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CHAPTER 16

Simulation Modeling

Chapter Guide. Simulation is the next best thing to observing a real system. It deals
with a computerized imitation of the random behavior of a system for the purpose of
estimating its measures of performance. Basically, simulation views an operational sit-
uation as a waiting line in a service facility. By literally following the movements of cus-
tomers in the facility, pertinent statistics (e.g., waiting time and queue length) can be
collected. The task of using simulation starts with the development of the logic of the
computer model in a manner that will allow collecting needed data. A number of com-
puter languages are available to facilitate these tedious computations.

A common misuse of simulation is to run the model for an arbitrary time period,
and then view the results as the “true gospel.” In fact, simulation output changes
(sometimes drastically) with the length of the run. For this reason, simulation modeling
deals with a statistical experiment whose output must be interpreted by appropriate
statistical tests. As you study the material in this chapter, pay special attention to the
peculiarities of the simulation experiment, including (1) the important role of (0,1)
random numbers in sampling from probability distributions, and (2) the special meth-
ods used to collect observations to satisfy the underlying assumption of a true statisti-
cal experiment.

The prerequisite for this chapter is a basic knowledge of probability and statistics.
A background in queuing theory is helpful.

This chapter includes 10 solved examples, 2 Excel templates, and 44 end-of-
section problems. The AMPL/Excel/Solver/TORA programs are in folder chl6Files.

MONTE CARLO SIMULATION

A forerunner to present-day simulation is the Monte Carlo technique, a modeling
scheme that estimates stochastic or deterministic parameters based on random sam-
pling. Examples of Monte Carlo applications include evaluation of multiple integrals,
estimation of the constant 7 (= 3.14159), and matrix inversion.

This section uses an example to demonstrate the Monte Carlo technique. The objec-
tive of the example is to emphasize the statistical nature of the simulation experiment.

605




% 606 Chapter 16 simulation Modeling

Example 16.1-1

(x- D+ =2

i i is (x,y) = (1,2).
i i r = §cm, and its center is ( ‘ ) ' .
The radius gi;gfl::fcc:: :;timating the area requires enclosing the circle tnghtly in a square ‘
side g;‘:aﬁ: the diameter of the circle, as shown in Figure 16.1. The corner points are dete’mined
& metry of the square. . . n
from_g:: g:t?matién of the area of the circle is based on the assumptnop that all the Points in g,
square are equally likely to occur. Taking a random sample of n points in the square, if Of the,
points fall within the circle, then

m
Estimate of the | _ ™ Area of ) = 210 x 10)
(ar:,a of the circle) ~ n \the square n (

To ensure that all the points in the square occur with equal pro.bal?ilitifes, We represent the co-
ordinates x and y of a point in the square by the following uniform distributions:, A~ /4

i pe o

4

LY,

1
fl(x)=fd"‘45?‘s6

) )
=— -3 < =7
f(y) 0 y ‘

A sampled point (x, y) based on the distribution f1(x) and fy(
square are equally likely to be selected.
The determination of a sample (x, y) is based

distributed random numbers in the range (0, 1). Table 16.1 provides a small list of such num-
bers which we will use in the example computatio

ns. For the purpose of general simulation.
special arithmetic operations are used to generate the 0-1 random numbers, as will be shown in
Section 16.4. '

y) guarantees that all points in the

on the use of independent and uniformly

_Iio’r_'a pair of 0-1 random numbers, R, and R,,
ed by mapping them on the x and Y axes of Fig

a random point (x, y) in the square is deter-
ure 16.1 using the following formulas:

¥= 446~ (-4)R, = -4 + 10R,
Y= 34071 -(-3)IRy= -3 + 10R; |

FIGURE 16.1

| , (-4,7) 6.7
Monte Carlo estimation of the area of a circle

(=4, -3) (6.-3)
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TABLE 16.1 A Short List of 0-1 Random Numbers

0589 3529 5869 3455 7900 6307
86733 3646 1281 4871 7698 2346
4799 7676 2867 8111 287 4220
9486 8931 8216 8912 9534 6991
6139 3919 8261 4291 1394 9745
5933 1876 3866 2302 9025 .3428
9341 5199 125 5954 1605 6037
1782 6358 2108 5423 3567 2569
3473 1472 3575 4208 3070 0546
5644 8954 2926 6975 3513 0305

To demonstrate the application of the procedure, consider R, = .0589 and R, = .6733. Then

= —4 + 10R, = —4 + 10 X .0589 = —3.411
Cy=-3+10R,=-3+10X 6733 =3733 -

/
e
-

/" This point falls inside the circle because

S

(=3.411 - 1) + (3733 - 2)> = 2246 < 25
The procedure is repeated n times, keeping track of the number of péi_nts m that fall within the
circle. The estimate of the area is then computed as 100 i_\

= o

Remarks. To increase the reliability of estimating the area of the circle, we use the
same procedures employed in ordinary statistical experiments:

L Increase the sample size.
2. Use replications.

The discussion in Example 16.1-1 poses two questions regarding the simulation
experiment:

1. How large should the sample size, n, be?
2. How many replications, N, are needed?

There are some formulas in statistical theory for determining n and N, and they depend
on the nature of the simulation experiment as well as the desired confidence level.
However, as in any statistical experiment, the golden rule is that higher values of n and
N mean more reliable simulation results, In the end, the sample size will depend on the
cost associated with conducting the simulation experiment. Generally spgaking, how;
ever, a selected sample size is considered “adequate” if it produces a relatively “small
Standard deviation. .

Because of the random variation in the output of the experiment, it is necessary
to express the results as a confidence interval, Letting A and s be the mean and variance

.
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of N replications, then, for a con

fidence level a, the confidence interyy) for ¢
¢ tn,
area A is

i A}
\) a
—'A- iy MIQ‘N"‘I _<_ A S A + \/-N—t?N’“l

\/‘ﬁz

The parameter f y— 18 determined from the t-distrib}ltion table.s given a copg ey
levelaand N — 1 degrees of freedom (see the t-tgble_m Appc?nd{x B or use excey
Tables.xls). Note that N equals the number of replications, which is distinct from » thé

sample size.

—_—
Excel Moment

Because the computations associated wi}h each sample in _Example 16.1-1 are volum;.
nous, Excel template excelCircle.xls (with VBA macros) is used to test the effect of
sample size and number of replications on the accuracy of the area estimate. The input
data include the circle radius, r, and its center, (cx, cy), sample size, n, and numbey
replications, N. The entry Steps in cell D4 allows executing several sample sizes i
the same run. For example, if » = 30,000 and Steps = 3, the template will automat;
cally produce output for n = 30,000, 60,000, 90,000. Each time the command buttoy
Press to Execute Monte Carlo is pressed, new estimates are realized, because Excel
refreshes the random number generator to a different sequence.

Figure 16:2 summarizes the results for 5 replications and sample sizes of 30,00,
60,000, and 90,000. The ‘exact area is 78.54 cm?, and the Monte Carlo results show that

FIGURE 16.2

Excel output of Monte Carlo estimation of the area of a circle (file excelCircle.xls) !

- e E
51 Monte Carlo Estimation of the Area ofa

: f‘ Nbr. Replications, N =
[ 4

n=60000 | n=90000 |
78.555 78.483

78.762 78.581)

cation 3 ‘ : 78.268 78.2681
N 000 18 78.347 78.34
emond 18.778 78.760
S . ) 78.543 78.490

SR B ) 0.225 0.191

" Co M. 78.263)  78.283

per conf. limit = ‘ 76.823 78.727)
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the mean estimated area for the three sample sizes varies from 4 = 78.533 to
4 = 78490 cm?. We note also that the standard deviation decreases from s = .308 for
n = 30,000 to s = .191 for n = 90,000, an indication that accuracy increases with the
increase in the sample size.

In terms of the present experiment, we are interested in establishing the confi-
dence interval based on the largest sample size (i.e., n = 90,000). Given N = 5, 4 =
78.490 cm?, and s = .191 cm? ¢ gp54 = 2.776, and the resulting 95% confidence interval
is 78.25 = A = 78.73. In general, the value of N should be at least 5 to realize reason-
able accuracy in the estimation of the confidence interval.

PROBLEM SET 16.1A

1. In Example 16.2-1, estimate the area of the circle using the first two columns of the 0,1)
random numbers in Table 16.1. (For convenience, go down each column, selecting R, first
and then R,.) How does this estimate compare with the ones given in Figure 16.27

2. Suppose that the equation of a circle is
(x =3+ (y+2?2=16
(@) Define the corresponding distributions f(x) and f{(y), and then show how a sample

point (x, y) is determined using the (0, 1) random pair (R, R;).

() Use excelCircle.xls to estimate the area and the associated 95% confidence interval
given n = 100,000 and N = 10. '

3. Use Monte Carlo sampling to estimate the area of the lake shown in Figure 16.3. Base
the estimate on the first two columns of (0, 1) random numbers in Table 16.1.

4. Consider the game in which two players, Jan and Jim, take turns in tossing a fair coin. If
the outcome is heads, Jim gets $10 from Jim. Otherwise, Jan gets $10 from Jan.

*(@) How is the game simulated as a Monte Carlo experiment?

(b) Run the experiment for 5 replications of 10 tosses each. Use the first five columns

of the (0, 1) random numbers in Table 16.1, with each column corresponding to one
replication.

(¢) Establish a 95% confidence interval on Jan’s winnings.
(d) Compare the confidence interval in (c) with Jan’s expected theoretical winnings.

