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Non-linear Programming

Q Each venture is a new beginning to explore something hidden”™

" 47.1. INTRODUCTION —— (> -

Like linear programming, Non-linear Programming is a mathematical technique for determining the
optimal solutions to many business problems. In a non-linear programming problem, either the
objective function is non-linear, or one or more constraints have non-linear relationship or both.

_77:2. FORMULATING A NON-LINEAR PROGRAMMING PROBLEM (NLPP)—>’

We consider some real-life problems, that we shall formulate as NLPPs.

/’ SAMPLE PROBLEMS

v 2701. A company faces a responsive price-volume relationship for its products, the lower a
product’s price — the greater is the sales quantity, even in face of resultant price decreases by
competitors. If the sales-revenue does not vary proportionately with price, reflect this phenomenon in
a non-linear objective function of the price.

Mathematical Formulation of the Problem

Let x (p) represent the sales quantity as a function of the price p, say in the product-mix problem.
Clearly, the associated sales revenue is px (p). Now, if the sales quantity function be given by the
demand equation x(p) = a—Bp for o, P constants, over the range of p, then the sales revenue
component in the objective function is quadratic, z = px(p) = op—-Bp% If each unit costs ¢ to
produce (where p and ¢ are in the same units), then total profit P is given by

=z-ox(p) = op - Bp? - ca+ cPp = (4 + cB)p - ca - Bp? Ty 0N
o /., (Production Allocation Problem) A manufacturing company produces two products :
Radios and TV sets. Sales-price relationships for these two products are given below :

Product Quantity demanded Unit price
Radios 1,500 - 5 py P
. TV sets 3,800 - 10 p, P2

The total cost functions for these two products are given by 200x, +0.1x*> and 300x, + 0.1x,*
respectively, The production takes place on two assembly lines. Radio sets are assembled on Assembly
line I and TV sets are assembled on Assembly line II. Because of the limitations of the assembly-line
Capacities, the daily production is limited to no more than 80 radio sets and 60 TV sets. The
Production of both types of products requires electronic components. The production of each of these
Sels requires five units and six units of electronic equipment components respectively. The electronic
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d 1o 600 untls per dav. The

. imite

‘ v fs limtl!
. . he supp! ¢ production of one
components are supphed by another manufacturer. and 1 The p

davs.
. 6 man de ‘ »
. ‘ mts 10 ! ceauired for a TV
company has 160 emplovees, 1.c. the labour ”,ppl\ amor . davs of Jabour are red e ;’” , n
wnit of radio set requires 1 man-dav of labonr. whereas £ . pn)d"”’ in order 10 maximize the totgl
set. How many units of radio and TV sets chould the comp?

: blem
oramming pPro
profit? Formulate the problem as a non-linear progra

Mathematical Formulation of the Problem oy and X, <tand for the quantities
, £ A
Let us assume that whatever is produced is cold in the markel. :

‘ are given that
. ) rm. Then We a
of radio sets and TV sets respectively. manufactured by the ﬁ’mﬂ Co2n
v = 1500 Spy |Pr
ot _ 380 - 01x

v = 3800 - 1o “p'z hese units of radio sets and TV sety
Further. if C,. C, stand for the total cost of production of the

respectively. then we are also given that 2
pe \ g N 4 Cy=300; * 0.1x,
C, = 200y, + O.ly? and =2 2

' _ Thus. the total revenue R 5
Now. the revenue on radio sets 18 pi X and on TV sets 1S P2 *

measured by
R = pixy + P22

which can be written as
R

(300 — 0.2x)) x; + (380 - 0.1xp) X2
300x, - 0.2x,2 + 380x2 ~ 0.1x,%.

The total profit z is measured by the difference between the total revenue R and the total cost
C=C, + Cy. Thus

s
=R -C - C=100x; - 0.3x,2 + 80xy — 0.2x27
The objective function thus obtained is a non-linear function.

In the present case, production is influenced by the available resources. The twod.assembly lines
have limited capacity to produce radio and TV sets. Since no more than 80 radio sets can be

assembled on assembly line 1 and 60 TV sets on assembly line II per day, we have the restrictions :
x, < 80 and x, < 60.

There is another side constraint in the daily requirement of the electronic components. SO that
Sx, + 6x, < 600. The number of available employees is limited to 160 man-days. Thus

x, + 2x, < 160. Also obviously, since the manufacturer cannot produce negative numbcr of units, we
must have x, = 0 and x, 2 0.

