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4.4 Additional Simplex Algorithms for LP 137

3. JoShop uses lathes and drill presses to produce four types of machine parts, PP1, PP2,
PP3,and PP4.The table below summarizes the pertinent data.

Machining time in minutes per unit of

Machine PPl PP2 PP3 PP4 Capacity (minutes)
Lathes 2 5 3 4 5300

Drill presses 3 4 6 4 5300

Unit profit ($) 3 6 5 4

For the parts that are not produced by the present optimum solution, determine the rate
of deterioration in the optimum profit per unit increase of each of these products.

4. Consider the optimal solution of JoShop in Problem 3. The company estimates that for
each part that is not produced (per the optimum solution), an across-the-board 20%
reduction in machining time can be realized through process improvements. Would these
improvements make these parts profitable? If not, what is the minimum percentage
reduction needed to realize profitability?

ADDITIONAL SIMPLEX ALGORITHMS FOR LP

In the simplex algorithm presented in Chapter 3 the problem starts at a basic feasible
solution. Successive iterations remain basic and feasible but move toward optimality
until the optimal is reached at the last iteration. The algorithm is sometimes referred to
as the primal simplex method.

This section presents two additional algorithms: The dual simplex and the
generalized simplex. In the dual simplex, the LP starts at a basic solution that is (better
than) optimal but infeasible, and successive iterations remain basic and (better than)
optimal as they move toward feasibility. At the last iteration, the feasible (optimal)
solution is found. The generalized simplex combines both the primal and dual simplex
methods in one algorithm. It deals with problems that start both nonoptimal and infea-
sible. In this algorithm, successive iterations are associated with basic (feasible or
infeasible) solutions. At the final iteration, the solution is boti optimal and infeasible
(assuming, of course, that one exists).

All three algorithms—the primal, the dual, and the generalized—are used effec-
tively in the course of sensitivity analysis calculations, as will be shown in Section 4.5.

Dual Simplex Method . p¢y | o2 /Urv?f?" ) D

As in the (primal) simplex method, the crux of the dual simplex method is that each
iteration is always associated with a basic solution. The optimality and feasibility con-
ditions are designed to preserve the optimality of the basic solutions while, simultane-
ously, moving the solution iterations toward feasibility.

Dual Feasibility Condition. The leaving variable, x,, is the basic variable having the
most negative value (break ties arbitrarily). If all the basic variables are nonnegative,
the algorithm ends,
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g variable 18 determi

The enterin
rresponding to
z, — G
min { 2 . O < 0}
Nonhaere ¥,

ient of the 2-TOW in the tableau and a,; is the p,
0

rive constraint coefficient of the tableau associated with thle) r(:(W of tl)he lefiVin g Varj: |
able. x,. and the column of the nonbasic variable, x;. Ties ar¢ roken ar it l'al"lly,
Notice that the dual optimality condition guarantees that optimality will be my;,

tained throughout all iterations.
To start the LP both optimal a

1. The objective function must satisfy the optimality €O

plemethod (Chapter 3).
2. All the constraints must be of the type (=),

ity Condition.

Dual Optimal
bles as the oné €O

nonbasic varia

a,

where z; — ¢;isthe objective coeffic

nd infeasible, tWo requirements must be satisfieg.

onverting any (=) to (=) simply by multiplyin,

The second condition requires ¢
(=) constraints, the equatio

(=) by —L If the LP includes

both sides of the inequality
can be replaced by two inequalities. For example,
X, +x=2
is equivalent to
ntn=1,x+x=1
or

n+x=<1-x—-x=-1

ing wmncgvegmg all the constraints to ( = ), the LP will have an infeasible start-
strictly ne ative, na;"'é if, at least one of the right-hand sides of the inequalities s
there Willgbe 1o need tOZal;p(l))I')ttl;)nealdan;i none of the right-hand sides are negative.
already optimal and feasible. ual simplex method as the starting solution i

Example 4.4-1
Minimize 7=
subject to 3x) + 2x,
W+ =3
4 +3x, =6

Nt =3
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li‘“‘f N ) X Y v Solution
& -3 2 0 () 0 (0
A 3 I [ 0 0 !
Y] -4 00 I 0 f
g 1 10 0 | )

The tableau starts optimal (all z, - ¢; = 0in the z-row) and the starting hasic solu-

tion is infeasible (xy = -3, x; = ~6 Xg = 1)
According to the dual feasibility condition, x, (= ~6) is the leaving variable. The
next table shows how the dual optimality condition is uwd to determine the entering

variable.

Variable Xy X X X4 Xx
Z-TOW (3; — ¢) -3 =2 0 0 0
X4-TOW, 04" -4 -3 0 l 0
1z«
Ratio, |——|, a;; < 0 g 3 — — —
4 :

The ratios show that x, is the entering variable. Notice that a variable x; is a candidate
for entering the basic solution only if its o is strictly negative. This means that the vari-

ables x3, x;, and x5 should not be considered.
The next tableau is obtained by using the familiar row operations.

Basic X X, X3 Xy Xs Solution
z -0 0o -0 4
X3 -1 0 1 -3 0 -1
X, | 0 -3 0 2
Xs -1 07 0 3 1 1

Ratio P - = g =

The preceding tableau shows that x, leaves and x, enters, thus yielding the follow-
ing tableau:

Xs Solution

Basic X X; X3 X4
1 3 A1

z 0 0 -5 7§ 0 3

3 ! )

X 0 -3 3 0 s

4 3 o

X 1 57§ 0 §

| 2 [

Xs 0 ~s g 1 §

The last tableau is feasible (and OP"mal) thus ending the algorithm. The corre-
Spondmg solution is x; = 2, X, = 2’ and z =

/

L
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Duality and sensitivity Analysis

simplex approach, Figure 4.2 shoy,
the solution of Example 4.4-1. 7y,
e and better than optimup
han optimum), and fina|y
h C as the feasible optimy

To reinforce your understanding of the dual
graphically the path followed by the algorithm 'in :
algorithm starts at extreme point A (which is infeasibl
then moves to B (which still is infeasible and better ,t
becomes feasible at C. At this point, the process ends wit

solution. _ ‘
The TORA software is equipped with 2 tutorial module for the dual simple,

method. From the SoLVE/MODIFY ment select golve => Algebraic = Iterations 3
pual Simplex. Remember that you need to convert (<) constraints to inequalities. Y,
do not need to convert (=) constraints, however, because TORA will convert the LP¢,
the proper dual simplex starting tableau automatically. If the LP does not satisfy the

initial requirements of the dual simplex, a message will appear on the screen.
As in the regular simplex method, the tutorial module allows you to select the

entering and the leaving variables beforehand. An appropriate feedback then tells yoy
whether or not your selection is correct.