FIGURE 16.3
Lake map for Problem 3, Set 16.1a
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5. Consider the

(®)

6. Simulate five wins of

If the outco
ing sum (called point) an

recorded point, in W

simulation Modeling

following definite integral:

1
/xzdx
Jo

timate the integral.

valuate the integral based
. On 4 re .
phCa.

lop the Monte Carlo experiment t0 es
nce interval, and compare it with t
€

Deve
Use the first four columns in Table 16.1 t(? e
tions of size 5 each, Compute a 95% confide

e of the integral.

exact valu
e of craps: The player rolls two fajr g;
ICe.

Josses of the following gam
me sum is 7 Of 11, the player wins $10. Otherwise, the player records the
d keeps on rolling the dice until the outcome sum matche Tesult.
hich case the player wins $10.1f 7 is obtained prior to mat Chi:x;ht;

4

point, the player loses $10.
der can be 1 of 2 days, with equal probabilities. The de

#7. The lead time

mand per day as$
1. Use the random num

distribution of the deman
demand during
from 0 to 4.)

8. Consider the Buffo

spaced D cm apart.
The objective of the experiment is t0

needle touches or Crosse

(a) Show that the needle will touch or cross a lin

() Design the Monte Carlo experi

(¢) Use Excel to obtain 4 replications of size 1

for receiving an or

umes the values 0,1,and 2 with the respective probabilities of .2, 7
e )and

bers in Table 16.1 (starting with column 1) to estimate the joi

d and lead time. From the joint distribution, estimate the,mm
Jead time. (Hint: The demand during lead time assumes discrete val‘\)x:fs()f
horizontal plane is ruled with parallel lines

(d < D)is dropped randomly on the plane
bability that either end of the

n needle experiment. A

A needle of length dcm
determine the pro

s one of the lines. Define

h = Perpendicular distance from the needle center to a (parallel) line

- g = Inclination angle of the needle with a line

e only if
h<g.00< D
—25111 ,, —hS'Z‘,OSGSTr

probability. ment, and provide an estimate of the desired
0 each of the desired probability. Deter-

mine a 95% confidence interval for the estimate. Assume D = 20cm andd = 10cm

(d) Prove that the theoretical probability is given by the formula

wD

(e) Uset i
he result in (c) together with the formula in (d) to estimate .

16.2 TYPES OF SIMULATION

The execution of
» resent-day simulation i
P day simulation is based generally on the idea of sampling U

with the Monte Carlo

. method. It di .

havior of real system It differs in that it is conc ;
ystems as a function of time, Two distinct t;;:: gfv;::ll:utll;fiztr:lgz g

els eXiS['

d
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1. Continuous models deal with systems whose behavior changes continuously
with time. These models usually use difference-differential equations to describe the
interactions among the different elements of the system. A typical example deals with
the study of world population dynamics.

2. Discrete models deal primarily with the study of waiting lines, with the objec-
tive of determining such measures as the average waiting time and the length of the
queue. These measures change only when a customer enters or leaves the system. The
instants at which changes take place occur at specific discrete points in time (arrivals
and departure events), giving rise to the name discrete event simulation.

This chapter presents the basics of discrete event simulation, including a descrip-
tion of the components of a simulation model, collection of simulation statistics, and
the statistical aspect of the simulation experiment. The chapter also emphasizes the
role of the computer and simulation languages in the execution of simulation models.

PROBLEM SET 16.2A

1. Categorize the following situations as either discrete or continuous (or a combination of
both). In each case, specify the objective of developing the simulation model.

*(a) Orders for an item arrive randomly at a warehouse. An order that cannot be filled
immediately from available stock must await the arrival of new shipments.

(b) World population is affected by the availability of natural resources, food production,
environmental conditions, educational level, health care, and capital investments.

(¢) Goods arrive on pallets at a receiving bay of an automated warehouse. The pallets
are loaded on a lower conveyor belt and lifted through an up-elevator to an upper
conveyor that moves the pallets to corridors. The corridors are served by cranes that
pick up the pallets from the conveyor and place them in storage bins.

2. Explain why you would agree or disagree with the following statement: “Most discrete
event simulation models can be viewed in some form or another as queuing systems con-
sisting of sources from which customers are generated, queues where customers may wait,
and facilities where customers are served.”

ELEMENTS OF DISCRETE-EVENT SIMULATION

This section introduces the concept of events in simulation and shows how the statistics
of the simulated system are collected.

Generic Definition of Events

All discrete-event simulations describe, directly or indirectly, queuing sitpation§ n
which customers arrive, wait in a queue if necessary, and then receive service before
they depart the system. In general, any discrete-event model is composed of a network
of interrelated queues. i
Given that a discrete-event model is in reality a composite of qUeucs, salgcion
of simulation statistics (e.g., queue length and status of the service facxllt‘y) ltake place?
only when a customer arrives or leaves the facility. This means that two principal events
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ures. These are the only tw,

trol the simule jel: atri d depart ‘
control the simulation model: arrivals and ¢¢] : ing
at which we need to examine the system. At all other jnstants, no changes affectingath
statistics of the system take place. "
—

Example 16.3-1
i jobs: d rush. All jobs are processed
Metalco Jobshop receives tWO types of jobs: regular an o
secutive machines with ample buffer areas. Rush jobs always assume nonpreemptive P:iom'
Y

over regular jobs. Identify the events of the situation.

This situation consists of two tandem queues cor{esponding to the two machines, A¢ firg
one may be inclined to identify the events of the situation as follows: 1,

A11: A regular job arrives at machine 1.
A21: A rush job arrives at machine 1.
D11: A regular job departs machine 1.
D21: A rush job departs machine 1.
A12: A regular job arrives at machine 2.
A22: A rush job arrives at machine 2.
D12: A regular job departs machine 2.
D22: A rush job deparis machine 2.

In reality, we have only two events: an arrival of a (new) job at the shop and a departure of
a (completed) job from a machine. First notice that events D11 and A12 are actually one and the
same. The same applies to D21 and A22. Next, in discrete simulation we can use one event (ar-
rival or departure) for both types of jobs and simply “tag” the event with an attribute that iden-
tifies the job type as either regular or rush. (We can think of the attribute in this case as 2
personal identification number, and, indeed, it is.) Given this reasoning, the events of the model
reduce to (1) an arrival A (at the shop) and (2) a departure D (from a machine). The actions as-
sociated }vith the departure event will depend on the machine at which they occur.

Having defined the basic events of a simulation model, we show how the model is executed.
ﬁgme 16.4 gives a schematic representation of typical occurrences of events on the simulation
time scale. After all the actions associated with a current event have been performed, the simu-
li:mon a.dvances by “jumping” to the next chronological event. In essence the execugion of the
simulation occurs at the instants at which the events occur. ’

. sg:)a‘:a(ti::sb thtehsgnulatlor'x det?rmine th.e occurrence time of the events? The arrival events
e Ao areya ; 1:3 u:ferarnval time .(the ‘mte¥val between successive arrivals), and the depar-
s« Cainarrsin r:; ion of the service time in the facility. These times may be deterministic
tomérs at a bank). Ifgtheatisttlaet ll?:tv?rz:;yei? lm}tes) orpr o.b&}bmsﬁc (e.g.,the random arrival of cus*

nts is deterministic, the determination of their occurrence

FIGURE 16.4

Example of the occurrence of simulation events on the time scale

Pl
-~ > -

T(/ \\‘//7’ \\1,/4 """" \\\\ /,——\\\/”‘_’
J ‘e
. Event] Eyj } t ‘ 1 . Time
' nt2 Event3

Event4  Event$
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" straightfor‘.”f“d' 'If it. is probabi}istic, we use a special procedure to sample from the cor-
tim;n Jing probabnhty distribution. This point is discussed in the next section.
res,
pROBLEM SET 16.3A

1 1dentify the discre}e events needed to simulate the following situation: Two types of jobs
arrive from two different sources. Both types are processed on a single machine, with pri-
ority given to jobs from the first source.

2. Jobs arrive at a constant rate at a carousel conveyor system. Three service stations are
spaced equally around the carousel. If the server is idle when a job arrives at the station,
the job is removed from the conveyor for processing. Otherwise, the job continues to ro-
tate on the carousel until a server becomes available. A processed job is stored in an adja-
cent shipping area. Identify the discrete events needed to simulate this situation. -

3, Cars arrive ata two-lane, drive-in bank, where each lane can house a maximum of four
cars. If the two lanes are full, arriving cars seek service elsewhere. If at any time one lane
is at least two cars longer than the other, the last car in the longer lane will jockey to the
last position in the shorter lane. The bank operates the drive-in facility from 8:00 A.M. to
3:00 PM. each work day. Define the discrete events for the situation.

+4, The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all
its pupils. Kids arrive at the dispensing window every 30 seconds. It takes 18 seconds
to receive the lunch tray. Map the arrival-departure events on the time scale for the
first five pupils.

1632 Sampling from Probability Distributions

Randomness in simulation arises when the interval, ¢, between successive events is
probabilistic. This section presents three methods for generating successive random
samples (¢ = t;, I;,... ) from a probability distribution f{z):

1. Inverse method.
2. Convolution method.
3. Acceptance-rejection method.

The inverse method is particularly suited for analytically tractable probability densi-
ty. functions, such as the exponential and the uniform. The remaining two methods deal
Wlth more complex cases, such as the normal and the Poisson. All three methods are root-
ed in the use of independent and identically distributed uniform (0, 1) random numbers.

L/l'“’ergwe Method. Suppose that it is desired to obtain a random sample x from the

(continuous or discrete) probability density function flx). The inverse method first

determines a closed-form expression of the cumulative density function F(x) =

5 {ly = x}t where 0 = F(x) = 1, for all defined values of y. Given that R is a r.andom

o? ;e obtained from a uniform (0, 1) distribution, and assuming that F'is the inverse
> the steps of the method are as follows:

S
s:"l’ L Generate the (0, 1) random number, R.
€p 2. Compute the desired sample, x = F~'(R). 7

N
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F(x)
F(x)

R]_.._______’ ——————— {
A [
o - -

S

0 X1y x 0 X I
(a) x Continuous (b) x Discrete

FIGURE 16.5
Sampling from a probability distribution by the inverse method

Figure 16.5 illustrates the procedures for both a cgntinqous and a discrete rgy,
dom distribution, The uniform (0, 1) random value R; is projected from the vertic,
F(x)-scale to yield the desired sample value x; on the honzoptal scale.