Hence. the given problem can be put in the following mathematical format :

Determine two real numbers, x; and x, so as t0 maximize

2 = 100x; - 0.3x2 + 80x; — 0.2xy?
subject to the contraints :

0< Xy <80, 0< X9 < 60, 5.\'\ + 6x2 < 600,
X + 2.\’2 < 160, Xy >0, RV) > 0.

|

This problem is a non-linear programming problem, since the objective function is non-linear
X and xz./
Remarks. In a non-linear programming problem, t iecti ot . .
EP » the objective function z may be linear in x; and X,

whereas the constraints are non-linear in x; and x, or both z and the constraints may be non-linear in
x; and x,. For example, the decision-making problem Y
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Maximize 1y 1
F. ) Wb Ses sabyeet fo the constraints

b B o & \ .
PSRy w00 amd Vot 2 )

ys a non-linear programming problem ot

\\2703. (Portfolio Selecti ‘

3, 1 \ on N - , v v
v 2703 ( ”n(i o Problem) An individual investor has an opportunity to mvest a fived
amotni (?f m o ;‘l_f(n nt bonds and stocks and wishes 10 ma vimize his anticipated returns while
considering vartance of return as undesirable. lLet \ ; be the proportion of his assets invested in the jth

FIY n. the vector x = (x,. x N i oy ,
security. Then CTOr X = (N X oo x,) s called a portfolio and the return R corresponding to

1, 2 1 p ‘.‘ 17197 y L2 . . : .

a given portf_(lro X \I;.a random variable. The investor is risk-averse and is therefore interested in
1 bl Y 7 L) . . .
determining @ porifolio x that will minimise the variaince of R subject to the restriction that his

expecte d return 1s not less than some specified amount C (per unit invested). Formulate this portfolio
welection problem as an NLPP.

Mathematical Formulation of the Problem

Suppose the .total 'funds available to investor is 8. There arc n channels of investment. The expected
return per unit of investment from the ith channel is ;. the variance of the ith investment is 6,-. while
the covariance between ith and jth investment is 0,

Thus. if an amount x; (i = 1. 2, ..., n) is invested in the ith type. then the expected return is

r v . while the variance of the investment is :

L
<
& T

v n n
= I Zo0;xx.
i=1j=1 LA
As higher return and lower variance are desirable quantities from the investor's point of view. the
objective function may be :

n n
X — X Xo
[ i=1j=1

M=

i Xi X

T
Also. since the total amount the investor can spend is B and as his expected return must not be
less than C; we have
n n
le,- =B and E I 2 C.

i=1

!

From the point of view of investor, z should be maximized subject to the constraints :

n n
Zx =B and ,er,- > C, where x; 20(i = 1,2, ... n). )
I=

i=1 _
A

PROBLEMS

2704. (One-Potato, Two-Potato Problem) A frozen-food company processes potatoes into packages of French
fries, hash browns and flakes (for meshed potatoes). At the beginning of the manufacturing process, the raw
potatoes are sorted by length and quality, and then allocated to the separate product lines.

The company can purchase jts potatoes from two sources, which differ in their yields of various sizes and
quality. Each source yields different fractions of the products French fries, hash browns and flakes. Suppose that it
is possible, at different costs, to alter these yields somewhat. Let f, f, and f; be the fractional yield per unit of
weight of source / potatoes made into the three products, similarly, let g;, g, and g3 be the yields for source 2.

Suppose that each f; and g; can vary within £ 10% of the yields shown below :

Product Source | Source 2 Purchase limitations
French fries 0.2 0.3 1.8
Hash browns 0.2 0.1 1.2
Flakes 0.3 0._3 24

Relative Profit 5 6
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. 1s
‘ i aining these yielc
Let € (1 £+ 1) and ¢, (€. g~ 1) be the expense associated with obt £

)
) m each source’!
he p . , urchase from ¢
The problem s 10 determine how many potatoes should the company p

Formulate the pr ohlem
¢ A8 \l(lhh‘n‘ as > o amming prob em. .
| 1 a non-limear programming | o to polish its metal products. The two

’ .
2705, A manufacturing conce The daily maintenance and operation

p ac ine
m operates its two available mac hin
machines

© | : «oets are different.
are equally efficient, although their maintenance costs are difte
cost of the machines 1< given in rupees as the non lincar function i .
+ 0.5vy”
fOv. ) = 100 12y - 150 03y 2 y ctively
‘here . . . ‘hine [ ¢ chine I respe :
where v and 4 are the number of hours of operation of machine / and ma

