i.e., $\varphi_1 = 0$ if $\overline{x} \in \pi U_\alpha$

 $\varphi_2=0$ outside πU_{α}

 $\varphi_i : \mathbf{X} \rightarrow \mathbf{R}$ vanishes outside $\prod U_{\alpha}$.

Let
$$f(\overline{x}) = \varphi_1(\overline{x}) \varphi_2(\overline{x}) \dots \varphi_n(\overline{x})$$

This product is continuous on X and $f(\overline{b}) = \varphi_1(\overline{b}) \varphi_2(\overline{b})$. . . $\varphi_n(\overline{b})$

$$= f_1\left(\pi_{\alpha_1}(\overline{b})\right) f_2\left(\pi_{\alpha_2}(\overline{b})\right) \dots f_n(\pi_{\alpha_n}(\overline{b}))$$

$$= f_1 (b \alpha_1) f_2(b\alpha_2) \dots f_n(b\alpha_n)$$
$$= 1.1. \dots 1$$
$$f(\overline{b}) = 1$$
$$f(X - \prod U_{\alpha}) = \varphi_1(X - \prod U_{\alpha}) \varphi_2(X - \prod U_{\alpha}) \dots \varphi_n(X - \prod U_{\alpha})$$

$$= f_1(x_{\alpha_1} - U_{\alpha_1})f_2(\pi_{\alpha_2} - U_{\alpha_2})\dots f_n(\pi_{\alpha_n} - U_{\alpha_n})$$

= 0.0....0

 $f(X - \pi U_{\alpha}) = 0 \text{ i.e., } f(A) = 0 \qquad (:: \subset (X - \pi U_{\alpha})).$

THEOREM:

URYSOHN METRIZATION THEOREM:

Every regular space X with a countable basis is meterizable.

PROOF:

It is enough to prove that X is metrizable by imbedding.

X in a metrizable space Y.

(i.e.,). By showing X homomorphic with a subspace of Y.

Two version:

First version:

Y is \mathbb{R}^{ω} which is metrizable in the product topology (refer theorem 20.5)

Theorem 20.5. Let $\bar{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If x and y are two points of \mathbb{R}^{ω} , define

$$D(\mathbf{x}, \mathbf{y}) = \sup\left\{\frac{\overline{d}(x_i, y_i)}{i}\right\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} .

Second version:

Y is \mathbb{R}^{ω} which is metrizable but the topology induces by uniform metric (Uniform topology)

i.e., Our construction imbeds X in the subspace [0, 1] of \mathbb{R}^{ω}

<u>STEP: 1</u>

We prove that there exist a countable collection of continuous function $f_n : X \rightarrow [0, 1]$ having the property that given any point x_0 of X and any neighborhood U of x_0 . \exists index n, show that f_n is (+ve) of x_0 and vanishes outside U given x_0 and U there exist such a function (f_n). If we choose one such function for each pair (x_0 , U). The resulting collection will not in general be countable

<u>*Claim:*</u> f_n is countable.

Let $\{B_n\}$ be a countable basis for X, given $x_0 \in X$, \exists a neighborhood U of x_0 and for each pair n, m of indices.

We can choose B_m (basis element) containing x_0 and that is contained in U.

Using regularity we can choose B_n such that $x_0 \in B_n$ and $\overline{B_n} \subset B_m$.

Applying Urysohn lemma we choose an continuous function.

$$g_{n,m}: X \to [0, 1]$$
$$g_{n,m}(\overline{B_n}) = \{1\}$$
$$g_{n,m}(X - B_m) = \{0\}$$

Since [If X is normal iff it can be separated by a continuous function.]

Then n, m is a pair of indices for X which the function $g_{n,m}$ is defined which is positive at x_0 and vanishes outside U.

By the result (*)

(Any subset of $Z_+ \times Z_+$ is countable)

The collection of { $g_{n,m}$ } is indexed with the subset of $Z_+ \times Z_+$

By this result (*). It is countable.

It can be reindexed with the +ve integers giving the desired collection {fn}

<u>STEP 2:</u>

Assume eqn (1) and take \mathbb{R}^{ω} in the product topology and define

F: X $\rightarrow \mathbb{R}^{\omega}$ such that F(x)= ($f_1(x), f_2(x), \ldots, f_n(x)$)

 $[f_n: X \to [0, 1]; \qquad f_n(\mathbf{x}) \in \mathbb{R}]$

CLAIM:

F is imbedding (injective continuous map and Homeomorphisms).

