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(32),;%:;?;:;? ﬂﬂx(zn thousands of dollars) is estimated as
5 5 $3 84
o | w0 03 0
o | -0 w0 45 10
a, 12 15 15 10

Develop a course of action for Farmer McCoy.

3. One of N machines must be selected for manufacturing Q units of a specific product, Ty
minimum and maximum demands for the product are 0* and O**, respectively. The toy
production cost for Q items on machine i involves a fixed cost K; and a variable cost per

unit ¢;, and is given as

TC,‘ = K,' + C,’Q

(a) Devise a solution for the problem under each of the four criteria of decisions under

uncertainty.
(b) For 1000 = Q = 4000, solve the problem for the following set of data:

Machinei  K;($) Ci($)

1 100 5
2 40 12
3 150 3
4 90 8

Pt I

Game theory deals with decision situations in which two intelligent opponents with ¢
flicting objectives are trying to outdo one another. Typical examples include launching ad
vertising campaigns for competing products and pianning strategies for warring &

In a game conflict, two opponents, known as players, will each have a (finit® or i
finite) number of alternatives or strategies. Associated with each pair of strategies 8
payoff that one player receives from the other, Such games are known as two-perso:
zero-sum games because a gain by one player signifies an equal loss ta the othe™ e
fices, then, o summarize the game in terms of the payoff to one player. Designating! -
two players as A and B with m and n strategies, respectively, the game i usually repr

sented by the payoff matrix to player A as
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B B, B,
A, ayy ay, ai,,
At— ay ay, ay,,
Am aml a,, Ay,

The representation indicates that if A uses strategy i and B uses strategy j, the payoff to
A is a;;, which means that the payoff to B is ~aj.

/ Real-Life Application—Ordering Golfers on the Final Day
of Ryder Cup Matches

In the final day of a golf tournament, two teams compete for the championship. Each
team captain must submit an ordered list of golfers (a slate) that automatically deter-
mines the matches. It is plausible to assume that if two competing players occupy the
same order in their respective slates then there is 50-50 chance that either golfer will win
the match. This probability will increase when a higher-order golfer is matched with a
lower-order one. The goal is to develop an analytical procedure that will support or re-
fute the idea of using slates. Case 12, Chapter 24 on the CD provides details on the study.

e )
\/3.4.1 Optimal Solution of Two-Person Zero-Sum Games Chro

Because games are rooted in conflict of interest, the optimal solution selects one or
more strategies for each player such that any change in the chosen strategies does not
improve the payoff to either player. These solutions can be in the form of a single pure
strategy or several strategies mixed according to specific probabilities. The following
two examples demonstrate the two cases.

.— Example 13.4-1

Two companies, A and B, sell two brands of flu medicine. Company A advertises in radio (A,),
television (A,), and newspapers (A3). Company B, in addition to using radio (B,), television
(B5), and newspapers (B3), also mails brochures (B,;). Depending on the effectiveness of each
advertising campaign, one company can capture a portion of the market from the other. The fol-
lowing matrix summarizes the percentage of the market captured or lost by company A.

B, B, B, B, Row min
A, 8 -2 9 -3 -3
A, 6 5 6 | 8 § « Maximin
A, -2 4 -9 5 -9
Column max 8 5 9 8
Min!max. A
ol Yre  ~Yalftee cé{ The CJM‘ e ]
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The solution of the game is based on the principle of securmg;B tgeelze:}f‘ :{wtgfs:vt(l)w;st[ z:; f‘ach
player. If Company A selects strategy Ay, then rgﬁggrc?less of what s Oﬂ-"c it value of ap-
pen is that A loses 3% of the market share to B.This is repr_esent; t yca ate 5% of the the
entries in row 1. Similarly, the strategy A worst outcome lsof()f B %1 -efe asafioare st iarkgt
from B, and the strategy A3 worst outcome is for A to lose 9% to B. Thes § : n the

) S ¢ te A ; 1
“row min” column. To achieve the best of the worst, Company A chooses strategy A; because jy

L in the “row min” column.
corresponds to the maximin value, or the largest element in th

Next, consider Company B's strategy. Because the given pa}'Of:tlf:attl: :‘t '(‘:(:;)nf ,:;1 B E; h:st of
the worst criterion requires determining the minimax value. The result s pany B shoulq
se‘et’;;?‘::;ﬁ%ziolution of the game calls f9( selecting strategi.elsbAz_ atfld OBrz,o ;v:(l)i: means that
both companies should use television advertising. The payoff will be hm a;w o pany A, }ze_
cause its market share will increase by 5%. ]lll lt]?lS (i:se, we say that the value of the game is 59,

|  usi addle-point solution.™] .
and "[h:cla ‘:aggfeigittizgii): prcchll)des the selection of a better strategy by either company. [f
B moves to another strategy ( By, By, or By), Company A can stay with strategy A, which en-
sures that B will lose a worse share of the market (6% or 8%). By the same token, A does not
want to use a different strategy because if A moves to strategy A3z, B can move to B; and realize
a 9% increase in market share. A similar conclusion is realized if A moves to Aj, as B can move
to B, and realize a 3% increase in market share. .