You are encouraged to use TORA’s tut
lems in Set 4.4a to avoid the tedious tas
tions. In this manner, you can concentra
method.

orial mode where possible with the prob.

FIGURE 4.2 X

Dual simplex iterative process
for Example 4.4-1

i AT

=
e

T TR AN T M

R —————————
s N Y TS

k of carrying out the Gauss-Jordan row opera- |
te on understanding the main ideas of the |

N ——
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PROBLEM SET 4.4A
1. Consider the solution apace in Figure 4.3, where It 18 desired to find the optimum extreme
point that yunen the dual simplex method o minlmize 2 = 2x; v,. The optimal solution

acctrs at point £ = (0.5, 1.5 on the graph.
() 11 the starting basle (Infennible but better thian optimum) solution is given by point
(1, would it be possible for the Herations of the dunl simplex method to follow the

path G s 1 F? Hxplain,
() 11 the sarting baslc (Infeasible) solution starts at point 1, identify a possible path of

the dunl simplex method that leads to the optimum feasible point at point £
2. Qenerate the dunl simplex fterations for the following problems using TORA, and trace
/“’Flhe path of the algorithm on the graphical solution space.
(0) Minimize 2 = 2, + 3x,

subject 1o
2x| o= 2X«'2 = 30

X, 4+ 2% = 10
X, X, 20
(b) Minimize z = Sx; + Ox,
subject to
X +Fx, =2

4x| + x224

X, X =0

X, FIGURE 4.3
Solution space for Problem 1, Set 4.4a
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per of units of each toy that will maximize revenye The

: m .
determine the 0 e for convenience

model
at .
its dual are repeat€

T 1oYCO primal A TOYCO dual
i A e S Y ‘_\\
. Minimize z = 430y, + 460 ™y
Maimire 2 = 311 + 25 Sx} subject to Y2+ 420y,
““‘7"°§.‘ :(: 4 x4 < 430 (Operation 1) nt3iInt py=3
z“ o + 2_{, < 460 (Operation 2) 2y + 4y, =17
; "\,1 + 4ry " < 420 (Operation 3) w+2p > 5
Y/ X i ‘.1 X2, X3 > 0 y‘. yz' y3 > 0
Xy, Xp X3 _ o 2
Optimal solution: Optimal solution

0= 100, =20, 2= 8130 w= bRy 0w =i

————

The associated optimum tableau for the primal is given as

Xs

Basic xi 0] X3 Solution
/ z 4 0 0 1350
v/ 4 X3 —% 0 100
X 300 1 230
Xg 2 0 20

45.1 Changes Affecting Feasibility ( #78wor &5 )

The feasibility of the current optimum solution may be affected only if (1) the right-
hand side of the constraints is changed, or (2) a new constraint is added to the model
In both cases, infeasibility occurs when at least one element of the right-hand side of

the optimal tableau becomes negative—that is, one or more of the current basic vart-
ables become negative.

Changes in the right-hand side. This change requires recomputing the right-hand side
of the tableau using Formula 1 in Section 4.2.4:

(New right-hand side of) B (Inverse in 2 New right-hand )
tableau in iteration iteration i side of constraints

Recall that the right-hand side of the tableau gives the values of the basic variables

Example 4.5-1 —_ :

Situation 1. Suppose that T ; tAR ks oo the dail)
capacity of operations 1,2, an(;\gco wanis to expand its assembly lines by increasinb t' g

] by 409 ] = oW WO e
this change affect the tota] revenue)‘l? 40% to 602, 644, and 588 minutes, respectl‘fﬁl)’- i




43 Post.op
S _ -Qm'malg -
e (:?:;e::z:‘?;:i:‘:%::tnﬁ? R Wil gy Place i Palyyig
g \ i ' the gny
: ‘hti:‘:mpmed He . bjective Value), T%m:em tableay i the
N N % ~ 0 : "Q\vbasicsalm
k 2 0 6aq) ",
Y ) »
Thus. the current basic variab

less Xy, X3, and x
; 6s femaj
d optimupy Tevenue j $1899, ‘"‘ich?s ;“S:Sew Values 149, 3,

4 28, respectively. The associate,
::m re&renue of $1350.

tion 2. Although tllle New solution jg appealin fro ’ |
?igl;co recognizes that its 1mplementation May takge time L\; Standpoing of increase,
shift the slack capacity of Operation 3 (x¢ = . g

her d revenue
‘ was thug
. : . Minuteg) ¢ o '
would this change impact the optimypm solution? )10 the Capacity of OPeration 1, Hoy
The capacity mix Qf the three Operationg changes ¢ 450, 460 o .
The resulting solution is > 40d 400 minygeg, Tespectively,
1
*2 2 ‘% 0\ /450 110
3= 0 % 0 460 = 230
x6 _2 1 1 4(X) - 40
The resulting solution js Infeasible because X6 = ~40, which requires applying the dugy
simplex method to recover feambllity. First, we modify the right-hang side of the tableay a5
shown by the shaded colump Notice that the associated valye of Z=3X0+2x110+ 5 x
230 = $1370

Basic X x

2 ¥ ox Xs

From the dua] simplex, x, leaves and X4 enters, which yield§ the folk:wing o\zinf‘ea]asfiiz:il;t
tableau (jp general, the dua) simplex may take more than one HSERIIOR 0 1eco

Basic X X3 Xy x, xs Xs  Solution

!

z 5 0 0 0 3 3 1350

! 100
! 0 0 1

X9 g 1 0 . . o g

X3 3 0 1 B ‘f 0 20
X4 -1 0 0 1 2 2

i original
4 ins the same as in the

The Optimum sojytion (in terms of xj, X, and X3) remains t

Mode], T,

i ion i advantageous in this
'S means that the proposed shift in capacity allocation is not
ns tha :

.
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case because all it does is shift the surplus capacity in operation 3 1 4 Surply
eration 1. The conclusion is that operation 2 is the bottleneck and j¢ may be 8
shift the surplus to operation 2 instead (see Problem 1, Set 4.5a). The Selection va"tagenuop
over operation 1 is also reinforced by the fact that the dual price for Operatiq,

higher than that for operation 2 (= $1/min).