The validity of the proposed procedure rests on showing that the random vay.
able z = F(x) is uniformly distributed in the interval 0 < z =< 1, as the following the.
orem proves. 7ol )

Theorem 16.3-1. Given the cumulative density function F(x) of the random varigble
x,—00 < x < 00, the random variable z = F(x),0 < z =< 1, has the following uniform
0-1 density function: el b Aaii '

f@o=toszs1
Proof. The random variable ié ﬁniformly distribﬁted if, and only if,
Plz=Z}=2Z,0=Z =1
This result applies to F(x) because
P{z = Z} = P{F(x) = Z} = P{x = F{(2)} = F[FY(2)] = Z
Additionally,0 < Z < ibccause 0 ,<_,P1{z,7$ .Z} = 1.

Example 16.3-2 (Exponential Distribution)
The exponential probability density function

£(8) = de™, 1 >0

» . . i a
represents the interarrival time ¢ of customers at a facility with a mean value of " Determin®
random sample ¢ from f(¢). ‘

The cumulative density function is determined as

{
F(r) = /OAe"“dx =150
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agR = F(t), we can solve for #, which yields

t= “(‘}) In(1 - R)

gecause 1 = Ris the lcoynplement of R,In(1 — R) may be replaced with In(R)
In terms of4 simulation, the result means that arrivals are spaced f time uﬁitq apart. For
ample. for A = 4 customers per hour and R = .9, the time period until the next arrival eccur:’i:

getti

computed as

1
f = —<Z) In(1 = .9) = .577 hour = 34.5 minutes

The values of R used to obtain successive samples must be s
. gt , : elected randomly f i-
(0, 1) distribution. We will show later in Section 16.4 how these (0, 1) rando};n r\:;:x:suge

form .
ng the course of the simulation.

generated duri
,

PROBLEM SET 16.3B

+1, In Example 16.3-2_, suppose that the first customer arrives at time 0. Use the first three
random numbers in column 1 of Table 16.1 to generate the arrival times of the next 3 cus-
tomers and graph the resulting events on the time scale.

«3, Uniform Distribution. Suppose that the time needed to manufacture a part on a machine
is described by the following uniform distribution:

1
f)y=p—pa=t=bh

Determine an expression for the sample ¢ given the random number R.

3. Jobs are received randomly at a one-machine shop. The time between arrivals is exponen-
tial with mean 2 hours. The time needed to manufacture a job is uniform between 1.1 and
2 hours. Assuming that the first job arrives at time 0, determine the arrival and departure
time for the first five jobs using the (0,1) random numbers in column 1 of Table 16.1.

4. The demand for an expensive spare part of a passenger jetis 0,1,2, or 3 units per month
with probabilities .2, .3, A4, and .1, respectively. The airline maintenance shop starts opera-
tion with a stock of 5 units, and will bring the stock level back to 5 units immediately

after it drops below 2 units.
*(a) Devise the procedure for sampling

(b) How many months will elapse unti
values of R from the first column in Table 16.1.
5. In a simulation situation, TV units are inspected for

chance that a unit will pass inspection, in which 'case i : :
the unit is repaired. We can represent the situation symbolically in on

demand.
| the first replenishment occurs? Use successive

possible defects. There is an 80%

{ is sent to packaging. Otherwise,
e of two ways.

goto REPAIR/.2, PACKAGE/8

goto PACKAGE/ 8, REPAIR/.2
ence of (0,1) ran-

when a given sequ
(REPAIR or

jons appear equivalent. Yet, o
44 different decisions

These two representat (
d to the two representations,

dom numbers is applie

PACKAGE) may result. Explain why.
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. coin repeatedly until a head occurs. The associated payoff ig 3»

6. A player tosses a fall % intil a head comes up.

' f the game.
e the sampling procedure O | |
(a) Devise doﬂf pumbers in column 1 of Table 16.1 to determine the cumulatiy,

after two heads occur.

9. Triangular Distribution. In simulation, the lack of data may make it impossible to deter

n el - +od with a simulation activity. In most

e thé pmbabﬂity distribution associated \ : ctivity. Ir of thege
:i‘t‘::n't:ns, it may be easy 10 describe the desired var:aple by estimating its smallest,
likely, and largest values. These three values are s'uffiglent to define a triangular distrib,:,
tion \;/hich can then be used as a «rough cut” estimation of the real distribution, '
(a) Develop the formula for sampling from the following triangular distribution, whoge

ameters are a, b, and c:

respective par
2(x — a)
(b—-a)(c—-a)’ asx=b
f(x) = 2(c — x) p< s
coe-a ¢

(b) Generate three samples from a triangular distribution with parameters (1, 3,7) using
lumn 1 of Table 16.1.

the first three random numbers in co
8. Consider a probability distribution that consists of a rectangle flanked on the left and right
sides by two symmetrical right triangles. The respective ranges for the triangle on the left,
the rectangle, and the triangle on the right are [a, b}, [b, ], and [¢, d],a < b < c < d.Both

triangles have the same height as the rectangle.
(a) Develop a sampling procedure
(b) Determine five samples with (a, b, c, d)
numbers in column 1 of Table 16.1.
*9, Geometric distribution. Show how a random sample can be obtained from the following

geometric distribution:

= (1,2, 4, 6) using the first five random

| S

f(x) = p(1 - p), x= 0,1,2,...

The parameter x is the number of (Bernoulli) failures until a success occurs, and p is the
probability of a success,0 < p < 1. Generate five samples for p = .6 using the first five
random numbers in column 1 of Table 16.1.
10. lv)Vet_bull Qistribution. Sl_mw how a random sample can be obtained from the Weibull
ution with the following probability density function:

distri-

f(x) = aﬁ"“x""‘e’("'m"‘x >0
J where a > 0O is the shape parameter,and 8 > 0 is the scale parameter.
Convoluti . . :
on Method. The basic idea of the convolution method is to express the

desired e .
sample as the statistical sum of other easy-to-sample random variables. Ty?lca

among these distributions are th
, v are the Erla ' et
from the exponential dvistributionsamglgezpd e oo
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£xample 16.3-3  (Erlang Distribution) ——
n

o m-Erlang random variable is defi
and identically distributed expol{: :eg.ned
variable: then ntial ra

Event Simulation 617

st s

as the statistica

ndom var; I'sum (convoluti
ariables olutions) of m
’ independe
nt

. Let
y represent the m-Erlang rand
om

y=y‘+y2+m+y
m

where Y i =1 2,...,m, are independent and ;
1

gbles whose probability densit : denti istes
y function is defj ieally distributed exponential rand
om vari-

ned as
f = =Ay,
(%) = Ae y-)’l>0,i=1,2 m

From Example 16.3-2, a sample f; ;
ple from the ith exponential distribution is
computed as

A n(R")"=1,2.....m

Thus, the m-Erlang sample is computed as

- (1
y= (I\){ln(&) + ln(Rz) + -+ ln(Rm)}

- -(3)u(f1x)

To illustrate the use of the formula, su
: . ,suppose that m = 3,and A = 4
random numbers in column 1 of Table 16.1 yield RiRyR3 =(.0589)(.6‘7;§;1(ts 4%)h:ur£;1; &m

yields
y= "(l) In(.019) = .991 hour

Example 16.3-4 (Poisson Distributions)
f the distribution of the time between the occu
the distribution of the number of events per unit

this relationship to sample the Poisson distribution.
istribution has 2 mean value of A events per unit time. Then the
tial with mean }‘ time units. This means that a Poisson sample. 2.

nd only if,

rrence of successive

Section 15.3.1 shows that i
time must be Pois-

events is exponential, then
son, and vice versa. We use

Assume that the Poisson d
time between events is exponen
will occur during ¢ time units if,a

1l event 1 occurs =

t < Period till eventn + 1 occurs

Period ti

This condition translates to
>0

0

e n
e psr<ntat !

0g:<n.n”‘
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1.2...,n 4+ 1188 sample from the exponemial distribution with meap % Fron .
Whel‘ely,i’ Y ey ’ ]
result in Example 16.3-3, we have

—(11\) ln(flk,) <t< ——(—1;) ln(ﬁR,), n>0
0st< —(}X) In(Ry),n =10

which reduces to

" n+1
=

[[& =" > [1Run >0

i=1
12e"“>R1,n=0

To illustrate the implementation of the sampling process, suppose that §M= 4 events per hoy,
and that we wish to obtain a sample for a period ¢ = .5 hour. This gives e™ = _1353_. Using the
random numbers in column 1 of Table 16.1, we note that R, = 0589 is less than ¢™ = 195
Hence, the corresponding sample is n = 0.