The optimal saddle-point solution of a game need not be a pure strategy. Insteaq, the solu-
tion may require mixing two or more strategies randomly, as the following example illustrates,

xample 13.4-2

“Two players, A and B, play the coin-tossing game. Each player, unbeknownst to the other,
chooses a head (H) or a tail (T). Both players would reveal their choices simultaneously. If
they match (HH or TT), player A receives $1 from B. Otherwise, A pays B $1.

The following payoff matrix for player A gives the row-min and the column-max values cor-
responding to A’s and B’s strategies, respectively.

By Br Row min
Ay 1 -1 | -1
Ar -1 1 -1
Column max 1 1

The maximin and the minimax values of the games are —
the two values are not equal, the game does not have a pure s
Ap is used by player A, player B will select Br to receive §
move to strategy Ar to reverse the outcome of the game by r

$1 and $1, respectively. Because
trategy solution. In particular, if
1 from A. If this happens, A can
eceiving $1 from B. The constant

maximin (lower) value < value of the game < minimax (upper) value
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(See Problem 5, Set 13.4a.) Thus, in the
tween ~$1 and +$1.

PROBLEM SET 13.4A |
1. Determine the saddle-point solution, the associated pure strategies, and the value of the
\/ game for each of the following games. The payoffs are for player A.

coin-tossing example, the value of the game must lie be-

*a) B, B, B, B, (b) B, B, B B
A8 6 2 38 Al 4 -4 -5 6

A, |8 9 4 5 Al -3 -4 -9 =2
AT s 3 s Al 6 1 -8 -9

Al 1 3 =9 s

\z/ﬂe following games give A’s payoff. Determine the values of p and q that will make the

entry (2,2) of each game a saddle point:

(a) B, B, B (b) B, B, B
Ay |1 q 6 Al 2 4 5
A | p 5 10 A, |10 7 ¢
A; | 6 2 3 Ay | 4 p 6

3. Specify the range for the value of the game in each of the following cases, assuming that

the payoff is for player A:
*(a) B, B, B; B (b) B, B, By B
Al 1 9 6 o0 Al-1 9 6 8
A, 2 3 8 4 A, | -2 10 4 6
Ayl -5 -2 10 -3 A s 3 0 7
Al 1 4 2 -5 Al 7 -2 8 4
() B, B, B (d) B, B, By, B
Al3 6 1 Al 1 1 3
Als 2 3 Al 4 8 0 -6
A, | 4 2 -5 Al 6 -9 -2 4

4. Two companies promote two competing products. Currently, each product controls 50%
of the market. Because of recent improvements in the two products, each company is
preparing to launch an advertising campaign. If neither company advertises, equal market
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shares will continue. If either company launches a stronger campaign, the other ig certaj

to lose a proportional percentage of its customers. A survey of the market shows that n

50% of potential customers can be reached through television, 30% through MeWspape

and 20% through radio. ’

(a) Formulate the problem as a two-person zero-sum game, and select the appropriate
advertising media for each company.

() Determine a range for the value of the game. Can each company operate with, asin.
gle pure strategy?

5. Leta;; be the (i, j)th element of a payoff matrix with m strategies for player A anq ,,
strategies for player B. The payoff is for player A. Prove that

max min g;; < min max a;;
i j J i

~A
13.4.2 Solution of Mixed Strategy Games ————— C 1))

A it

Games with mixed strategies can be solved either graphically or by linear programming
The graphical solution is suitable for games in which at least one player has exactly two
pure strategies. The method is interesting because it explains the idea of a saddle point
graphically. Linear programming can be used to solve any two-person zero-sum game,

Graphical Solution of Games. We start with the case of (2 X n) games in which player

A has two strategies.
Y Y2 o
Bl BZ tet Bn
X Ap|ay ag o oayy,
l=xp Aylay anp *+ ay,

The game assumes that player A mixes strategies A, and A, with the respective prob-
abilities x; and 1 — x;,0 < x, < 1. Player B mixes strategies B, to B, with the proba-
bilities yj, y,..., and y,, where y; = Ofor j = L2,...,nandy; + y, + -+ +y,=1
In this case, A’s expected payoff corresponding to B’s jth pure strategy is computed as

(ali - a2j)xl tay,j=12,....n

Player A thus seeks to determine the value of x, that maximizes the minimum expect-
ed payoffs—that is,

max min{(a;; — ay;)x; + ay;}
X ]

Example 13.4-3
Consider the following 2 X 4 game. The payoff is for player A.