Duality and Post-Optimal Analysis

of 8 t(;
Crat;
n?2 (Szlm":flz

PROBLEM SET 4.5A

1.

2.

*4.

‘\])i‘

In the TOYCO model listed at the start of Section 4.5, would it be more agy
assign the 20-minute excess capacity of operation 3 to operation 2 insteag ofagtageous t

Suppose that TOYCO wants to change the capacities of the three Operationg , atiop 1,

the following cases: Ccor ding .
460 500 300 450

(@) | 500 (b) | 400 (c) | 800 @ | 700
400 600 200 350

Use post-optimal analysis to determine the optimum solution in each case,
Consider the Reddy Mikks model of Example 2.1-1. Its optimal tableauy ig given in
ple 3.3-1. If the daily availabilities of raw materials M1 and M2 are increased tq 28 Xam-
tons, respectively, use post-optimal analysis to determine the new optimal solutiop, —

The Ozark Farm has 20,000 broilers that are fed for 8 weeks before being marketed, Ty,
weekly feed per broiler varies according to the following schedule: e

Week 1 2 3 4 5 6 7 3

Ib/broiler .26 A48 75 1.00 1.30 1.60 1.90 210

For the broiler to reach a desired weight gain in 8 weeks, the feedstuffs must satisfy spe-
cific nutritional needs. Although a typical list of feedstuffs is large, for simplicity we will
limit the model to three items only: limestone, corn, and soybean meal. The nutritional

needs will also be limited to three types: calcium, protein, and fiber. The following table
summarizes the nutritive content of the selected ingredients together with the cost data.

Content (Ib) per Ib of

Ingredient Calcium Protein Fiber $ perlb
Limestone .380 .00 .00 12
Corn .001 .09 .02 45
Soybean meal .002 .50 .08 1.60

The feed mix must contain
(a) Atleast.8% but not more than 1.2% calcium
(b) Atleast 22% protein

(¢) At most 5% crude fiber imal
Solve the LP for week 1 and then use post-optimal analysis to develop an opti
schedule for the remaining 7 weeks,

—
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restrictive in terms of the optimy, Optimal Analysis 147
rimary) constraints. We may the:f: sohition, The s

e 1€ ctraint is di ) ﬂﬂt ) _ !S e o
th " gecondary constraint is discarded if it satisfies m"‘fe secondary cmmgd using |
tin cated until ¢ available 13 onie at o §

e least

all the secondary constraint \
1o osed procedure to the f sare accounted for, T T P00
apply the proPosecP ure to the following Lp. ess

Maximize z = 5x, + 6x; + 3y

subjcd to 2
Sxy + 5x; + 3xy < 50

xt xn- x352
Tx; + 61y — 923 < 30
5xy + 5x) + 5x3 =35
12x) + 6x, =%
x; — 9x, <20

X1y X2, X3 =0

g changes Affecting Optimality
K : : S
is section considers twWo particular situations that could affect the optimality of the

current solution:

objective coefficients.

1. Changes in the original
omic activity (variable) to the model.

2 Addition of a new econ

in the Objective Function Coefficients. These changes affect only the optimality
of the solution. Such changes thus require recomputing the z-TOW coefficients (reduced

costs) according to the following procedure:

ng Method 2 in Section 4.2.3.

1. Compute the dual values usi
Formula 2, Section 42.4, to determine the new re-

2. Use the new dual values in
duced costs (z-roW coefficients).

Two cases will result:
ains unchanged

1. New z-row satisfies the optimality condition. The solution rem
(the optimum objective value may change, however). | "
2. The optimality condition is not satisfied. Apply the (primal) simplex method {0

recover optimality.

Example 4,54
pew pricing p_OliC)’

Situatj

the :t)l onl. In the TOYCO model, suppose that the compan

car tg mpetition. The unit revenues under the new policy gre
¥s,respectively, How is the optimal solution affected’
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The new objective function is

Maximize z = 2x; + 3x3 + 4x3

Thus,
(New objective coefficients of basic x3, x3, and x5) = (3,4, 0)

Using Method 2, Section 4.2.3, the dual variables are computed as

[« NTEN

0
_ (35
(}’h Y2 ,V3) = (3’ 4’ O) 0 - ('2', rt) 0)
1

Lol ST N

-2

The z-row coefficients are determined as the difference between the left- and righy.
sides of the dual constraints (Formula 2, Section 4.2.4). It is not necessary to Tecompute the
jective-row coefficients of the basic variables X3, X3, .and X6 be':cause they always equg] Zero re;
gardless of any changes made in the objective coefficients (verify!).

Reduced costof x; = y; + 3y + 33 — 2 =2 + 3(3) +0-2=1

Reducedcostof x4 = y; — 0 =

Sl NIW

Reduced costof xs = y, — 0 =

Note that the right-hand side of the first dual constraint is 2, the new coefficient in the modified

objective function.
The computations show that the current solution, x; = 0 train, x, = 100 trucks, and

x3 = 230 cars, remains optimal. The corresponding new revenue is computed as 2 X 0 + 3 X
100 + 4 x 230 = $1220. The new pricing policy is not advantageous because it leads to lower
revenue.

Situation 2. Suppose now that the TOYCO objective function is changed to
Maximize z = 6x; + 3x, + 4x3
Will the optimum solution change?