——

Example 16.3-5 (Normal Distribution)

The central limit theorem (see Section 12.4.4) states that the sum (convolution) of n indepen-
— dent and identically distributed random variables becomes asymptotically normal as n becomes

sufficiently large. We use this result to genérate samples from normal distribution with mean mn
and standard deviationo. ‘ '

Define

x=R +Ry+ - +R,

The random variable is asymptotically normal by the central limit theorem. Given that the uni-
form (0, 1) random number R has a mean of% and a variance of -113, it follows that x has a mean of

n . J :
;and a variance of 15 Thus, a random sample, y, from a normal distribution with mean y and
standard deviation o', N(u, o'), can be computed from x as

n
2 y=p+ol12)
i Vi

In practice, we take n = 12 for convenience,

which reduces the formula to

: ' : 10,2
i (mean p = 10 and standard deviatio?xd;supPOSe th.at we wnsh to generate a sample from N(10,¢
T columns 1 and 2 of Table 16.1, we get x =

_—



V

The disadvantage of th1:s procedure is that it requires generating 12 random numbers for
each normal sample, _Wh‘Ch is computationally inefficient. A more efficient procedure calls for
using the transformation

16.3 Elements of Discrete-Event Simulation 619

x = cos(2wR2)\/:2Tr;(l_?T)N

Box and Muller (1958) prove that x is a standard N(0,1). Thus, y = p + ox will produce a sam-
le from N (., o). The new procedure is more efficient because it requires two (0, 1) random
pumbers only. Actuall)f, this method is even more efficient than stated, because Box and Miller
prove that the preceding formula will produce another N(0, 1) sample if sin(27R;) replaces

cos(2mRa)- . :
To illustrate the implementation of the Box-Muller procedure to the normal distribution

N(10, 2), the first two random numbers in column 1 of Table 16.1 yield the following N(0, 1)
samples:

x; = cos(2m X .6733)\/—2 In(.0589) ~ —1.103
sin(27 X .6733)\/—=2 In(.0589) ~ —2.109

X2

Thus, the corresponding N(10, 2) samples are

y = 10 + 2(—-1.103) = 7.794
Y, = 10 + 2(—2.109) = 5.782

PROBLEM SET 16.3C'

*1, In Example 16.3-3, compute an Erlang sample, given m = 4 and A = 5 events per hour.
2. In Example 16.3-4, generate three Poisson samples during a 2-hour period, given that the
mean of the Poisson is 5 events per hour.
3. In Example 16.4-5, generate two samples from N(8, 1) by using both the convolution
method and the Box-Muller method.
4. Jobs arrive at Metalco jobshop according to a Poisson distribution, with a mean of six

jobs per day. Received jobs are assigned to the five machining centers of the shop on a
strict rotational basis. Determine one sample of the interval between the arrival of jobs at

- the first machine center. ]
5. The ACT scores for the 1994 senior class at Springdale High are normal, with a mean of
27 points and a standard deviation of 3 points. Suppose that we draw a random sample of
six seniors from that class. Use the Box-Muller method tQ determine the mean and stan-
dard deviation of the sample. f
*6. Psychology professor Yataha is conducting a learning experiment in which mice are fhe
trained to find their way around a maze. The base of the maze is square. A mouse enters
the maze at one of the four corners and must find its way through the maze to exit at the
same point where it entered. The design of the maze is such that the mouse must pass by
each of the remaining three corner points exactly once before it exits. The multi-paths
of the maze connect the four corners in a strict clockwise order, Professor Yataha esti-
mates that the time the mouse takes to reach one corner point from another is uniformly
e
'For all the problems of this set, use the random numbers in Table 16.1 starting with column 1.

.
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0and 20 geconds, depending on the path it takes. Develop
se sp in the maze. 2 sam,
5 an exit from the maze, another
oy

e number of mice that exit ¢,
€m
A2
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distributed between 1
pling procedure for t

In Problem 6, suppose th

instantly enters. Develop a sam

in § minutes.
8. Negative Binomial. ShoW how 8 random sam
nomial whose distribution is given as

oy =" pyix =

number of failures until the rth success occurs in a sequence of indepenq

ent

where x is the -
Bernoulli trials and p i the probability of success, 0 < p < 1. (Hint.The negative biny,
jution of r indepe mples. See Problem 9, Set 16.3b,) Om;.

al is the convo ndent geometric sa
;Acceptance-Rejecﬁon Method. The acceptance-rejection method is designeq
complex pdfs that cannot be handled by the preceding methods. The general idea of for
lex pdf f(x) with a more analytically manageable thf
then be used to sample the original pdf f(x). proxy
zing function g(x) such that it dominates f(x) in its entir

ple can be determined from the negay;
1ve b].

0,1,2,K

pdf h(x). Samp
Define the majori

range—that is,
g(x) = f(x), =00 < x <

Next, define the proxy pdf, h(x), by normalizing g(x) as

X
8(x) L —00 < x < ©

/_:g(y)d(y)

The steps of the acceptance-rejection method are thus given as

“h(x) =

Stepl Obtai -~ i |
pl Obtain a sample x = x; from h(x) using the inverse or the convolution

method.
Steg 2. Obtain a (0, 1) random number R.
and

Step3. If R =< fx) - |
g(x)" accept x; as a sample from f{x). Otherwise, discard x|

return to step 1.

The validi .
e validity of the method is based on the following equality:

P {x < alx = X1 a
118 accepted, —~00 < x; < /
! <o} = [ f(y)dy-0<a<®
?s pfobability statement states that th - y
e e 2
‘ . , sired.
tion probability of step 3 %r:i)sp osed method is enhanced by the decrease in the reje¢
. This probability depends on the specific choice of th® e

jorizing function g(x) a
f(x) more “snugly.” ) and should decrease with the selection of a g(x) that “majorize®
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g(x)

flx)

FIGURE 16.6
1.0 X

Majorizing function, g(x), for the beta distribution. fx)

Example 16.3-6 (Beta Distribution)
Apply the acceptance-rejection to the following beta distribution:
fx) =6x(1-x),0=x=1

Figure 16.6 depicts f(x) and a majorizing function g(x).
The height of the majorizing function g(x) equals the maximum of ‘'whi
1 = .5. Thus, the height of the rectangle is f(.5) = 1.5.This means that fix), which occurs at

g(x)=150=x=<1
The proxy pdf h(x), also shown in Figure 16.6, is computed as

h(x) = 8(x) __15
Areaunderg(x) 1X15

The following steps demonstrate the procedure using the (0, 1) random sequence in Table 16.1.

Step 1. R = 0589 gives the sample x = .0589 from h(x).
Step2. R = .6733.

Step3. Because ’;—%:—g%% = % = 2217 isless than R = .6733, we accept the sample x; = .0589.
To obtain a second sample, we continue as follows:

Step L. Using R = .4799, we get x = .4799 from h(x).

Step2. R = .9486.

Step3. Because ﬁ%% = 9984 is larger than R = .9486, we reject x = 4799 as a valid beta
sample. This means that the steps must be repeated again with “fresh” random num-

bers until the condition of step 3 is satisfied.

Remarks, The efficiency of the acceptance-rejection method is Fnhanc?d b¥ self:cting
a majorizing function g(x) that “jackets” f(x) as tightly as p.oss1ble while yxgldnx}g an
analytically tractable proxy h(x). For example, the method will be more efficient if the
rectangular majorizing function g(x) in Figure 16.6 is replaced with a step-pyramid
function (see Problem 2, Set 16.3d, for an illustration). The larger 'the number of steps,
the more tightly will g(x) majorize f(x), and hence the higher is the p‘robabn‘hyy of
accepting a sample, However, a “tight” majorizing function generally entails additional

N e
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computations which, if excessive, may offset the savings resulting from increa

probability of acceptance. ey,

PROBLEM SET 16.3D

1. In Example 16.3-5,
Use the (0, 1) random num

the example.
le 16.3-6. Determine a two-step pyramid majorizip, ,

2. Consider the beta pdf of Example 16.5-0. '
tion g(x) with two equal jumps of height ;2 = .75 each. Obtain one beta sample b,
the new majorizing function using the same (0, 1) random sequence in Table 6 | tl:? on

was employed in Example 16.3-6. The conclusion, in general, is that a tighter major;y;

function will increase the probability of acceptance. Observe, however, that the amolng
of the computations associated with the new function is larger. unt
Determine the functions g(x) and h(x) for applying the acceptance-rejection methog ,

the following function:

continué the steps of the procedure until a valid sample is Obtaj
bers in Table 16.1 in the same order in which they are ?:Jlned.
Sed n

i) = sin(x) -; cos(x)

,0=x=

SE

s from column 1 in Table 16.1 to generate two samples

Use the (0, 1) random number
over the defined range of f{x))]

from f(x). [Hint. For convenience, use a rectangular g(x)

4. The interarrival time of customers at HairKare is described by the following distribution:

.k
.fl(t)=—tl',125t_<_20

The time to get a haircut is represented by the following distribution:

k
f(t) = t—zz 18<t=<22

The constant k; and k, are determined such that fi(¢) and f,(t) are probability density
functions. Use the acceptance-rejection method (and the random numbers in Table 16.1)
to determine when the first customer will leave HairKare and when the next customer
will arrive. Assume that the first customer arrives at T = 0.

GENERATION OF RANDOM NUMBERS

Uniform (0,1) random numbers play a key role in sampling from distri
random numbers can only be generated by electronic devices. Howeve
‘tixon MCEE e executed on the computer, the use of electronic device
‘ otm nugllt;ers is much too slow for that purpose. Additionally, elect
ncgviie ¢ y laws of chance, and hence it will be impossible to duplica
?;?;ﬁ: V;?‘I;g;)_m m;‘g? ers at will. This point is important because debugging, V¢!
,ar idation of the simulation model oft i  ating the same sedY

of random numbers. ften require duplicating
tio 'Tll;e only plausible way for generating (0, 1) random numbers f
n is based on arithmetic operations, Such numbers are not truly

butions. True (- !
r, because simuid-
s to generate rat
ronic devices are

te the same
ifica
ence

n simuld-
cause

For use |
random b¢
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they can be generated in advance. It is |
,udo-random numbers. 's thus more appropriate to refer to them as

The most common arithmetic operation for

the multiplicative congruential method. Given the
random number R, can be generated from the for

generating (0, 1) random numbers is

parameters ug, b, c,and m, a pseudo-
mulas:

Up = (bu,_q + c) mod (m),n = 1,2,..

un
R, = —n=12..