B, B, B, B,
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The game has no pure strategy solution. A's expected payoffs corresponding to B's pure
strategies are given as '

B’s pure strategy A’s expected payoff
! —2x, + 4
2 —x; + 3
3 X+ 2
4 ~7x, + 6

Figure 13.9 prowdes TORA plot of the four straight lines associated with B's pure strategies
(file toraEx13.4-3.txt).* To determine the best of the worst, the lower envelope of the four lines
(delineated by vertical stripes) represents the minimum (worst) expected payoff for A regardless
of what B does The maximum (best) of the lower envelope corresponds to the maximin solution
point at x; = .5. This point is the intersection of lines associated with strategies By and B. Play-
er A’s optimal solution thus calls for mixing A, and A, with probabilities .5, and .5, respectively.

FIGURE 13.9
TORA graphical solution of the two-person zero-sum game of Example 13.4-3 (file toraEx13.4-3.txt)

= TORA C:\zFinal8th\ch13Files\toraEx13.4-3.txt
DECISION ANALYSIS USING GAMES

GRAPHICAL TWO-PERSON ZERO-SUM GAME SOLUTION

Example 1343
quuA':upododpqdh:

Stategy B1: 4.00 + -2.00x
Stategy B2- 3.00 + -1,00x
Stiategy B3: 2.00 + 1.00x
Stotegy B4: sm' -7.00x

vy rous oo [l waivirs b 074

» TORA Ci\ZFinalbL. ..

RN sd0am

' ;: ; Ea}t % zFinalSth

Graphical from the

Zero-sum Games and input the problem data, then select

3From Main menu select
SOLVE/MODIFY menu.
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The corresponding value of the game, v, is determined by substituting x, = .5 in either of
functions for lines 3 and 4, which gives

| 149=2 fromline3
kel {4(13 +6= %, from line 4
Player B's optimal mix is determined by the two strategies that define the lower envelope of

the graph. This means that B can mix strategies By and B, in ,WhiCh case yi = y) = 0 ang
ya = 1 — y. As a result, B’s expected payoffs corresponding to A’s pure strategies are given a5

A’s pure strategy B's expected payoff

1 4y, - 1
2 4y, + 6

The best of the worst solution for B is the minimum point on the upper envelope of the given

two lines (you will find it instructive to graph the two lines and identify the upper envelope). This
process is equivalent to solving the equation

4y3—1= "4y3+6

The solution gives y; = %, which yields the value of the game as v = 4 X (%) -1= %
The solution of the game calls for player A to mix A, and A, with equal probabilities and for
player B to mix B; and B, with probabilities % and 11_; (Actually, the game has alternative solutions

for B, because the maximin point in Figure 13.9 is determined by more than two lines. Any non-
negative combination of these alternative solutions is also a legitimate solution.)

Remarks. Games in which player A has m strategies and player B has only two can
be treated similarly. The main difference is that we will be plotting B’s expected payoft
corresponding to A’s pure strategies. As a result, we will be seeking the minimax,
rather than the maximin, point of the upper envelope of the plotted lines. However, to
solve the problem with TORA, it is necessary to express the payoff in terms of the
player that has two strategies by multiplying the payoff matrix by —1, if necessary.

A

i PROBLEM SET 13.4B%

\/‘1./ Solve the coin-tossing game of Example 13.4-2 graphically.

*2. Robin, whq travels frequently between two cities, has two route options: Route A is a fast
fou'r-lane highway, and route B is a long winding road. The highway patrol has a limited
po:hce' fgrce. If the full fpr.ce is allocated to either route, Robin, with her passionate desire
for driving “superfast,” is certain to receive a $100 speeding ticket. If the force is split 50-
SO:CtvreenSg:; tv;;o routt;s, thlelre is 8 50% chance she will get a $100 ticket on route A
and only a 30% chance that she will get ine: ¢
both Rbis e pion get the same fine on route B. Develop a strategy for

“The TORA Zero-sum Games module can be used to verify your answer.
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\yél"e the following games graphically. The payoff is for Player A.