We will first show that F is continuous, since \mathbb{R}^{ω} has the product topology and each f_n is continuous. [Basis elements generates topology basis element are open].

 \therefore F is continuous.

Next we will show that F is injective (1, -1)

Consider 2 distinct points $x \neq y$

To prove $F(x) \neq F(y)$

For an index n, $f_n(x) > 0$ and $f_n(y) = 0$

$$\therefore$$
 F(x) \neq F(y)

Finally we will show that F is homeomorphism. We must prove that F is a homeomorphism F X onto its image, the subspace Z = F(x) of \mathbb{R}^{ω} . We know that F define a continuous bijection of X with Z. so we need only show that for each open set U in X, the set F(U) is open in Z. let z_0 be a point of F(U). We shall find an open set W of Z such that

$$z_0 \in W \subset F(U).$$

Let x_0 be the point of U such that $F(x_0) = z_0$. Choose an index N for which $f_N(x_0) > 0$ and $f_N(X - U) = \{0\}$. Take the open ray $(0, +\infty)$ in R, and let V be the open set

$$V = \pi_N^{-1}((0, +\infty))$$

of \mathbb{R}^{ω} . Let $W = V \cap Z$; then W is open in Z, by definition of the subspace topology.

By the fig. We assert that $z_0 \in W \subset F(U)$. First, $z_0 \in W$ because $\pi_N(z_0) = \pi_N (F(x_0)) = f_N(z_0) > 0.$

Second, $W \subset F(U)$. For if $z \in W$, then z = F(x) for some $x \in X$, and $\pi_N(z) \in (0, +\infty)$. Since $\pi_N(z) = \pi_N(F(x)) = f_N(x)$, and f_N vanishes outside U, the point x must be in U. Then z = F(x) is in F(U), as desired. Thus F is an imbedding of X in \mathbb{R}^{ω} .

<u>Step 3 (Second version of the proof)</u>.

In this version, we imbed *X* in the metric space (\mathbb{R}^{ω} , $\bar{\rho}$). Actually, we imbed *X* in the subspace [0, 1]^{ω}, on which $\bar{\rho}$ equals the metric

$$o(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i|\}$$

We use the countable collection of functions $f_n : X \to [0, 1]$ constructed in Step 1. But now we impose the additional condition that $f_n(x) \le 1/n$ for all x. (This condition is easy to satisfy; we can just divide each function f_n by n.)

Define $F: X \rightarrow [0, 1]^{\omega}$ by the equation

$$F(x) = (f_1(x), f_2(x), ...)$$

as before. We assert that F is now an imbedding relative to the metric ρ on $[0, 1]^{\omega}$. We know from Step 2 that F is injective. Furthermore, we know that if we use the product topology on $[0, 1]^{\omega}$, the map F carries open sets of X onto open sets of the subspace

Z = F(X). This statement remains true if one passes to the finer (larger) topology on

 $[0,1]^\omega$ induced by the metric $\rho.$

The one thing left to do is to prove that F is continuous. This does not follow from the fact that each component function is continuous, for we are not using the product topology on \mathbb{R}^{ω} . now. Here is where the assumption $f_n(\mathbf{x}) \leq 1/n$ comes in.

Let x_0 be a point of X, and let $\varepsilon > 0$. To prove continuity, we need to find a neighborhood U of x_0 such that

$$x \in U \Rightarrow \rho(F(x), F(x_0)) < \varepsilon.$$

First choose *N* large enough that $1/N \le \varepsilon/2$. Then for each n = 1, ..., N use the continuity of f_n to choose a neighborhood *Un* of x0 such that

$$|f_n(x) - f_n(x0)| \le \varepsilon/2$$

for $x \in f_n$. Let $= U_1 \cap \dots \cap U_N$; we show that U is the desired neighborhood of x_0 . Let $x \in U$. If $n \leq N$,

$$|f_n(x) - f_n(x0)| \le \varepsilon/2$$

by choice of *U*. And if n > N, then

$$|f_n(x) - f_n(x0)| \le 1/N \le \varepsilon/2$$

because f_n maps X into [0, 1/n]. Therefore for all $x \in U$,

$$\rho(F(x), F(x0)) \leq \varepsilon/2 < \varepsilon,$$

as desired.