The initia} v.alue uy is usually referred to as the seed of the generat
Variations of the multiplicative congruential method that imor.

the generator can be found in Law and Kelton (1991) prove the quality of

Example 16.4-1
Generate three random numbers based on the multiplicati i
t .
b=9,c=5andm = 12. The seed is uy = 11. .lp icative congruential methiod ‘using
u = (9 X 11 + 5)mod 12 = 8, R, =18;2= 6667

Uy = (9><8+5)mod12=5,R2=15—2=.4167

U = (9><5+5)mod12=2,R3=%=.1667

Excel Moment

Excel template excelRN.xls is designed to carry out the multiplicative congruential cal-
culations. Figure 16.7 generates the sequence associated with the parameters of Exam-
ple 16.4-1. Observe carefully that the cycle length is exactly 4, after which the sequence
repeats itself. The conclusion here is that the choice of ug, b, ¢, and m is critical in de-
termining the (statistical) quality of the generator and its cycle length. Thus, “casual”
implementation of the congruential formula is not advisable. Instead, one must use
reliable and tested generator. Practically all commercial computer programs are

equipped with dependable random number generators. f
|
!

PROBLEM SET 16.4A

*1. Use excelRN.xls with the following set
in Example 16.4-1:

s of parameters and compare the results with those I

p=17¢c= 111, m= 103, seed = 7
and use it to generate 500 zero-one
Microsoft histogram tool, see i
d numbers reasonably follow

or on your computer,
e resulting values (using t!\e
yourself that the obtaine

2. Find a random number generat
random numbers. Histogram tl%
Section 12.5) and visually convince

T
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165

16.5.1

B0 Sl
Multiplicative Congrye;

. B
nti [T o
Input data B7<=10;:] Methoq'
b=

c -
ud =
A =
How many numbers?
Output resyits

@~ {wira] -

10 |Generated random numberg.
11 _ ; 1 0 66657
:g ; Zi 0.41667
CEm S 3 016eg7
1n 4 Doy
12 5. 066667
61 B 04ty
jlg e T 016687
FIGURE 16.7 T S 3916
Excel random numbers output for the data of Example 20 —ar 03‘15227
16.4-1 (file excelRN.xls) e 201667

the (0, 1) uniform distribution. Actually, to test the sequence properly, you would need to
apply the following tests: chi-square goodness of fit (see Section 12.6), runs test for inde-
pendence, and correlation test (see Law and Kelton [1991] for details).

~

MECHANICS OF DISCRETE SIMULATION

This section details how typical statistics are collected in a simulation model. The vehi-
cle of explanation is a single-queue model. Section 16.5.1 uses a numeric example to
detail the actions and computations that take place in a single-server queuing simula-
tion model. Because of the tedious computations that typify the execution of a simula-

tion model, Section 16.5.2 shows how the single-server model is modeled and executed
using Excel spreadsheet.

Manual Simulation of a Single-Server Model

The i'nberarrival time of customers at HairKare Barbershop is exponential with mean
15 minutes. The shop is operated by only one barber and it takes between 10 and 15 mu™
utes, uniformly distributed, to do a haircut. Customers are served on a first-in, first-out

(FIFO) basis. The objective of the simulation is to compute the following measures of
performance:

L. The average utilization of the shop.
2. The average number of waiting customers.
3. The average time a customer waits in queue.

’Ijhe logic Of the simulation model can be described in terms of the actions assoct
ated with the arrival and departure events of the model.

A
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A prival Event
Generate and store chronologically the occurrence ti i
. - G _ me of t
e et cimulation time + interarrival time) of the next arrival event

3. If the facility (barber) is idle
a) Start service and declare the facili . o
@ statistics. ity busy. Update the facility utilization
(b) Generate and store chronologically the time of the d
’ = ; : epart
customer (= current simulation time + service time) parture event for the

3, Ifthe facility is busy, place the customer in the queue and update the queue statistics.

Departure Event
1. If the queue is empty, declare the facility idle. Update the facility utilization statistics.

2. If the queue is not empty
(a) Select a customer fr.o‘m the queue, and place it in the facility. Update the
queue and facility utilization statistics. - 4
(b) Generate and store chronologically the occurrence time of the departure
event for the customer (= current simulation time + service time).

From the data of the problem, the interarrival time is exponential with mean
and the service time is uniform between. 10 and 15 minutes. Letting p

15 minutes,
rrival and service times, then, as explained

and g represent random samples of intera
in Section 16.3.2, we get

P = —-15 In(R) minutes, 0 = R=<1
g = 10 + SR minutes, 0<R=1

we use R from Table 16.1, starting with column 1.

For the purpose of this example,
ation clock time. We further assume that

We also use the symbol T to represent the simul
the first customer arrives at T = 0 and that the facility starts empty.
i the simulation is

Because the simulation computations are typically voluminous,
limited to the first 5 arrivals only. The example is designed to cover all possible situa-
tions that could arise in the course of the simulation. Later in the section we introduce
the excelSingleServer.xls template that allows you to experiment with the model with-

out the need to carry out the computations manually.
Arrival of Customer 1at T = 0. Generate the arrival of customer 2 at
T=0+p =0+ [—15 ln(.0589)] = 42.48 minutes

omer 1 starts service immediately. The depar-

= 0, cust

Becal_xse the facility is idle at T
ture time is thus computed as
=0+ (10 +5X 6733) = 13,37 minutes

T=0+q1

N LA st
Lo




26 Chapter 16 simulation Modeling

i jven as:
The chronological 1ist of future events 18 thus given

T Because the queue is empty, the ..

of Customer 1 at T = 13.37. h 3, the fa
declared idle. At the same time, we record that the facility has been busy betwee, T“\ N
and T = 13.37 minutes. The updated list of future events becomes =

Time, T  Event

42.48 Arrival of customer 2

Arrival of Customer 2 at T = 4248. Customer 3 will arrive at
T = 4248 + [-151n(4799)] = 5349 minutes

Because the facility is idle, customer 7 starts service and the facility is declared busy,
f The departure time is ‘

T = 4248 + (10 + 5 X 9486) = 57.22 minutes

The list of future events is updated as

Time, T Event

53.49 Arrival of customer 3
57.22 Departure of customer 2

Aurrival of Customer 3atT = 53.49. Customer 4 will arrive at
T = 5349 + [-15 In(.6139)] = 60.81 minutes
i

f Because the facility is currently busy (until T = 57.22), customer 3 is placed in queue
at T = 53.49. The updated list of future events is

\ \ Time, T Event
LY

57.22 Departure of customer 2
60.81 Arrival of customer 4

‘ Departure of Customer 2 at T = §7.22. Customer 3 is taken out of the queve ¢ start
Tk service, The waiting time is

Wy = 5722 - 53.49 = 3,73 minutes
The departure time is ' |

T =5722 + (10 + § X .5933) = 70.19 minutes
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The updated list of future events is

Time, T Event

(;0.8] Arrival of customer 4
0.19 Departure of customer 3

Arrival of Customer 4 at T = 60.81. Customer 5 will arrive at
T = 60.81 + [-151n(.9341)] = 61.83 minutes

Because the facility is busy until 7 = 70.19, customer 4 i _
dated list of future events is Er 438 placed if the querie. The up-

Time,T  Event

61.83 Arrival of customer 5
70.19 Departure of customer 3

Arrival of Cust(.)mer‘S at T = 61.83. The simulation is limited to 5 arrivals only, hence
customer 6 arrival 1s not generated. The facility is still busy, hence the customer is
placed in queue at T = 61.83. The updated list of events is

Time, T Event

70.19 Departure of customer 3

Departure of Customer 3at T = 70.19. Customer 4 is taken out of the queue to start

service. The waiting time is
W, = 70.19 — 60.81 = 9.38 minutes

The departure time is
T =70.19 + [10 + 5 X .1782] = 81.08 minutes

The updated list of future events is

Time, T Event

81.08 Departure of customer 4

Departure of Customer 4 at T = 81.08. Customer 5 is taken out of the queue to start

service. The waiting time is

W, = 81.08 — 61.83 = 19.25 minutes

The departure time is
T =81.08 + (10 +

The updated list of future events is

§ x .3473) = 92.82 minutes

Time, T  Event
Departure of customer 3

92.82
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Queue length
peWyn
e Ws—s
2| o
Salfan i
‘ & ! 1+ A|=373 . d g
IR | | A,=2863
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g 114
= Facility utilization
SRl
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IR =50.34
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§

g FIGURE 16.8 |

. " Changes in queue length and facility utilization as a function of simulation time, T
| .

iR ;! of Customer 5 at T = 92.82. There are no more customers in the System
1 i (queue and facility) and the simulation ends.
1B Figure 16.8 summarizes the changes in the length of the queue and the utilization

of the facility as a function of the simulation time.
The queue length and the facility utilization are known as time-based variables be-

cause their variation is a function of time. As result, their average values are computed as

Average value of a | _ Area under curve
time-based variable ) ~ Simulated period

Implementing this formula for the data in Figure 16.8, we get

A, + .
(Average queue) ALt Ay 3236 .349 customer

length 92.82  92.82 |
Average facility | _ A3z + Ay 63.71
( utilization ) T 92.82 - 92.82 = ,686 barber

The average waiting time in the queue is an observation-based variable Whos¢

value is computed as

' ( Average value of an _ __Sum of observations
observation-based variable / = Number of observations

#



mely,
4 -
W, + Wy + W, W4+Ws~0+0+373+938+ 1925 = 32.36 minut
= nutes
The average Waiting time in the queye for all customers is thyg com ted
puted as
Wq _ 3236

2. Classify the following variables as either observario
*(@) Time-to-failure of an electronjc component.
*(b) Inventory level of an item,

(¢) Order quantity of an inventory item,
(d) Number of defective items in a lot.
(¢) Time needed to grade test papers.