(a) B ]_B_Z_*B’ (b) B, B
Av 1 -3 9 A lS 8

A, 2 4 -6 Ay | 6 5

Ay | 5 7

4. Consider the following two-person, zero-sum game:
B, B, B

A, 5 50 50

Al 1 1 1

Ay 110 1 10

(a) Verify that the strategies (é, 0, %) for A and (g, 55—4, 0) for B are optimal, and deter-
mine the value of the game.

(b) Show that the optimal value of the game equals

3

3
> 2y
i=1j=1

Linear Programming Solution of Games. Game theory bears a strong relationship to
linear programming, in the sense that a two-person zero-sum game can be expressed as
a linear program, and vice versa. In fact, G. Dantzig (1963, p. 24) states that J. von
Neumann, father of game theory, when first introduced to the simplex method in 1947,
immediately recognized this relationship and further pinpointed and stressed the
concept of duality in linear programming. This section illustrates the solution of games
by linear programming.

Player A’s optimal probabilities, x4, X, ..., and x,,, can be determined by solving
the following maximin problem:

. m m m
max{min( Eanxi, Ea,’zxi,m, Eainxi>}
X; j i=1

i=l i=1
xl+x2+ L +xm=1

X = 0,! . 1,2,...,m
Now, let
m m m
V= mm{ Ea,-]x,v, E‘Ta,'zx,-, vany Ela,-,,x,-}
i=1 = =
The equation implies that

m
Eai/‘xi z0,j=12,..,n
=
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Player A’s problem thus can be written as
Maximize z = v

subject to

m

v - Za,-,-x,- =0,j=12,...,n
i=1
Xp+ x4+ o+ x, =1
x;=0,i=1,2,....m
v unrestricted

Note that the value of the game, v, is unrestricted in sign.

Player B’s optimal strategies, yj, y, .

.., and y,, are determined by s0lving the
problem

n n n
min{max(Eaij, EaZj)'js Arag E%m)}
Yi J=1 j=1 j=1
Nyt oty =1
yi=0,j=12,...,n

Using a procedure similar to that of player A, B’s problem reduces to

Minimize w = v
subject to

n
vV — 2(1,]_)’]20,1 = 1,2,...,m
j=1

ntpt oty =1
yi=0,j=1,2,...,n
v unrestricted

The two prqblems optimize the same (unrestricted) variable v, the value of the
game. The reason is that B’s problem is the dual of A’s problem (verify this claim using
the definition of duality in Chapter 4). This mea

! ns that the optimal solution of one
problem automatically yields the optimal solution of the other,

Example 13,44 _

Solve the following game by linear programming,

A 3 -1 -3 -3
A2 ~2 4 -1 -2
Ay | =5 -6 2 -6

Column max 3 4 2
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The value of the game, v, lies between ~2 and 2.

Player A’s Linear Program

Maximize z = v
subject to

V=35 +2x+5x=0
v+ ox;—4x,+6x3<0
V34 x-25<0
xnt xn+t x3=1
Xy, X3, X3 2 0
v unrestricted

The optimum solution® is x; = .39, x, = .31, x; = .29, and v = —091.

Player B’s Linear Program
Minimize z = v
subject to
v=3p+ »p+3»=0
v+2y—4pt+ p3=0
v+ 5y +6yp—23=0
nt pt p=1

v unrestricted

The solution yields y, = .32, y, = 08, y; = .60, and v = —0.91. /
/

@mﬁm SET 13.4C |

| 1. On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four hiding
locations (A, B, C,and D), and the two members of the hiding team can hide separately
in any two of the four locations. The other team will then have the chance to search any

two locations. The searching team gets a bonus point if they find both members of the
hiding team. If they miss both, they lose a point. Otherwise, the outcome is a draw.
*(a) Set up the problem as a two-person zZero-sum game.
(b) Determine the optimal strategy and the value of the game.
2. UA and DU are setting up their strategies for the 1994 national championship college
basketball game. Assessing the strengths of their respective “benches,” each coach comes

up with four strategies for rotating his players during the game. The ability of each team
to score 2-pointers, 3-pointers, and free throws is a key factor in determining the final

STORA Zeroatin’Games = Solve = LP-based can be used to solve any two-person zero-sum game.
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CHAPTER 19

Deterministic Dynamic
Programming

Chagter.Guide.Lﬁynamic programming (DP) determines the optimum solution of a
‘;g_glft"mapable problem by decomposing it into stages, each stage comprising a single-
variable subproblgm. The advantage of the decomposition is that the optimization
process at each stage involves one variable only, a simpler task computationally than
dealing with all the variables simultaneously. A DP model is basically a recursive equa-
tion linking the different stages of the problem in a manner that guarantees that each
stage’s optimal feasible solution is also optimal and feasible for the entire problem.\The
notation and the conceptual framework of the recursive equation are unlike any you
have studied so far. Experience has shown that the structure of the recursive equation
may not appear “logical” to a beginner. Should you have a similar experience, the best
course of action is to try to implement what may appear logical to you, and then carry
out the computations accordingly. You will soon discover that the definitions in the
book are the correct ones and, in the process, will learn how DP works. We have also in-
cluded two partially automated Excel spreadsheets for some of the examples in which
the user must provide key information to drive the DP computations. The exercise
should help you understand some of the subtleties of DP,