We have

|

|
N
e M NI=sI—

1
2
(” yy3) = (3,4,0)] 0

Reduced cost of x; = y, + 3y + y3 —

Reduced cost of x, = y—0=

Hin NIW

Reduced cost of x5 = »—-0=

The new reduced cost of x; shows that the current solution is not optimum.
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jermine the new solution, the z.rqy e OOty Anaiyy
' % s c a A

T‘) d(’ o )
. Nped 4 i 1%
g able? : d%“‘zhiigh :
inf e ——————— BNted iy the |
Basic Xy N ox NW;““'”‘“*'*—»—‘.. N follow.
e i _ 4 £ Bl i,
2 *"% = 0 0 m"‘fg“"‘**;—-u ¥ Solution
B e % 55 | =~
X3 3 0 1 0 1 0 | &T‘“
S 1
. N
The elements ;how,;]l;nt l}.he shad.ec'l cells are the new red
\:ariah“’s Xy, X4, @1 xs. All € remammg elements afe the uced cost for the nonbac
ol ;ableau. The new optimum solution is then det Same as in the original op-

hich yields X1 = 10, x; = 102.5, x5 = 215 e::(;nid by letting X enter and x
L] &

_—

lution recommends th : $1227.50 (ver )
hough the new §O e producti ok verify!). Al
f less than when two toys only are maHUfac(:ar:fj all three toys, the optimum

pROBLEM SET 4.5C

_ Investigate the optimality of the TOYCO soluti .

: tunctions. If the solution changes, use post-optiﬁZIf:;;;Z:; (:2 g‘;::g"mtg objective
num. (The optimum tableau of TOYCO is given at the start of Sectio: i 5 )e new opti-
@@ z=2xtx + 4x;
®) z=3x+ 6x, + X3
(¢ z=8x; t 3x, + 9x3

2. Investigate the optimality of the Reddy Mikks solution (Example 4.3-1) for each of the
following objective functions. If the solution changes, use post-optimal analysis to deter-
mine the new optimum. (The optimal tableau of the model is given in Example 3.3-1)

*a) z = 3x; +2x;
() 7 = 8x, + 10x;
*c) z=2x; T 5%, e

3, Show that the 100% optimality rule (Problem 8, Set 3.6d, Chapter 3) is derived from
(reduced costs) = 0 for maximization problems and (reduced costs) = 0 for miMmEr
tion problems.

VO is equivalent
Addition of a New Activity. The addition of a new activity in ?“ifpi m;;;“::ﬁy it
1 adding a new variable. Intuitively, the additior of anew a:;:‘gvo gjecm e on. Thi
is profitable—that is, if it improves the optimal value ©

jable using
condition can be checked by computing the reduced

cost of the new Variate B

o oy condition, then the
Formula 2. Sect; he new activity satisfies the optimality ity
, Section 4.2.4. If the 1 0 undertake the new activit

“livity is not profitable. Else, it 18 advantageous |
x

Exam fitable-
ple 4.5- oy are not proft
>6 cause (N abc assembled on

. oduction beCat,
not currenﬂ&l/ in pr y fire engine 0
ns with a ne

T
OYCo recognizes that toy trains ar

ompany wants to replace toy tra!
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7.2

subject to
I+ x - xn =3
X, + 2X2 + xg = 3

X5 X9y X3, X4y X5 =0

*4, The following is an optimal LP tableau:

Basic X X X3 Xy Xs Solution
z 0 0 0 3 2 ?
X o 0 1 1 -1 2
X, 0 l O 1 6
X 1 0 0 -1 1 2

The variables x3, x,, and x; are slacks in the original problem. Use matrix ma
to reconstruct the original LP, and then compute the optimum value,

5. In the generalized simplex tableau, suppose that the X = (X[, X;;)7, where X|; corre.
sponds to a typical starting basic solution (consisting of slack and/or artificia| Variables)
with B = I, and let C = (C;, Cyy) and A = (D, I) be the corresponding Partitions of ¢
and A, respectively. Show that the matrix form of the simplex tableau reduces to the fol-
lowing form, which is exactly the form used in Chapter 3.

“iPUlations

Basic X, Xn Solution

Z CBB_ID - C[ CBB_l - C" CBB_-lb

X; B D B! B

REVISED SIMPLEX METHOD

Section 7.1.1 shows that the optimum solution of a linear program is always associated
with a basic (feasible) solution. The simplex method search for the optimum starts by
selecting a feasible basis, B, and then moving to another basis, B,y that yields a better
(or, at least, no worse) value of the objective function. Continuing in this manner, the
optimum basis is eventually reached.

The iterative steps of the revised simplex method are exactly the same as in the
tableau simplex method presented in Chapter 3. The main difference is that the com-
putations in the revised method are based on matrix manipulations rather than on row
operations. The use of matrix algebra reduces the adverse effect of machine roundoft
error by controlling the accuracy of computing B~ This result follows because, as
Section 7.1.2 shows, the entire simplex tableau can be computed from the original data
and the current B!, In the tableau simplex method of Chapter 3, each tableau is gen-

erated from the immediately preceding one, which tends to worsen the problem of
rounoff error.
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DeveIOPme'“ of the Optimality and Feasibility Conditions
The general LP problem can be written as follows:
zl’,-x,. =b,x;20,j=12...n

n
Maximize O minimize 2 = ]_21 ¢x; subject to
= P

For @ givgn basic vector X and its cprresponding basis B and objective vector Cg, the
eneral simplex tableau developed in Section 7.1.2 shows that any simplex iteration
can be represented by the following equations:

2+ (4~ ¢)x; = CoBb

S~
g
[

n

(Xp): + 2 (B7'P);x; = (B7'h),

Jj=1
7~ the reduced cost of x; (see Section 4.3.2), is defined as
Zj - Cj = CBB_lpj Y

The notation (V); is used to represent the ith element of the vector V.