Aal¢ 14 h d ”E! 101 O W “hi |Cil ;
¢ Com ‘ne opera i O I“tl(l"“eﬁ ill()Uld |)C at St ;
as d “f ‘h( lll‘]’n H)dl("“ ‘I { 'I Col | ') t ‘ Irs f (

hours a day i order 1o perform a satisfactory job. However, the production manager W:'he(; :;:eog;]tfr:alm;;::er):
at least 6 hours more than machine /1 because of the higher repair cost of the later. Fin
operating the two machines and the minimum daily cost.
Formulate the problem as a non-lincar programming problem. it of prod
2706. A company manufactures two products A and B It takes BQ mimllles to process one ll:n;roduirtj ,:Cz:nz
and 15 munutes for each unit of B and the maximum machine time available is 35 hours per. weef' . erial |
B require 2 kgs. and 3 kgs. of raw material per unit respectively. The available quantity of raw material is
envisaged to be 180 kgs. per week. : .
The products A and B which have unlimited market potential sell for Rs. 200 and Rs. 500 per unit respectively

It the manufacturing costs for products A and B are 2x* and 3y? respectively. find how much of each product
should be produced per week, where

1l

x = Quantity of Product A to be produced, and
y = Quantity of Product B to be produced.

Formulate the problem as a non-linear programming problem.

D

PR

27:3. GENERAL NON-LINEAR PROGRAMMING PROBLEM —— .'"
Definition 1 (General Non-linear Programming Problem). Let z be « real valued function of n
variables defined by

(a) 7= f(x, Xy oeen X))
Let {b,, b,. ..., b,,} be a set of constants such that

g (g e x) {S02 or =} b
(X X, e X)) {2 or =} b
(b) g'( 1 A2 ) A } by
g" (X Xg o ) {S02 or =} b,
where g''s are real valued functions of n variables, x,, ..., x,. Finally, let
(c) 20 j=12 ..,n

If either f(x;. ... X,) or some g'(x;, ... . x,). i=1,2, ..., m: or both are non-linear, then the

problem of determining the n-tuple (x, x,, ... x,) which makes z a maximum or minimun and

satisfies (b) and (c), is called a general non-linear programming problem (GNLPP).
In matrix notations the GNLPP may be written as :

-

Determine X/ € R” so as 1o maximize or minimize the objective function 7 = f(x), subject to the
constraints :

gi(X){S,Z 0|':}bi, x>0
where either f(x) or some g' (x) or both are non-linear in X.
Sometimes it is convenient to write the constraints g' (x) {<2or=} b, as
ho(x) = g (x) = b;

[=1,2., ....n

(x){ <, 2or=1}0 for
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There is no simplex-like solution
Pm{lmmming.prohlem. However, nume
appearance of' the fundamental theoretic
ahle solution technmiques will be discy

FOC : b ebece: _
procedure for the solution of the general non-linear
rous  soluti . :

(])"“‘ solution methods have been developed since the
al paper by Kuhn and Tucker. A few primary types of

avail ssed in this and the next chapter.

if the non-linear programming problem is composed of some differentiable objective function and

equelit Constrmfn& the optimization may be achieved by the use of Lagrange multipliers® as
Jlustrated below :

sider the problem of maximizi T T S . _
Con p 1ZIng or minimizing ; = f(x,. x,) subject to the constraints -

g0 x) =c and y, x>0,
where ¢ is a constant.
We assume fhat 1‘ (X}, x,) and g (x;, x,) are differentiable w.rt. x; and x,. Let us introduce a
ifferentiable  function A (x), x,). differentiable  w.r.t, x; and x, and defined by
h(x. o) = & (. X2) = ¢ Then the problem can be restated as

Maximize z = f(x, x;) subject to the constraints :
h(x;, x) =0 and x, x, > 0.

To find the necessary conditions for a maximum (or minimum) value of z, a new function is
formed by introducing a Lagrange multiplier A, as

L(xpy xp A) = fxp, x) = A (x), xp).
The number A is an unknown constant, and the function L (x|, x,, A) is called the Lagrangian
function with Lagrange multiplier A. The necessary conditions for a maximum or minimum (stationary
value) of f(x. x,) subject to h (x|, x,) = 0 are thus given by

aL (,\'.|. X2, A.) _ 0 aL (Xl. X2, )\.) _ 3L (xl. X2, )\.)

aXI 0 axz 0 and T = O.

Now, these partial derivatives are given by

o _ Y

dx, Ox ax,

oL _ o o,

oxy  0xy 0xy

dL
and 5X =-h,

where L, f and h stand for the functions L (x), x5, A), f(x;, Xp), and h (x|, x,) respectively,
or simply b
o Ll = fl - )"hl, IQ =,f:$_ - A,hg and L = - h.
The necessary conditions for maximum or minimum of f(x, x,) are thus given by
fi =My, fo =M and -h(x, xp) =0

Note. These necessary conditions become sufficient conditions for a maximum (min.imum) it the
objective function is concave (convex) and the side constraints are in the form of equalities.