Although the recursive equation is a common framework for formulating DP
models, the solution details differ. Only through exposure to different formulations
will you be able to gain experience in DP modeling and DP solution. A number of
deterministic DP applications are given in this chapter. Chapter 22 on the CD presents
probabilistic DP applications. Other applications in the important area of inventory
modeling are presented in Chapters 11 and 14.

This chapter includes a summary of 1 real-life application, 7 solved e:fat.nples,
2 Excel spreadsheet models, 32 end-of-section problems, and 1 case. The case is in {\p-
pendix E on the CD.The AMPL/Excel/Solver/TORA programs are in folder ch10Files.

399
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Real-Life Application—Optimization of Crosscutting
and Log Allocation at Weyerhaeuser.

Mature trees are harvested and crosscut into logs to manufacture dllfdfef‘;ntee'rf}.d Prod.
ucts (such as construction lumber, plywood, wafer boards, or paper). l(l)gl p SCI ICationg
(e.g.. length and end diameters) differ depending on the mill where tfe Ogc are useq, 0 '
With harvested trees measuring up to 100 feet in length, the numb_er o Pft(l)ss tm °0mb1

nations meeting mill requirements can be large, and the manner in wh}C ah Tee is dig.
assembled into logs can affect revenues. The objective is to determine the Ct%ss’ut
combinations that maximize the total revenue. The study uses dynamic PTOgTammipg
to optimize the process. The proposed system was first implemented in 1978 with g,

annual increase in profit of at least $7 million. Case 8 in Chapter 24 on the CD pro-
vides the details of the study
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10.1

X

RECURSIVE NATURE OF COMPUTATIONS IN DP

Computations in DP are done recursively, so that the optimum solution of one subprob-

lem is used as an input to the next subproblem. By the time the last subproblem is
solved, the optimum solution for the entire problem is at hand. The manner in which the
recursive computations are carried out depends on how we decompose the original
problem. In particular, the subproblems are normally linked by common constraints. As

we move from one subproblem to the next, the feasibility of these common constraints
must be maintained.

= =~l—.a?;7>'/;(“ (P Y
= s ‘ . >

e c257

FET

v
A

Example 10.1-1 (Shortest-Route Problem)

Suppose that you want to select the shortes
Figure 10.1 provides the possible routes bet
city at node 7. The routes pass through inter

We can solve this problem by exhausti
7 (there are five such routes). However, i
intractable computationally,

To solve the problem b
dashed lines in Figure 10.2.

Ay o e

t highway route between two cities. The network in
ween the starting city at node 1 and the destination
mediate cities designated bynodes2to 6, F- el
vely enumerating all the routes between nodes 1 and
n a large network, exhaistive énumeration may be

D, =

y DP, we first decompose it into stages as delineated by the vertical
Next, we carry out the computations for each stage separately.

FIGURE 10.1

Route network for Example 10.1-1
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FIGURE 10.2

Decomposition of the shortest-route problem into stages

- The general idea for. determining the shortest route is to compute the shortest (cumulative)
fhstanc_es to all the terminal nodes of a stage and then use these distances as input data to the
immediately succeeding stage. Starting from node 1, stage 1 includes three end nodes (2,3,and

4) and its computations are simple. —_—
Stage 1 Summary.
e p e '—\,
. ; e\
Shortest distance from node 1 to node 2 = 7 miles (from node 1) ATes= -
Shortest distance from node 1 to node 3 = 8 miles (from node 1)
Shortest distance from node 1 to node 4 =@1iles (fromnodel)
Next, stage 2 has two end nodes, 5 and 6. Considering node S first, we see from Figure 10.2
that node 5 can be reached from three nodes, 2, 3, and 4, by three different routes: (2, 5), (3, 5),
and (4, 5). This information, together with the shortest distances to nodes 2, 3,and 4, determines
the shortest (cumulative) distance to node S5 as
Shortest distance \ _ . Shortest distance Distance from >}
to node 5 - ,-=2,§}4 to node i node i to node 5 %29
7+12=19 fress
=min{ 8 + 8 =16 ¢ = 12 (from node 4)
5+ 7=(12)
N
Node 6 can be reached from nodes 3 and 4 only, Thus
Shortest distance \ _ . Shortest distance Distance from )}
to node 6 B In=131} to node i node i to node 6
5 a1 N
8+9=17 U wege ¢
= mj =17 (from node 3 ge
m’“{s +13 = 18} Y ) )
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( Stage 2 Summary. )

\ .