(® Number of cars in the parking lot of a car-rental agency.

*3. The following table represents the variation in the n
queue as a function of the simulation time.

n based or time based:

umber of waiting customers in a

Simulation time, T (hr) No. of waiting customers

0=T=3
3<T=<4
4<T=<6
6<T=<7
7<T=10
10<T=12
12<T=18
18<T=2
20<T=25

—_—h WO =N - O

Compute the following measures of performance:

(8) The average length of the queue. )
(b) The average waiting time in the queue for those who must wait.
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-

Decision Analysis and Games

\
/Chapter Guide. Decision problems involving a finite number of alternatives arise fre-
quently in practice. The tools used to solve these problems depend largely on the type
of data available (deterministic, probabilistic, or uncertain). The analytic hierarchy
process (AHP) is a prominent tool for dealing with decisions under certainty, where
subjective judgment is quantified in a logical manner and then used as a basis for
reaching a decision. For probabilistic data, decision trees comparing the expected cost
(or profit) for the different alternatives are the basis for reaching a decision. Decisions
under uncertainty use criteria reflecting the decision maker’s attitude toward risk,
ranging from optimism to pessimism. Another tool of decision under uncertainty is
game theory, where two opponents with conflicting goals aim to achieve the best out of
the worst conditions available to each. To demonstrate the importance of these tools in
practice, four case analyses in Chapter 24 on the CD deal with using AHP to determine
the layout of a CIM laboratory, using decision-tree analysis to determine booking lim-
its in hotel reservations, applying Bayes probabilities to evaluate the results of a med-
ical test, and using game theory to rank golfers in Ryder Cup matches. To assist you in
understanding the details of the different tools, the chapter provides 4 spreadsheets.
You will also find TORA useful in carrying out the graphical and algebraic solution of
games. A basic knowledge of probability and statistics is needed for this chapter.

This chapter includes summaries of 4 real-life applications, 10 solved examples, 4
spreadsheets, 63 end-of-section problems, and 5 cases. The cases are in Appendix E on
the CD, The AMPL/Excel/Solver/TORA programs are in folder ch13Files.

Real-Life Application—Layout Planning of a Computer Integrated
Manufacturing (CIM) Facility

The engineering college in an academic institution wants to establish a CIM laborato-
ry in a vacated building, The new lab will serve as a teaching and research facility and a
center of technical excellence for industry, Recommendations are solicited from the
faculty regarding a layout plan for the new laboratory, from which the ideal and ab-
solute minimum square footage for each unit are compiled. The study uses both AHP

489
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s Aata . . jgramming to reach a satisfactory cq
(analytic hierarchy process) and goal progra 1SS Mprom;
golutiyon that mee?s‘:he needs for teaching, researhch,é\gd service to industry. The detsﬁ
of the study are given in Case 9, Chapter 24 on the L1 <

—

/431  DECISION MAKING UNDER CERTAINTY—ANALYTIC HIERARCHY
PROCESS (AHP)

The LP models presented in Chapters 2 through 9 are examples of decision Making
under certainty in which all the functions are well.defmed. AHP is designed for Situa.
tions in which ideas, feelings, and emotions affecting the c!ecnsxon process are quant;.
fied to provide a numeric scale for prioritizing the alternatives.

Example 13.1-1 (Overall idea of AHP) S

Martin Hans, a bright high school senior, has received full acadgmic scpglarships from three ip.
stitutions: U of A, U of B,and U of C.To select a university, Martin specifies two main criteria: |o-
cation and academic reputation. Being the excellent student he is, he judges academic reputatiop
to be five times as important as location, giving a weight of appr.oxlmately 17% to location angd
83% to reputation. He then uses a systematic analysis (which will be detailed later) to rank the

three universities from the standpoint of location and reputation. The following table ranks the
two criteria for the three universities:

Percent weight estimates for

Criterion UofA UofB UofC

Location 129 21.1 59.4
Reputation 545 . 213 18.2

The structure of the decision problem is summarized in Figure 13.1.The problem involves a

single hierarchy (level) with two criteria (location and reputation) and three decision alterna-
tives (U of A, U of B,and U of C). '

The ranking of each university is based on computing the following composite weights:

UofA = 17 X 129 + .83 X .545 = 4743
UofB = 17 X 277 + 83 X 273 = 2731
UofC = .17 X 594 + 83 X .182 = 2520

Based on these calculations, U of A has the highest composite weight, and hence represents
the best choice for Martin,

—

Remarks. The general structure of AHP may include several hierarchies of criteria.
Suppose in Example 13.1-1 that Martin's twin sister, Jane, was also accepted with ful
scholarship to the three universities, Their parents stipulate that they both must attend
the same university so they can share one car, Figure 13,2 summarizes the decis™®

______4
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Decision: Select a
. university
F | |
Hierarchy 1 Location Reputation
criteria: (.17) (.83)
Alternatives: U of A UofB UofC UofA Uof B UofC
(.129) (277) (.594) (.545) (:273) (.182)
| L. N | J
\\ TS Tl %::/ //

17X 129 + 83 X .545 = 4743

A7 X 277+ 83 X 273 = 2737

17 X 594 + .83 X .182 = .2520

Uof A Uof B UofC
FIGURE 13.1
Summary of AHP calculations for Example 13.1-1
FIGURE 13.2
Embellishment of the decision problem of Example 13.1-1
Decision: Select a
ecision: university
Hierarchy 1 :
criteria: Martin (p) Ll
Hierarchy2  [" ocation (p;) Reputation (pz)J Location (g;) J Reputation (112)J
criteria:
Alternatives:
UofC Yol €
(p13) (923)
[
: Uof B UofB
V()
l
I -
[} Lol ——m -
=E===""

Uof A = p(p; X p11 + P2 X Pa1) + 4(d1 X 411 + 42X q21)
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rding location and reputation Oflé;[é)

art can be interpreted similary, ot
’ €

problem, which n:w e tﬂv:vz?t*e:hative wei
at the first hierarchy . 4 hierarc
about the selection process. T"he Se;'OH et 1igh
to reflect Martin’s and Jane’s prefere King oh

ity The remainder of the decision-ma 5 s 7, g !
| +pp= g+ = 1,py +t p2T P13 s P T Pt pyy =g
thatp + 4 = 1, 2 = 1. The determination of the U of A Comp()sité

i +qntan _ i whi .
gn taut man F}é ‘;?:; 13_gzdemons irates the manner in which the computations g,

weight, shown i
carried ouyy
/PROBLEM SET 13.1A o
*1. Suppose that the following weights are specified for the situation of Martin and Jane:
p=3549= S5
py=17,p =8
pn = 129, p2 = 277, pi3 = 594
py = 545, pn = 273, pp3 = 182

‘. q1 = .3, q = 7
gn = 2,92 = 3,q3=5
| gn = 5,42 = 2,43 = 3

Based on this information, rank the three universities./

5/l)eu-,rmination of the Weights. The crux of AHP is the determination of the relative
weights (such as those used in Example 13.1-1) to rank the decision alternatives.
Assuming that we are dealing with n criteria at a given hierarchy, the procedure
establishes an n X n pairwise comparison matrix, A, that quantifies the decision maker’s
judgment regarding the relative importance of the different criteria. The pairwise
comparison is made such that the criterion in row i (i =1,2,...,n) is ranked relative
to every other criterion. Letting a;; define the element (i, j) of A, AHP uses a discrete
scale from 1 to 9 in which a;; = 1 signifies that i and j are of equal importance, a;; = 3
indicates that i is strongly more important than j, and a; =9 indicates that i 1S .
extremely more important than j. Other intermediate values between 1 and 9 are inter- 3
preted correspondingly. Consistency in judgement requires that a; = k automatically

g "y :
implies tl}at 8ji =y Also, all the diagonal elements a; of A must equal 1, because they
rank a criterion against itself.

Example 13.1-2

'11;’ IShlow how the comparison matrix A is determined for Martin’s decision problem of Example
. o WE ‘;ta“ with the main hierarchy dealing with the criteria of reputation and Jocation of 8
ersity. In Martin's judgment, the reputation is strongly more important than the location, and
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hence ay; = 3. Th.lS assighment automatically implies that a5, = 1. Using the symbols R and L to
represent reputation and location, the associated comparison matrix is given as

L R
L1 1}
A= 5
o 1)
_ The relative weights of R and L can be determined from A by normalizing it into a new ma-
trix N. The process requires dividing the elements of each column by the sum of the elements of

the same column. Thus, to compute N, we divide the elements of columns 1 by (5 +1=6)and

1 )
those of column 2 by (1 + | = 1.2). The desired relative weights, wg and w;, are then computed
as the row average: ‘

L R Row average
L (.17 .17) wy, =1 = 17

R\83 83 wp=518- g3

The computations yield w; = .17 and wy = .83, the weight used in Figure 13.1. The columns
of N are identical, a characteristic that occurs only when the decision maker exhibits perfect
consistency in specifying the entries of the comparison matrix A. This point is discussed further
later in this section. -

The relative weights of the alternatives U of A, U of B, and U of C are determined within
each of the L and R criteria using the following two comparison matrices, whose elements are
based on Martin’s judgment regarding the relative importance of the three universities.