Optimality Condition. From the z-equation given above, an increase in nonbasic X;
above its current Z€ro value will improve the value of z relative to its current value
(=C zB7'b) only if its z; = ¢; is strictly negative in the case of maximization and
strictly positive in the case of minimization. Otherwise, x; cannot improve the solution
and must remain nonbasic at Zero level. Though any nonbasic variable satisfying the
given condition can be chosen to improve the solution, the simplex method uses a rule
of thumb that calls for selecting the entering variable as the one with the most negative
(most positive) z; — ¢; in case of maximization (minimization).

Feasibility Condition. The determination of the leaving vector is based on examining
the constraint equation associated with the ith basic variable. Specifically, we have

(Xg)s + il(B"P,),- x, = (BIb),
2

When the vector P, is selected by the optimality condition to enter the basis, its
associated variable x; will increase above zero level. At the same time, all the remain-
ing nonbasic variables remain at zero level. Thus, the ith constraint equation reduces to

(Xp)i = (B™'b); — (B7'P,)i X

The equation shows that if (B7'P;); > 0, an increase in x; can cause (Xp); to

become negative, which violates the nonnegativity condition, (Xp); = 0 forall i. Thus,

we have
(B~'b), - (B7'B))ix; =0, for alli
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This condition yields the naximum value of the entering variable x; as
js conditi st
Bb)il| o
= mln{iirl"'(ﬂ lPl'),' > O}
i (B Pj)i
ible for producing the minimum ratio leaves the bagi;
Soly.

The basic variable reSppns o)
e ponbasic at zero evel.

tion to becom

PROBLEM SET 7.2A
jowing LP:

+1, Consider the fol
Maximize Z = X

+ X2 + C3X3 + C4X4

+ Pt Pa t Pyxs=b

0

subject 10
Pix
Xy, X0 X3 X4 =
wn in Figure 7.4. Assume that the basis B of the cur

The vectors Pi. P, P3, and P4 are sho
rent iteration is comprised of P, and I

nters the basis, which of the current two basic vectors must leave in
Iting basic solution to be feasible?

() Canthe vector P, be part of a feasible basis?
= 0 for all the associated basic variables.

+2. Prove that, in any simplex jteration, Zj — €j =
asic variables x; of a maximization (mini-

3. Prove thatif z; — €j > 0 (<0) for all the nonb
timum is unique. Else,if z; — ¢; equals zero for a non-

mization) LP problem, then the op
basic x;, then the problem has an alternative optimum solution.
form of the tableau that the

4. Inan all-slack starting basic solution, show using the matrix
mechanical procedure used in Section 3.3 in which the objective equation is set as

n
- Ecjxj =0
j=1

automatically computes the proper z; = € for all the variabl
5. Usnpg the matrix form of the simplex tableau, show that in an all-ar
basic solution, the procedure employed in Section 3.4.1 that calls fo

(a) Ifthe vector P; €
order for the resu

es in the starting tableau.
tificial starting
r substituting out

FIGURE 7.4
Vector representation of Problem 1, Set 7.2a
Py

P\

P;
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the artificial variables in the objective function (using the constraint equations) actu-
ally computes the proper z; = ¢; for all the variables in the starting tableau.

. 34 ; : _

. C onsider an LP in which the variable x, is unrestricted in si > ituting
6. Consider ? ' where ¢ and st ar k ResiE t Flm mgp.Provc that by substituting
0= Y Vb X ¢ are nonnegative, it is impossible that the two variables

will replace one another in an alternative optimum solution.
7, Given the general LP in equation form with m equations and n unknowns, determine the

maximum number of adjacent extreme points that can be reached from a nondegenerate
extreme point (all basic variable are >0) of the solution space.

8. Inapplying the fcasi}vility condition of the simplex method, suppose that x, = 0 is a basic
variable and that x; 18 the entering variable with (B“Pi), # 0. Prove that the resulting
basic solution remains feasible even if (B"P,), is negative.

9. Inthe implementation of the feasibility condition of the simplex method, what are the
conditions for encountering a degenerate solution (at least one basic variable = 0) for
the first time? For continuing to obtain a degenerate solution in the next iteration? For
removing degeneracy in the next iteration? Explain the answers mathematically.

£10. What are the relationships between extreme points and basic solutions under degeneracy
and nondegeneracy? What is the maximum number of iterations that can be performed
at a given extreme point assuming no cycling?

s11. Consider the LP, maximize z = CX subject to AX = b,X = 0, where b = 0. Suppose
that the entering vector P; is such that at least one element of B™'P; is positive.

(a) IfP;is replaced with aP;, where a is a positive scalar, and provided x; remains the

entering variable, find the relationship between the values of x; corresponding to P,
and aP;.
(b) Answer Part () if, additionally, b is replaced with Bb, where B is a positive scalar.
12. Consider the LP

Maximize z = CX subject to AX = b,X =0, whereb =0

After obtaining the optimum solution, it is suggested that a nonbasic variable x; can be

made basic (profitable) by reducing the (resource) requirements per unit of x; for the

different resources to }; of their original values, a« > 1. Since the requirements per unit

are reduced, it is expected that the profit per unit of x; will also be reduced to i of its

original value. Will these changes make x; a profitable variable? Explain mathematically.
13. Consider the LP

Maximize z = CX subject to (A, DX=bX=0

Define X p as the current basic vector with B as its associated basis and Cp as its vector of
objective coefficients. Show that if Cp is replaced with the new coefficients D, the values
of z; — c; for the basic vector X  will remain equal to zero. What is the significance of
this result?

7122 Revised Simplex Algorithm

Having developed the optimality and feasibility conditions in Section 7.2.1, we now
present the computational steps of the revised simplex method.

Step 0. Construct a starting basic feasible solution and let B and C be its associated
basis and objective coefficients vector, respectively.
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he inverse B! by using an appropriate inversion method !