Shortest distance from node 1 to node 5 = 12 miles ( fromnode 4)

Shortest distance from node 1 t0 node 6 = 17 miles (from node 3)

The last step is to consider stage 3.The destination node 7fcan l:io :1 Z:C;‘zg;"g’:‘; em:le' Nodes §
or 6. Using the summary results from stage 2 and the distances from 510 node 7, we geg

Shortest distance [ { Shortest distance) N ( Distance from )}
( to node 7 ) - ,”5‘2'2 to node i node i to node 7

12+9= 2]}
= mi = 21 (from node 5)
Smin{ 2y AU

Stage 3 Summary.
Shortest distance from node 1 to node 7 = 21 miles (from node 5)

Stage 3 summary shows that the shortest distance between nodes 1 and 7 is 21 miles. To deter-
mine the optimal route, stage 3 summary links node 7 to node 5, stage 2 summary links node 4 to
node 5, and stage 1 summary links node 4 to node 1. Thus, the shortest routeis1 >4 —-5—7, #

The example reveals the basic properties of computations in DP:

1. The computations at each stage are a function of the feasible routes of that stage, and that
stage alone.

2. A current stage is linked to the immediately preceding stage only without regard to earlier
stages. The linkage is in the form of the shortest-distance summary that represents the out-

put of the immediately preceding stage. //

Recursive Equation. We now show how the recursive computations in Example 10.1-1
can be expressed mathematically. Let f;(x;) be the shortest distance to node x; at stage

i, and define d(x;-1, x;) as the distance from node x;_; to node x;; then f; is computed
from f;_; using the following recursive equation:

filtxi) = min {d(xi-, x;) + fisi(x;i-)}, i =1,2,3

(X - 1. X,) routes

Starting at i = 1, the recursion sets fy(x) = 0. The equation shows that the
shortest distances fi(x;) at stage i must be expressed in terms of the next node, x;. In
the DP terminology, x; is referred to as the state of the system at stage i. In effect, the
state of the system at stage i is the information that links the stages together, so that
optimal decisions for the remaining stages can be made without reexamining how the
decisions fpr the previous stages are reached. The proper definition of the state allows
:11:* totco‘nmder each stage separately and guarantee that the solution is feasible for all

e stages.

The definition of the state leads to the following unifying framework for DP.
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Principle of Optimality

Future decisions for the remaining stages wi i i i '
3 ! ges will constitute an optimal policy regardless
of the policy adopted in previous stages, P Py

The implementation of the principle is evident in the computations in Example
10.1-1. For example, in stage 3, we only use the shortest distances to nodes 5 and 6, and
dq not concern ourselves with how these nodes are reached from node 1. Although the
principle of optimality is “vague” about the details of how each stage is optimized, its
application greatly facilitates the solution of many complex problems.

PROBLEM SET 10.1A

*1. Solve Example 10.1-1, assuming the following routes are used:
d(1,2) = 5,d(1,3) = 9,d(1,4) = 8
d(2,5) =10,d(2,6) = 17
d(3,5) = 4,d(3,6) = 10
d(4,5) =9,d(4,6) =9
d(5,7) =8
d6,7) =9

2. Iam an avid hiker. Last summer, I went with my friend G. Don on a 5-day hike-and-camp
trip in the beautiful White Mountains in New Hampshire. We decided to limit our hiking
to an area comprising three well-known peaks: Mounts Washington, Jefferson, and Adams.
Mount Washington has a 6-mile base-to-peak trail. The corresponding base-to-peak trails
for Mounts Jefferson and Adams are 4 and 5 miles, respectively. The trails joining the bases
of the three mountains are 3 miles between Mounts Washington and Jefferson, 2 miles
between Mounts Jefferson and Adams, and 5 miles between Mounts Adams and
Washington. We started on the first day at the base of Mount Washington and returned to
the same spot at the end of 5 days. Our goal was to hike as many miles as we could. We
also decided to climb exactly one mountain each day and to camp at the base of the moun-
tain we would be climbing the next day. Additionally, we decided that the same mountain
could not be visited in any two consecutive days. How did we schedule our hike?

FORWARD AND BACKWARD RECURSION

Example 10.1-1 uses forward recursion in which the computations proceed from stage
1 to stage 3. The same example can be solved by backward recursion, starting at stage 3
and ending at stage 1.