A B C A B C
Afl 5 % A/l 2 3
Ar=B|2 1 ;| Ag=B[! 1 2
c\5 2 1 o\l 2 4

‘ 3 3

Summing the columns, we get

A, -column sum = (8,3.5,1.7)

A g-column sum = (1.83,3.67,5.5)

The following normalized matrices are determined by dividing all the entries by the respective
column-sums:

A B C Row averages
Af125 143 118\ wp, =B AE - 459

N = B| 250 286 294| wyp=20+26+24_ oy
c\625 571 S8/ gy =SB _ 594

A B C Row averages
A[545 545 545\ wpy = SEEIEL IS _ g
Ne= B| 273 273 273 | wpy =+ 2428 _ oy
c\182 182 .182/ wp =R+ _ g

|
1
|
]
!
i
|

-
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129, 277, 594) provide the respective location Weigh
ts for

The values (w4 WLR wie) =
U of A, U of B, and U of C. similarly, (Wras WRE: wre) = (545, 273,.182) give the rol.n
demic reputation. elatiye
—_—

weights regarding aca
¢ Comparison Matrix. In Example 13.1-2, all the columng
N and Ng are identical, and those of N; are not. Ag %;1 ?’f the
id to be consistent, whereas A/iigcn + the

.18 not,

trices A and A g are sa
judgment on the part of the decision m
aker regarq.

Ily, we say that a comparison matrix A
IS

Consistency of th
normalized matrices

original comparison ma
Consistency implies coherent
ing the pairwise comparisons. Mathematica

consistent if
aga = ik for all i, j, and k
ple 13.1-2, a;3 = 3and apary =2 X 2 =3 T
d rows) of A' to be linearly depe:ndent,zln pa.rgh -
trix are by definition dependent laCu(;
, an

For example, in matrix A of Exam

property requires all the columns (an
lar. the columns of any 2 X 2 comparison ma

hence a 2 X 2 matrix is always consistent.

It is unusual for all comparison ‘matrices to be consistent. Indeed, given th
: ’ N that

= Sonable”

degree of inconsistency is expected and tolerated.
. To determm.e. whether or not a level of consistency is “reasonable,” we
evelop a quantifiable measure for the comparison matrix A. We }’mve need to

Example 13.1-2 that a perfectl '
: . y consistent A roduces i :
which all the columns are identical—that is, P i b

w W W,
N=|® o 2
Wy Wy Wy

It then follows that the origi :
S ginal comparison matrix A :
viding th . ) rix A can be determ :
g the elements of column i by w; (which is the reverse of the prt)nct:::i)(g 1:{ by _dl-
: etermin-

ing N from A). We thus have

w
A=|® 1 r
w Wy 1
From the given definition of A, we have

’
1 W wy
o w, w, \ [ W1 hw
w o 1 wy
e w, || W2 nw, W,
_’lﬂ Wy . : . .

w) Wi s 1
w
" nwn u)"
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More compa§tly. giyen that w is the column vector of the relative weights w;, i =
1.2,...,n, Aisconsistent if,

Aw = nw

For the case where A is not consistent, the relative weight, w;, is approximated by
the average of the n elements of row i in the normalized matrix N (see Example 13.1-2).
Letting W be the computed average vector, it can be shown that

Aw = NnaxWs oy = 1

In this case, the closer n,, is to n, the more consistent is the comparison matrix A.
Based on this observation, AHP computes the consistency ratio as

CI
CR=—
RI

where

CI = Consistency index of A
Amax — 1
n-—1
RI = Random consistency of A
1.98(n — 2)
=

The random consistency index, RI, was determined empirically as the average CI of a
large sample of randomly generated comparison matrices, A.

If CR = .1, the level of inconsistency is acceptable. Otherwise, the inconsistency
is high and the decision maker may need to reestimate the elements a;; of A to realize
better consistency.

We compute the value of n,,, from AW = n,, W by noting that the ith equation is
n
Eaiiwi = NpaxWi i = 1,2,...,n
=1

Given 3 w; = 1, we get .

n (n n
El(zlaij"—vj> = nmaxzwi = Nmax
A= i=

This means that the value of n,,,, can be determined by first computing the column vec-
tor AW and then summing its elements. / 3

Z .
4~ Example 13.1-3

In Example 13.1-2, the matrix A, is inconsistent because the columns of its N, are not identical.
Test the degree of consistency of Ny.. :
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il 1-2, we have
i We start by computing max From Example 13.1

271, = 594

P z = 129, W) =
s Thus |1 hy/a) (03863
| aF=2 1 5|77 0.8320
. 5 2 1/\.59% 1.7930
This yields |
0 + 1.7930 = 3.0113

nmax = _3863 + .832

Hence. forn = 3,
—n _ 30113 =3 _ 40565

nmax .
Cl = " - 1 3 - 1
R1=M=/l'98>(1 = .66
8 n 3
H cl 00565
I CR=TR1 ™ 6

Because CR < .1, the level of inconsistency inAjis acceptable.

Excel Moment
ioned to handle comparison matrices with sizes up to

Template excelAHPxIs is desig
8 X 8. As in the Excel models in Chapters 10 and 11, user input drives the model.
del to Example 13.1-2.! The com-

Figure 13.3 demonstrates the application of the mo
parison matrices of the problem are entered one at a time in the (top) input data sec-

tion of the spreadsheet. The order in which the comparison matrices are entered is
unimportant, though it makes more sense to consider them in their natural hierarchal
) order. Upon entering the data for a comparison matrix, the output (bottom) section of
{1 the spreadsheet will provide the associated normalized matrix together with its consis-
H tency ratio, CR. The user must copy the weights, w, from column J and paste them into
‘ 1 the solutlon‘ summary area (the right section of the spreadsheet). Remember to use
] Paste Special = ) Values when performing this step to guarantee a permanent
record. The process is repeated until all the comparison matrices have been stored in

columns K:R.
In Figure 13.3, the final ranking is given in cells (K20:K22). The formula in cell K20is

=$L$4*$L7+$L$5*$N7

i This formula provides the final evaluation of al i i ied i

HT , , ternative UA, and is copied 1n cells K21

] atnd It(zdz é.e l?valuate alternatives UB and UC. Note how the formulg in K20 is con-
structed: Cell reference to the alternative UA must be column-fixed (namely, SL7 and

$N7), whereas all other references must be row-and-column-fixed (namely, $L$4 and

1 ,
The more accurate results of the spreadsheet differ from those in Example 13.1-2 and 13.1-3 because of

manual r imati
oundoff approximation, Columns F:I and rows 11:13 are suppressed to conserve space.

_—
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o e R R U L S R . N

& - AHP-Analytic Hierarchy Process ,

2 , Input: Comparison matrix , Solution summary

"3 [Matrix neme] AL ; A

6 [Matixdata: | VA | UB | uc L 016667
UAL 1 05 | 0.2 f AR AL
ugL 2 | v s | UA 054545 UA 01285
ey 5 o2 o1 UB| 027273 UB 027661

= N I N UC| 0.18182, UC 059489

| { i

@]  Colsum 8 35 | 17 T

‘!5 Output: Normalized martix !

16 nMax=]300746] _ CR=| 00056 |

1L (S B R Weight|

8]  UAJ 0.12500] 0.14286 | 0.11765 012850) | |

19]  UBJ 0.25000 0.28571 029412 | 0.27661 Final ranking

20 UC| 0.62500 0.57143 /058824 | 0.569489]  UA=0475%

2 UB=0.27337

22 UC=026066

[26]

FIGURE 13.3

Excel solution of Example 13.1-2 (file excel AHP:xls)

$L$5). The validity of the copied formulas requires that the (column-fixed) alternative
weights of each matrix appear in the same column with no intervening empty cells.
For example, in Figure 13.3, the AR-weights in column L cannot be broken between
two columns. The same applies to the AL-weights in column N. There are no restric-
tions on the placement of the A-weights because they are row- and column-fixed in
the formula.

You can embellish the formula to capture the names of the alternatives directly.
Here is how the formula for alternative UA should be entered:

=$K7&“="& TEXT($L$4*$L7+$LE5*$N7,“####0.00000”)

The procedure for evaluating alternatives can be extended readily to any number
of hierarchy levels. Once you develop the formula correctly for the first alternative, the
same formula applies to the remaining alternatives simply by copying it into (same col-
umn) succeeding rows. Remember that all cell references in the formula must be row-
and-column-fixed, except for references to the alternatives, which must be column-fixed
only. Problem 1, Set 13.1b, asks you to develop the formula for a 3-level problem. A

<

PROBLEM SET 13.1B2

1. Consider the data of Problem 1, Set 13.1a. Copy the weights in a logical order into the solu-
tion summary section of the spreadsheet excel AHPxIs, then develop the formula for evalu-
ating the first alternative, UA, and copy it to evaluate the remaining two alternatives.

Spreadsheet excel AHP:xls should be helpful in verifying your calculations.
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e of buying a ¢af and has narrowed the choices to three
i An individual jsin the procﬁe ociding factors include purf:hase price (PP), Maintenang,

1 2.0 d e © ) mar
models, M1, Mtz;?::tyﬁg’ﬁ::;g (CD).8 nd cost "f, f::fal driving (RD). The following table
gor;tvg:sc t)];:(:ilevant data for 3 years of operatio -

‘ //_’/__Mw__
om0 MO8
1800 4500 1500
nooGwom TR
' 600
Use the cost data to develop the comparison matrices. Assess the consistency of the
se

matrices, and determine the choice of model.

d / 13.2 DECISION MAKING UNDER RISK

Under conditions of risk, the payoffs associated with each decision alternative are de-

scribed by probability distributions. For this reason, decision making under risk can be

based on the expected value criterion, in which decision al_ternatives are compared based
:t or the minimization of expected cost. However,

on the maximization of expected profi of ex '
because the approach has limitations, the expected value criterion can be modified to

encompass other situations.