Step 1. Compute t
compute

Step 2. For each nonbasic variable Xy
-, = “1p, - ¢;

I Cj CBB i Cj
- misation (=0 in minimization) for all nonbasic
maxlmlzatlon( 0 wic ¥

the optimal solution is given by
X, =B b,z = CsXp
Else, apply the optimality condition and d.etermin'e. the entering variable x, g
the nonbasic variable with the most negative (positive) z; — ¢;in case of mlaz-
imization (minimization).
Step 3. Compute B~'P;. If all the
problem has no bounded s

elements of B™'P; are negative or zero, stop; the

olution. Else, compute B~'b. Then for all the Strictly

positive elements of B'P, determine the ratios deﬁned.b)" the feasibility cong;.

tion. The basic variable x; associated with the smallest ratio is the leaving variapje

Step 4. From the current basis B, form a new basis by replacing the !eaving vector P.
with the entering vector P;, Go to step 1 to start a new iteration.

Example 7.2-1
The Reddy Mikks model (Section 2.1) is solved by the revised si{nplex algorithm. The same
model was solved by the tableau method in Section 3.3.2. A comparison between the two meth-
ods will show that they are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

maximize z = (5,4,0,0,0,0)(x, X2, X3, X4, Xs, xg)T

subject to
X1
6 4 1 0 0 0\[x 24
1 2010 O0}fxs]_| 6
11001 0ffxs| |1
01 0 0 0 1/\uxs 2
X6

X1, X2, X Z 0

We use the notation C = (¢}, ¢y,...,¢q) to represent the objective-function coefficients and
(P, P,,..., B) to represent the columns vectors of the constraint equations. The right-hand side
of the constraints gives the vector b.

'In most LP presentations, including the first six editions of this book, the product form method for inverting
a basis (see Section D.2.7) is integrated into the revised simplex algorithm because the product form lends it
self readily to the revised simplex computations, where successive bases differ in exactly one column This
detail is removed from this presentation because it makes the algorithm appear more complex than it really
is. Moreover, the product form is rarely used in the development of LP codes because it is not designed fOf
automatic computations, where machine round-off error can be a serious issue. Normally, some advanced 0V
meric analysis method, such as the LU decomposition method, is used to obtain the inverse. (Incidentally
TORA matrix inversion is based on LU decomposition.)

-
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In the computations below, we will give the algebraic form

c answer without detailing the arith

. i ula for each ste i
. metic o ) o (O €ach step and its final nu-
;ep e oach sieD. perations, You will find it mnstructive to fill in the
jteration 0
X, = (%3, x4, x5, x4), € = (0,0,0,0)
BO = (P3, P4, PS» P6) - l’ B(—)l =1
Thus,

Xz, = By'b = (24,6,1,2)7, ; = CXp, = 0
Optimality computations: '
CzB;' = (0,0,0,0)
{zj = cj}j=12 = CpBo' (P, Py) - (1, ¢2) = (-5, -4)
Thus, P, is the entering vector.
Feasibility computations:

xBo = (X3, X4, X5, x6)T = (24, 6, 1, 2)T

By'P, = (6,1,-1,0)
Hence,

. j24 6 .
xl = min ?7 T, = = mln{4, 6, T _} = 4

and P; becomes the leaving vector.

The results above can be summarized in the familiar simplex tableau format. The presenta-
tion should help convince you that the two methods are essentially the same. You will find it in-
structive to develop similar tableaus in the succeeding iterations.

Basic X, X X3 X4 Xs Xg Solution
z -5 -4 0 0 0 0 0
X3 6 24
X4 1 6
Xs _'1 1
Xg 0 2
Iteration 1
xBl = (xl» X4y X55 xﬁ)’ CBl = (S' 0, 0, O)

B, = (P19 P4, P59 PG)

o0 =
o =0 O
-0 O O

6
1
-1
0




B

By using an approprinte inversion method (see Section D2.7, in particular the Prodye; form
- method), the inverse is given ax
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00 0

D e - D

Thus,

x"[ - nllb . (4. 2, 5,2)7‘,2 o C”lx”| = 20

Optimality computations:

CyB;' = (3,0,0,0)

- : = (23
{zj = ¢}jaza = CB,B"(Pz. P)) = (en03) = ( .M)
Thus, P, is the entering vector,

Feasibility computations:

X, = (X1, %4 X5, X6)" = (4,2,5,2)7
B - (440

Hence,

X3 = min =, — =

wio|
wia| N

Wit | Ln
— R

= min{6,3,3,2} =3

and P, becomes the leaving vector. (You will find it helpful to summarize the results above in the
simplex tableau format as we did in iteration 0.)

Iteration 2

sz = (xh 'X'Z’ x5' xG)Tv CB; o (Sv 4; 0| 0)
B, = (API' P, Ps, Ph)

6 4 0 0
v 20 0
-1 11 9
0 1 0 1
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Hence.
1
s =5 0 0
-1 ~
Bz = 8 4 0 0
v 21
1
Thus, 8 h% 01
=B:lh = (21351
xﬂz B2 b= (3, 2 E‘E)T’z = CBsz2 =71
Optimality computations:

CsBy' = (33.0,0)

7 Ghae = CaBy' (R - (60 = (3
Thus, X, is optimal and the computations end.

Summary of optimal solution:

X1=3,x=152z=72]

PROBLEM SET 7.2B

1. In Example 7.2-1, summarize the data of iteration 1 in the tableau format of Section 3.3.
2. Solve the following LPs by the revised simplex method:
(@) Maximize z = 6x, — 2x; + 3x,
subject to
2x = X3+ 2x3 <2
X1 +4x; <4
X1, X2, X3 =0
*(b) Maximize z = 2x1 + xy + 2x3
subject to
4x; +3x,+ 8x3 =12
4x; + x;+12x3 <8
4xi — x3+ 3x3=8
X1, X2, X3 = 0
() Minimize'z = 2x, + x,
subject to
3+ x=3
4x, +3x, = 6

X +2x,s3

Xy, Xg = 0




1.5

Chapter 7 Advance

*S.

*1.

d Linear programming

subject to -4
xt * + X

x‘+4X2+ +14=':8

Xy, X X X4 = 0

Write the dual problem. . » |
:l.))) Ve‘:ify that B = (P, P3) 18 optimal by computing z; c; for all nonbasic P,
(¢) Find the associated optimal dual solution.