Both the forward and backward recursions yield the same solution. Although the
forward procedure appears more logical, DP literature invariably uses backward
recursion. The reason for this preference is that, in general, backward recursion may be
more efficient computationally. We will demonstrate the use of backward recursion by
applying it to Example 10.1-1. The demonstration will also provide the opportunity to
present the DP computations in a compact tabular form.
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Example 10.2-1

. ] 4, m
The backward recursive equation for Exa

fi(x;) = min {d(xxiv1) * fin(xis)}oi =

routes (Xq %+ 1)

ple 10.2-1is
1,2,3

= 7.The associated order of computations is fi=h—=f,.

where fy(xs) = 0for x4 °

onnected to nodes 5 and 6 (x3 = 5 and 6) with exactly

Stage 3. Because node 7 (x4 = 7) iS.C
onaegtoute each. there are no alternatives to choose from, and stage 3 results can be Summa.
rized as
d(x3, Xa) Optimum solution
G xg =17 fi(x3) | X4
5 9 9 7
6 6 6 7

e it does not exist. Given f3(x3) from stage 3, we cap

Stage 2. Route (2,6) is blocked becaus
. ooy n in the following tableau:

compare the feasible alternatives as show

d(x;, x3) + f{x3) Optimum solution
X; x3 =35 x;=6 fi(x2) X
2 12+9=21 — 21 5
3 §+9=17 ° 9+6=15 & 15 6
4 749=16 13+6=19 16 5

The optimum solution of stage 2 reads as follows: If you are in cities 2 or 4, the shortest
route passes through city 5, and if you are in city 3, the shortest route passes through city 6.

Stage 1. From node 1, we have three alternative routes: (1,2), (1, 3), and (1, 4). Using fy(x;)
from stage 2, we can compute the following tableau.

d(x), x;) + fox2) Optimum solution
X1 X, =2 X = 3 x; = 4 fl(xl) x,z
1 7+21=28 8+15=123 5+16=21 21 4

' The optimpm so!ution at .stage 1 shows that city 1 is linked to city 4. Next, the optimum solu-
tion at stage 2 links city 4 to city 5. Finally, the optimum solution at stage 3 connects city 5 tocity
7.Thus, the complete route is given as 1 — 4 — 5 — 7, and the associated distance is 21 miles.

PROBLEM SET 10.2A

1. For Problem 1, Set 10.1a, develo ; ‘ e
- y * i p the back i to find the
optimum solution, ward recursive equation, and use it t0

e
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FIGURE 10.3
Network for Problem 3, Set 10.2a

. P Y Qa p X , \ .
2. FOI‘I roblem 2, Set 10.1a, develop the backward recursive equation, and use it to find the
optimum solution.

*3. For the network in Figure 10.3,it is desired to determine the shortest route between cities |
to 7. Define the stages and the states using backward recursion, and then solve the problem.

SELECTED DP APPLICATIONS

This section presents four applications, each with a new idea in the implementation of
dynamic programming. As you study each application, pay special attention to the three
basic elements of the DP model:

1. Definition of the stages
2. Definition of the alternatives at each stage
3. Definition of the states for each stage

Of the three elements, the definition of the state is usually the most subtle. The applica-
tions presented here show that the definition of the state varies depending on the situ-
ation being modeled. Nevertheless, as you investigate each application, you will find it
helpful to consider the following questions:

1. What relationships bind the stages together?
2. What information is needed to make feasible decisions at the current stage with-
out reexamining the decisions made at previous stages?

My teaching experience indicates that understanding the concept of the state can
be enhanced by questioning the validity of the way it is defined in the book. Try a dif-
ferent definition that may appear “more logical” to you, and use it in the recursive
computations. You will eventually discover that the definitions presented here provide
the correct way for solving the problem. Meanwhile, the proposed mental process
should enhance your understanding of the concept of the state.

Knapsack/Fly-Away/Cargo-Loading Model

The knapsack model classically deals with the situation in which a soldier (or a hiker)
must decide on the most valuable items to carry in a backpack. The problem paraphrases
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a general resource allocation model in which a single lignted T?ZOUJCE 1S assigned ¢ ,
number of alternatives (e.g., limited funds assigned to projects) with the objective of Max.

imizing the total return. It )
Before presenting the DP model, we remark that the knapsack problem ig also

known in the literature as the fly-away kit problem, in which a jet pilot must determine
the most valuable (emergency) items to take aboard a jet; afld !he cargo-loading prob-
lem, in which a vessel with limited volume or weight capacity is loaded with the mqg
valuable cargo items. It appears that the three names were coined to ensure equal rep-
resentation of three branches of the armed forces: Air Force, Army, and Navy!