\ / ﬂlllStration.Z Obtain the set of necessary conditions for the non-line'ar programming problem :
Minimize z = kx™'y? subject to the constraints :
24y -a2=0 with x20,y20;
Wte minimum value of Z. :J

*The method of Lagrange multipliers is a systematic way of generating the necessury conditions for a stationary point.



@

OPERATIONS RESEARCH
828

Solution. The Lagrange function is

2 2
L w ) = ko' v Ad & v @)
24 - A
where f(u ) = Rty and h(n ) = g ) - C = (6 4y - d

The necessary conditions for the mimimum of f(x, v) gives

LR I P P
oa '

L T A S
dv

JL s 2 2 =0
and o0 = K rv-a
4 A

From the first two equations, we get

20 = k)2 = 2kl yt This yields 1 = /2.
Using this value of x in the third equation, | \F_— o
v = aN2/3 and therefore x = ‘j—EXu 3=/

3
Minimum z = kx(@/V3 ) @V2/3)? = 3‘@"\’/2‘%.’\
S
Necessary Conditions for a General NLPP

Consider the general NLPP : _ ints :
Maximize (or Minimize) z = f(x,, X,, ..., X,) subject to the constraints :

gy wx) =¢ and x5 205 i=1L2 .om(<n)
The constraints can be reduced to

hx...x)=0 for i=12 .. m
by the transformation /! (xs

v X)) = gHx, e x) ¢ foralli =1, 2, .., m (< n).
The problem can then be written in the matrix form as

Maximize (or Minimize) z = f(x), (x € R") subject to the constraints :

x)=0, x20. _
To find the necessary conditions for a maximum or minimum of f(x), the Lagrangian function
L(x, ). is formed by introducing m Lagrangian multipliers A = (A, A,

.» Ay). This function is
defined by

Lx A) = f(x)= _'gl A ().

Assuming that L, f and h' are all differentiable partially w.rt. x|, x,,

o Xy and A, A, L, A the
necessary conditions for a2 maximum (minimum) of f(x) are :
oL _of w . dhi(x) _

dy — Ox; ,'El N ox; 0. J=L2 ..
IL

aXi = -l =0, 2, ...om

These m + n necessary conditions can be represented in the following abbreviated form
m

. _ m i
szjj- ,'Elkih‘j:t) or jj:jEI}\ih’j;

J=1.2, ...n
= _hi = o
and ; LA, =0 or ,h' =0; T
[ i , {
where  f = ia(\?) W= h and by = ah. X)
Y

ox j

Remark. These necessary conditions also become sufficient for a m

Ao T it aximum (mini A
function if the objective function is concave (convex) and the cons (minimum) of the objective

traints are equality ones,
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AN + v o+ 1\3 = 2.

Solution. Here. we have x

Lv: ())
constraints :

For necessary conditions of maximizing f (x).

hr(x) = 0 for i =1,

Stp 4 20 + vy = 5

LSRN L PR 2z 0.

= (G X ) (%) = 07+ 3+ Sxgn
=5+ n N and ¢, = 2. ¢ = 5. Definmg W (x) = ¢ (%) - .

4

“.

tion. Obtain the set of necessary conditions for the non-linear programming pro

829

blem .

Maximize = = ;" + 360 + 547 subject to the constraints :

[Delhi B.Sc. (Stat.) 2006/

g

T

(X) = x; + A ¥ _‘;X,—:.
i. 2. we have the

—

we construct the Lagrangian function

L(xA) = f(X) = A h' (%) = 2o P (). A = (AL Ra).
This yiclds the following necessary conditions :
oL JL \ )
= 2.\'| - }\l - SA-’_‘ = 0, g = 6v. ~ A- 2A, = 0.
8.\‘| ()\’: - -
aL . ol
=7 o= 1y - 34 - Ay =0 = = - + 00+ 3y - 2) =0
ox3 3 ] - oA, (i LT an )
a(}}{:z = - (5/\'1 + 2_\’2 + X3 — S) = ().
Remark. In some cases it is not generally possible to solve the equations resulting from the set of
nt method in this case is to

necessary conditions, explicitly for the values of x and A;’s. A convenie

select successive numerical values of A,’s and then solve the set of necessary conditions for x. This is
repeated until for some values of A, the resulting x satisfies all the constraints in equation form. .~

%utﬁcient Conditions for a General NLPP with one Constraint

Let the Lagrangian function for a general NLPP involving n variables and one constraint be :

L(x, A) = f(x) = Ali(x).