; . d x, and three constraints of the type <. The
del includes two variables x; an ' nts of th
:::ol;il:igg slacks are xs, x4, and xs. Suppose that the optimal basisis B = (P, P,, P;),

and its inverse is
0 -1 1
gp'=l0 1 0
1 1 -1

The optimal primal and dual solutions are
xB = (x1, X2, x3)T = (2’ 6’ 2)T
Y = (1 0) = (0.3.2)

Determine the optimal value of the objective function in two ways using the primal and
dual problems.

Prove the following relationship for the optimal primal and dual solutions:
Siic(BR); = DVl

where Cg = (c1,Cp,-- - Cm) and Py = (ay, a3, - -, am),fork = 1,2,...,n,and
(B™'P,); is the ith element of B™'Py.

Write the dual of
Maximize z = {CX|AX = b, X unrestricted}
Show that the dual of
Maximize z = {CX|AX <b, 0 <L =X = U}

always possesses a feasible solution.

PARAMETRIC LINEAR PROGRAMMING

?aramc?tric linear'progr'amming is an extension of the post-optimal analysis presented
in Section 4.5. It investigates the effect of predetermined continuous variations in the

ol)ljeqtive function coefficients and the right-hand side of the constraints on the optimum
solution.

Let X = (xy, xy,..., x,) and define the LP as

. . n
Maximize z = {CXlngxj =hX = 0}

i

i




r
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tric analysis, the objective functi '
in parame ! _ ction and right-hand side vectors, € and
replaced with g‘;%‘;{:ﬁmxr‘zed functions C(1) and b(r), where 1 is the ;sarame:,éra:)i
ariation Mathe y,  can assume any positive or negative value. In practice

powever:! usually represents time, and hence it is nonnegative. In this presentation we

The gene.ral idea of 'parametric analysis is to start with the optimal soluti
(=0, Then, using the optimality and feasibility conditions of the qir?] lex r::t; K()‘ﬂ "
Jetermine the range 0 < £ =1 for which the solution at t = 0 r;am::)im 0 tim(:\l :cel
feasible. In this case, 1y 18 'referred to as a critical value. The process cor;tinﬁles b ade
rermining SUCCESSIVE critical values and their corresponding optimal feasible Zolu:
tions, and will terminate at t = t, when there is indication that either the last solution
remains unchanged for ¢ > {, or that no feasible solution exists beyond that critical

value.

parametric Changes in C

Let X35, Bi Cp(t) be the elements that define the optimal solution associated with
critical #; (the computations start at fp.= 0 with By as its optimal basis). Next, the criti-
cal value £, and its optimal basis, if one exists, is determined. Because changes in C
can affect only the optimality of the problem, the current solution Xp = B;'b will re-
main optimal for some ¢ = ¢; so long as the reduced cost, z,-(t) - cj(z),' satisfies the fol-
jowing optimality condition:

zi(t) = ci(t) = CB‘_(t)B,-‘le — ¢j(t) = 0,forall

The value of #;+1 equals the largest# > f; that satisfies all the optimality conditions.
Note that nothing in the inequalities requires C(r) to be linear in &. Any function

C(r), linear or nonlinear, is acceptable. However, with nonlinearity the numerical ma-
nipulation of the resulting inequalities may be cumbersome. (See Problem 5, Set 7.5a

for an illustration of the nonlinear case.)

Example 7.5-1
Maximize z = (3 — 61)x1 + 2-2x+ G+ 5t)x;
subject to
x +2x x; < 40
3x + 2x3 = 60
X1 + 4X2 <30
x, X, %3 = 0 /
We have

cu)=06- 6,2 - 2,5+ 5t),t =0

The variables x4, xs, and Xe Will be used as the slack variables associated with the three

constraints.
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Optimal Solutionat 1 = 1, = 0

Xs x5 Solution

Basic X 2 *3 =
SN i ety
Xy ‘% 1 0 % —f 0 ’
6
T

xBo = (x29 X3, Xﬁ)r = (5, 309 IO)T
Cp(t) =(2- 25+ 5t,0)

1
2
By'=| 0

The optimality conditions for the current nonbasic vectors, Py, P4, and Ps, are
{CBo(t)Balpj - cj(t)}j=1,4,5 = (4 + 14f,1 = t,2 + 31) =0
Thus, X 5, remains optimal so long as the following conditions are satisfied:

4+ 14 =0
1-t=0
2+3=0
Because ¢ = 0, the second inequality gives t < 1 and the remaining two inequalities are satisfied
for all r = 0. We thus have ¢, = 1, which means that X B, Femains optimal (and feasible) for
O0=str=1
The reduced cost z4(t) — cy(f) = 1 — ¢ equals zero at t = 1 and becomes negative for

t > 1. Thus, P, must enter the basis for ¢ > 1. In this case, P, must leave the basis (see the opti-
mal tableau at t = 0). The new basic solution X B, is the alternative solution obtained at t = 1 by

letting P, enter the basis—that is, X 8, = (¥4, x3, x5)" and B,=(P;, P;, P;).

Alternative Optimal Basis at ¢ = 1, = |

11
B,=|0 2
0 0

-0 O
O N
-0 O

1
Bi'=|0

0
Thus,

Xp, = (x4 13, %)" = B}'b = (10, 30, 30)"
Cs,(t) = (0,5 + 51,0)




.

The a,m(;imcd nonbasic vectors are Py, P, and P,, and we have
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(Cp()B'Py = c(Dhyaras = (57 -2 + 20,0 5%) = 0
A ccording tO these conditions, the basic solution X n, remains optimal for all r = | Observe
hat the optimality condition, =2 + 21 & 0, automatically “remembers” that X », is optimal for a

nge of 1 that starts from the last critical value 1, = 1. This will always be the case in parametric
. ramming computations.

The optimal solution for the entire range of 1 is summarized below, The value of z is com-
uted by direct substitution.
p )

1 Xy X3 Xy 2
0=1=1 0 5 30 160 + 1401
r=1 0 0 30 150 + 150t
e
pROBLEM SET 7.5A

«1. In example 7.5-1,suppose that ¢ is unrestricted in sign. Determine the range of ¢ for which
X p, remains optimal.