" The (backward) recursive equation is developed for.the geperal problem of 3y
n-item W-Ib knapsack. Let m; be the number of units of item i in the knapsack apg
define r; and w) as the revenue and weight per unit of item i. The general problem ig
represented by the following ILP:

Maximize z = rym; + pmy + -+ + r,my,
subject to
wymy, + wymy + - + wym, = W

my, my, ..., m, = 0and integer

The three elements of the model are

1. Stage i is represented by item j, i = 1,2,...,n.

2. The alternatives at stage i are represented by m;, the number of units of item ;
included in the knapsack. The associated return is r;m;. Defining [L—V‘] as the largest inte-
ger less than or equal to %’_, it follows that m; = 0, 1,..., %]

3. The state at stage i is represented by x;, the total weight assigned to stages
(items) i,i + 1,..., and n. This definition reflects the fact that the weight constraint is
the only restriction that links all 7 stages together.

Define
fi(x;) = maximum return for stages i, i + 1, and n, given state x;

The simplest way to determine a recursive equation is a two-step procedure:

Step 1. Express f(x;) as a function of f;(x;,,) as follows:

fi(x) = (;lllin [w]{r,m,- + fin(xa)hi=1,2,...,n
m;=0u,1,..., E’
x,-S.W

fn+1(xn+1) =0

Step2. Express x;,; as a function of x; to ensure that the left-hand side, fi(x;), is 2
function of x; only. By definition, x; — Xi+1 = w;m; represents the weight

;?edna; stage i. Thus, xi.) = x; — wym,, and the proper recursive equation is
iven as

f(x;) = max
m‘=0,l,. vey [g]
x,-SW ‘

{rimi + ﬁ+1(x,- - w,-m,-)},i = 1, 2,...,n

B T NN
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Stage 1.  max{m;} = m =20rm; = 01,2
= [4] =
fi(xy) = max {31my + fHlx — 2m,)}, max{m,} - M )
S iy =0.1.2

. 3m, + frlxy — 2my) . Optimum Solutiop
. L T o
: et R DIN—— i - — e
0o 0+ 0= 0 — - 104 .
1 0+ 14=14 . 1 "
2 0+ 28=28 31+ 0=231 — X
3 0+ 47 = 47 3+ 14 =45 - 47 :
4 0 + 61 =61 31+28=159 62‘+0=62 6 2
: ;

The optimum solution is determined in tt:e followi-ng manner: Given 'W =.4 tons, from
stage 1. x, = 4 gives the optimum alternative m; = 2, which rrleans that 2 units of item 1 wij be
loaded on the vessel. This allocation leaves x; = x| — 2my; = 4 — 2 X 2=0. From stage
2. x, = 0yields m; = 0, which, in turn, gives x3 = X — 3:m2.= 0*— 3 X (3 = 0. Next, f*rom stage
3, x3 = 0 gives m3 = 0. Thus, the complete optimal solution is my = 2, m; = 0,and m3 = 0, Tpe
associated return is f;(4) = $62,000. _

In the table for stage 1, we actually need to obtain the optimum for x; = 4 only because thig
is the last stage to be considered. However, the computations for x; = Q, 1,2, and 3 are included
to allow carrying out sensitivity analysis. For example, what happens if the vessel capacity is 3
tons in place of 4 tons? The new optimum solution can be determined as

(x; = 3) = (m] = 0) = (x, = 3) > (m3 = 1) = (x3 = 0) > (m3 = 0)
Thus the optimum is (m], m5, m3) = (0, 1,0) and the optimum revenue is f,(3) = $47,000.

Remarks. The cargo-loading example represents a typical resource allocation model in which a
limited resource is apportioned among a finite number of (economic) activities. The objective
maximizes an associated return function. In such models, the definition of the state at each stage

will be similar to the definition given for the cargo-loading model. Namely, the state at stage i is
the total resource amount allocated to stagesi,i + 1,..., and n.

Excel moment

The nature of dynamic programming computations makes it impossible to develop a

general computer code that can handle all DP problems. Perhaps this explains the per-
sistent absence of commercial DP software.

In this sectioq, we present a Excel-based algorithm for handling a subclass of
DP problems: the single-constraint knapsac

b p e k problem (file Knapsack.xls). The algo-
rithm is not data specific and can handle problems in this category with 10 alterna-
tives or less, '

Figure 10.4 shows the startin

b screen of t el. The
screen s divided into two sections. g he knapsack (backward) DP mod

The right section (columns Q:V) is used to summarize

i
i
i
§
|
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