.] ‘ Real-Life Application—Booking Limits in Hotel Reservations

Hotel La Posada has a total of 300 guest rooms. Its clientele includes both business and
leisure travelers. Rooms can be sold in advance (usually to leisure travelers) at a dis-
count price. Business travelers, who usually are late in booking their rooms, pay full
price. La Posada must thus set a booking limit on the number of discount rooms sold to
leisure travelers in order to take advantage of the full-price business customers. Decision-

tree analysis is used in Case 10, Chapter 24 on the CD to determine the booking hm&lf

¢ /13.2.1 Decision Tree-Based Expected Value Criterion .

The e.xgec_ted_value criterion seeks the maximizatjon of expected (average) profit or

the minimization qf expected cost. The data of the problem assumes that the payoff (or

cost) associated with each decision alternative is probabilistic. '
D%c:su;’n Tree Analysis. The following example considers simple decision situations
with a finite number of decision alternatives and explicit payoff matrices.

Example13.2-1

1832512(;8 eAﬁ::dy;u :l?:rtetsoi;nvcc:t $10,000 in the stock market by buying shares in one of two com
during the next ;'ear If the mpany A, though risky, could yield a 0% return On investment
stock may lose 20‘7' fi stock market conditions are not favorable (i.e., “bear” market),.the

o of its value, Company B provides safe investments with 15% return 103
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«pull” market and only 5% in a “bear” market. All the publications you have consulted (and
there is always a flood of them at the end of the year!) are predicting a 60% chance for a “bull”
market and 40% for a “bear” market. Where should you invest your money?

The decision problem can be summarized as follows:

1-year return on $10,000 investment

Decision alternative “Bull” market ($) “Bear" market (3)
Company A stock 5000 -2000
Company B stock 1500 500
Probability of occurrence 6 4

The problem can also be represented as a decision tree as shown in Figure 13.4. Two types of
nodes are used in the tree: a square (0) represents a decision point and a circle (O ) represents a
chance event. Thus, two branches emanate from decision point 1 to represent the two alternatives
of investing in stock A or stock B. Next, the two branches emanating from chance events 2 and 3
represent the “bull” and the “bear” markets with their respective probabilities and payoffs.

From Figure 13.4, the expected 1-year returns for the two alternatives are

For stock A = $5000 X .6 + (—2000) X .4 = $2200
For stock B = $1500 X .6 + $500 X .4 = $1100

Based on these computations, your decision is to invest in stock A.

Remarks. In the terminology of decision theory, the “bull” and the “bear” markets in
the preceding example are referred to as states of nature, whose chances of occurrence
are probabilistic (.6 versus .4). In general, a decision problem may include n states of
nature and m alternatives. If p; (> 0) is the probability of occurrence for state of
nature j and a;; is the payoff of alternative i, given state of nature j(i = 1,2,...,m;
j =1,2,...,n), then the expected payoff for alternative i is computed as

EV,=auyp + appy + =+ + @iuppi = 1,2,...,0

By definition, p; + p, + -+ + p, = 1.

“Bull” market (.6) $5000 FIGURE 13.4
Decision-tree representation of the stock market
Invest in stock A 5 problem
“Bear” market (.4
Bear” market ( )_$2000
0 -
Bull” market (.6) §1500

Invest in stock B 3

“Bear” market (.4) §500
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ve is the one associated with EV® = maXi(EV) or gy,
«t alternative is the one assocxa : | "
mini{?‘z}?gsetp:t:ding, respectively, on whether the payoff of the problem fep

profit (income) of loss (expense) (

resems'

PROBLEM SET 13.2A

1. You have been invited to play t
electronically with two buttons that produ

he Fortune Wheel game on television. The whee| Operate

ce hard (H) or soft (S) spin of the whee] The

WY i R) half-circle regions. You have bee
itself is divided into white (W) and red (R) b . : . 1 tol
‘:l:};?i:'le wg;; is designed to stop with a probability of .3 in the white region and .7 i, the

red region. The payoff you get for the game is

w R

H $800 $200

\) -$2500 $1000

— Draw the associated decision tree, and specify a course of action.
| %2, Farmer McCoy can plant either corn or soybeans. The probabilities that the next harvest
prices of these commodities will go up, stay the same, or go down are .25, .30, and .45, re-
spectively. If the prices go up, the corn crop will net $30,000 and the soybeans will net
$10,000. If the prices remain unchanged, McCoy will (barely) break even. But if the prices
go down, the corn and soybeans crops will sustain losses of $35,000 and $5000, respectively.

(a) Represent McCoy’s problem as a decision tree.
() Which crop should McCoy plant? y 4

3. You have the chance to invest in three mutual funds: utility, aggressive growth, and glob-
al. The value of your investment will change depending on the market conditions. There
is a 10% chance the market will go down, 50% chance it will remain moderate, and 40%

chance it will perform well. The following table provides the percentage change in the in-
vestment value under the three conditions:

Percent return on investment

Alternative Down market (%) Moderate market (%) Up market (%)
Utility +5 +7 +8
Aggressive growth -10 +5 +30
Global +2 ‘ +7 +20

(a) Represent the problem as a decision tree,
(b) Which mutual fund should you select?

You have the chance to invest your money in either a 7.5% bond that sells at face value
or an aggressive growth stock that pays only 1% dividend, If inflation is feared, the nter
est rate will goupto 8%, in which case the principal value of the bond will go down by

_—
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cision tree and determine which action should be adopted,

. vest $1000 tO obtain additional inforr'{lation about whether

() The -ﬁgg(::.z;i i .on says that there 1s 2 58% chance that

jce will 1 g X .

yos tgebl?;ilty of price increase will be . % chance t?gt thet probgbmty of

s o will be .3. Would you recommend the additiona investment’

pri ineres® nufacturing uses an industrial chemical in one of its
following which any amount left is de-

n Level Criterio o onth
ocesses. The shelf life 0 'm , 1 '
o (in gallons) occurs randomly according to the

stroyed. The use of the chemic
following distribution:

n. Acme Ma .
f the chemical 18
al by Acme

%19, Aspiratio

2922, 100 = x = 200
X
f(x) = 0, otherwise

e chemical occurs instantaneously at the start of the
the level of the chemical that satisfies two conflicting
ess quantity for the month does not

tity for the month does not exceed

The actual consumption of th
month. Acme wants to determine
criteria (or aspiration levels): The average €Xc
exceed 20 gallons and the average shortage quan

40 gallons.

Variations of the Expected Value Criterion

This section ?ddresses three issues relating to the expected value criterion. The first
ISS‘lee deals with the det.ermmatlon of posterior probabilities based on experimentation,
and the second deals with the utility versus the actual value of money.

P i ’ exsdé

Posiefor (Bayed) Prohablites. The probabites used in the cxpected vale

these probabilities )cl:alf beer m:il-]ed from historical data (see Section 12.5). In some cases

experimentation. The res i;t.JUSted using additional information based on sampling ot

probabilities 25 0 H ulling P{obablhtles are referred to as posterior (or Bayes)
,as opposed to the prior probabilities determined from raw data '

Real-Life Applicati -
pplication—Casey’s Problem: Interpreting and Evaluating a New Test

A screening test of
a newborn bab
cy. The enzyme is requir Daby, named Casey, indi o
ed . y, indicated a C14: .
could lead to severeqillnessto digest a particular form of long-ch '14f1 S detlcm“\
or mysterious death (broadly cagtegoarligegtxs; a(;l gais é‘gse".“
nder sudden In-

administered previously to approxi



13.2 Decision Making Under Risk 507

this defici i ,
flrsf:’:l:l1 to la‘ssseesfsliil;l;?l;‘e(r}:;el?ottht?:eCg%?; es‘id positive, Bayes’ posterior probability is
. . . cm as the C14: ici i is sit-
sation is detailed in Case 11, Chapter 24 on the (,‘,?)1 deficiency. The analysis of this sit

Example 13.2-2

This example demon.s'tr'ates how the expected-value criterion is modified to take ad
thf POSEFT‘OT probabilities. II} Example 13.2-1, the (prior) probabilities of .6 and .4 of a “bull” and
a b‘ear market are determined from available financial publications. Suppose that rather than
r.elymg solely o these‘ publications, you have decided to conduct a more “personal” investiga-
tion py consulting a friend who has done well in the stock market. The friend offers the general
opinion of.“for” or “against” investment quantified in the following manner: If it is a “bull” mar-
ket, t_here is a 90% chance the vote will be “for.” If it is a “bear” market, the chance of a “for”
vote is lowered to 50%. How do you make use of this additional information?

The statement made by the friend provides conditional probabilities of “for/against,” given

that the states of nature are “bull” and “bear” markets. To simplify the presentation, let us use
the following symbols:

vantage of

vl = “For” Vote
v, = “Against” vote
my = “Bull” market

m, = “Bear” market

The friend’s statement may be written in the form of probability statements as

P{vlm} =9, R{vzlml} =.1
P{vlmy} = 5, P{vlmy} =5

With this additional information, the decision problem can be summarized as follows:

«for,” would you invest in stock A or in stock B?

1. If the friend’s recommendation is
t,” would you invest in stock A or in stock B?

2. If the friend’s recommendation is “agains

n tree as shown in Figure 13.5.Node

mmarized in the form of a decisio
bilities. Nodes 2 and 3 are decision

1 is a chance event representing the “for” and “against” prossi
ints for choosing between stocks A and B, given that the friend’s votes aré «“for” and “against,” re-
spectively. Finally, nodes 4 to 7 are chance events representing the “pull” and “bear” markets.

To evaluate the different alternatives in Figure 13.5, it is necessary to compute the posterior
probabilities P{m,lvj} shown on the m;- and my-branches of chance nodes 4,5, 6, and 7. These
posterior probabilities take into account the additional information provided by the friend’s
“for/against” recommendation and are computed according to the following general steps:

Im;} of the problem can be summarized as

The problem can be su

Step1. The conditional probabilities P{v;

Vi V2

1
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