2.. Solve Example 7.5-1, assuming that the objective function is given as
\/*(n) Maximize z = (3 + 3t)x; + 2x; + (5 — 6t)x;
(b) Maximize z = (3 — 20)x, + (2 + )xp + (5 + 2)x3
(c) Maximize z = 3+ t)x; + (2 +20)x + (5~-1t)x;
3. Study the variation in the optimal solution of the following parameterized LP given ¢ = 0.
Minimize z = (4 — t)x; + (1 = 3t)x + (2 — 2t)x3
subject to
3XI + x2+2x3=3
4x1 + 3x2 + 2X3 =6
X1 +2x2+5x3s4

Xy X, X3 = 0

4. The analysis in this section assumes that the optimal solutio.n ofthe LPat: = 0Ois ‘ob-
tained by the (primal) simplex method. In some problems, it may be more convenient to
obtain the optimal solution by the dual simplex method (Section 4.4.1). Show how the
parametric analysis can be carried out in this case, then analyze the LP of Example 4.4-1,
assuming that the objective function is given as

Minimize z = (3 + )x1 + (2 + 4t)xy + X3t = 0

\/{. In Example 7.5-1, suppose that the objectivc function is nonlinear in t(t = 0) and is de-
fined as

Maximize z = (3 + 269)x + (2~ 20)x, + (5 — 0)x3

Determine the first critical value t;.
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152 Parametric Changes in b

The parameterized right-hand side b(f) can affect only the. feasibility of the prob
The critical values of 1 are thus determined from the following condition lem,

Xp(t) = B~1b(t) =20

Example 7.5-2 T~

Maximize z = 3x; + 2x; + 5x;
subject to

xl+2.X2+ X3S40~t

3x +2x3 <60 + 2t
X1 + 4X2 =130 - Tt
X1, X2y X3 = 0

Assume thatt = 0.
Att = t; = 0, the problem is identical to that of Example 7.5-1. We thus have

XBO = (XZ, X3, x6)T = (5, 30, IO)T

-]
=N

LN

]
O NI

To determine the first critical value #;, we apply the feasibility conditions Xp(1) =
B;'b(t) = 0, which yields .

X2 5-t 0

x3/=130+¢t]|=]0

Xg 10 - 3¢ 0
These inequalities are satisfied for ¢ < 139, meaning that t; = %) and that the basis By remains
feasible for the range 0 < ¢ < 130 However, the values of the basic variables x, x3, and Xg wil

change with f as given above.

The value of the basic variable x¢ (= 10 — 3¢) will equal zero at t = f; = '139, and will be
come negative for t > . Thus, at t = 2 we can determine the alternative basis By by applying
the revised dual simplex method (see Problem 5, Set 7.2b, for details). The leaving variable 1S %

Alternative Basisat 1 = ¢, = ‘—39

Given that x, is the leaving variable, we determine the entering variable as follows:

Xp, = (¥, %3, %)7,Cp, = (2,5,0)
Thus,

{Zj - Cj}j=1.4.5 = {CBOBEIP,' - C,'},'=1.4‘5 = (4,1,2)




r

¢ ponbasic xj,j = 1,4,5, we compute
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Next~f0
1 . .
(Row of By’ associated with x)(Py, P, P5) = (Third row of B, )(P,, P, Py

= (=2, 1, 1)(P, Py, Pr)
=(2,-2,1)

The entering variable is thus associated with

Thus. Pe i8 the entering vector. The alternative basic solution and its B, and B, are
Xg, = (203, %)

0

(==

2 11 0
B, = (P,P,P)=|0 2 0|B;'=]0
4 0 0 1

B = BN
N —

The next critical value is determined from the feasibility conditions, X ,(£)= B;'b(t) = 0,

which yields
% 30 - 1\ (o
X3 | = 30 +t 0
x4 —102+ 3[ 0

These conditions show that B, remains feasible forls‘—) st< ?.

Att=1H = %, an alternative basis can be obtained by the revised dual simplex method. The

leaving variable is xz, because it corresponds to the condition yielding the critical value f.

Alternative Basisatt = I = 3—79
Given that x, is the leaving variable, we determine the entering variable as follows:
Xp, = (%2 %3, %), Cp, = (2,5,0)
Thus,
{zj = ¢itj=156 = {CpBT'P; — ¢j}j=156 = (5. 1)
Next, for nonbasic xj, j = 1,5, 6, we compute
(Row of By associated with x;)(Py, Ps, P) = (First row of B;)(Py. Ps. Ps)
= (0,0,5) (P, Ps. o)

= ($0.)

Because all the denominator elements, (50, 1), are 20, the problem has no feasible solution for

30 1 H — —
! > = and the parametric analysis endsatt =h = 7-
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The optimal solution is summarized as
% = 0+t 160+ 3

0<t=Y 0 5t

3
Mo =¥ 0 o 30 *t .'65 + 3t
1 r>¥ (No feasible solution exists)

PROBLEM SET 7.58

*1. In Example 7.5-2, find the first critical value, t;, and define the vectors of B, in each of
the following cases:

*(a) b(r) = (40 + 21,60 — 31,30 + 6t)"
() b(r) = (40 — 1,60 + 2¢,30 — 50)T

*2. Study the variation in the optimal solution of the following parameterized LP, given
t=0.

Minimize z = 4x; + X2 + 2X3
subject to
3x; + Xy +2x3=3+3
4x, +3x, +2x3 =6 + 2
X1+ 2% +5x3 =4 -t
X1, X, X3 =0

3, The analysis in this section assumes that the optimal LP solution at ¢ = 0 is obtained by
the (primal) simplex method. In some problems, it may be more convenient to obtain the
optimal solution by the dual simplex method (Section 4.4.1). Show how the parametric

analysis can be carried out in this casé, and then analyze the LP of Example 4.4-1, assum-
ing that t = 0 and the right-hand side vector is

b(t) = (3 +2t,6 —t,3— 47
4. Solve Problem 2 assuming that the right-hand side is changed to
b(r) = (3 + 32,6 + 22,4 — 12)T

Further assume that ¢ can be positive, zero, or negative.
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