The necessary conditions for a stationary point to be a maximum or minimum are

and

The value of A is obtained by

oL _ of 0k _
oy "o May
aL L
- -h(x) =0

~ 0f/dx;

- 0h/dx;

(j=12....mn

(forj = 1. 2, ... n).

The sufficient conditions for a maximum or minimum require the evaluation at each stationary
point, of n— 1 principal minors of the determinant given below :

0

oh
ox,
An +1 = .QI'_
dx,

E
ox,

a’\. | a.\';)
3, Ph & >
7 7 ) a =
ay®  ox? P T ax, v,
o, ¥ B P ¥
0¥y 0 vy, dxy? ox,’ U onsd,
T A . R .
oy, 0x, dx, dx oy, 0 ox,, 0% A,

oh
ox,

P

v
v, dv,,
>k
(1\3 f).\“

Y
a

"

fA; > 0, Ay <0, A5 > 0, ..., the signs pattern being altemate, the stationary point is a local maximum.
If . . , . " .
A;<0,A,<0,..,A,,, < 0, the sign being always negative, the stationary point is a local minimum.

‘—.___, )

i
i
|
5
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Che follovwing NIPP
. s fo? the f
-—--'—---—' affrcrent conditic )
Musteation, Obrain the set of necessan emdd \NH;('__ 12, * 200 suhyec! 10 The constrainiy
Minimize = iy Yay, + 20 Ry + 2% 2
T =4y REA 2
> 0
ot e (1. Y. v 9
Solution. We tormulate the Tagrangian {function 2l‘< ‘ oy A0 Y
1oy s, A) = l\l" M 1\‘) K1y 4 N [ 2vy + 2
The necessary conditions for the stationary point are
' ()I ~ 4 B 8 _ )\' - ()
ol , - dre
SRR LF e
|
4 - 1 =0
L | . i C oyt i )
N 4y, -12-a=0 I
1
: . (ationary pornt
The <olution of the simultancous equations yiclds the station / P
X, = (Ve V2o W) = (6. 2. 3). A = .

o minimum 1S that both the mmors A, and

The sufficient condition for the stationary pomt to be

A, should be negative. Now, we have l [
0o |

0o 1 o4 0 0
Aq = 1 4 0| =-8 and Ay = | 0 4 0
1 0 4 1 0 0 4

. i e NLLP.
Since A, and A, both are negative, X, = 6. 2. 3) provides the colution to th

- C_ (6.2 i the solution to t
Heace. the stationary point is a local minimum. Thus x, = (6. 2. 3) provides he

NLPP.
Exercise. Examine z = 6x, x, for maxima and minima under th

[Hint : The stationary point is x, = (2. 5. 5) which is a local maximum for =17

g
&

e requirement 2¢, + x» = 10.

s

" /'Sufficient Conditions for a General Problem with m (< n) Constraints

Introducing the m Lagrange multipliers A = (s Rae oon Ay let the Lagrangian function tor a general

NLPP with more than one constraint be :

i
L(x. A =f(x) - Zl A, Dt (X) (m < n)
The reader may verify that the equations
?)i, =0 and 3%’ =0 (=1 2. ... m:y =12 ..n

yield the necessary conditions for stationary points of f(x). Thus. the optimization of f(x) subject (0
h(x) = 0 is equivalent to the optimization of L (x, A). We state here the sufficiency conditions for the
Lagrange multiplier method of stationary point of f(x) to be a maxima or minima without proof. For
this we assume that the function L (X. A). f(x) and h(x) all possess partial derivatives of order onc
and two w.r.t. the decision variables.

Let V = é):.l: (3‘__'\_) }
0x, Y, .

be the matrix of second order partial derivatives of L (x, A) w.r.t. decision vanables

U= 10,00 L

, oh' (x)
where I’ (X) = dx, vr=1,2, namy =120 Lo

4‘"
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- > osquare matrix
-finc the square n ’ |
De Lo
H" |
Lo |
L v ! \ Y MY < lm ooy
where O 1 an moxem null matxc The matry 1# s called the hordered Hessian marrie. Then, the
cufficient conditions for maximum and mimmun stationary points are given below .
Consider (X, A,) for the function /7. (x, 2) 1o be 1S stationar point. Let H” “he the corresponding
pordered Hessian matnx: computed at this statonary point. Then x 14 4
(@) maximum pomt. it starting with principal minor of order (2m + 1), the last (n - m) principal
minors of H’*“ from an ultcrnulmg SIgn pattern startimg with (« 1y and
(b) mnimum pomt. if starting with principal minor of order (2m + 1), the last (n - m) principal
B e SR o [ym
minors of H” have the sign of (- [y,

Remark. 1t may be obscerved that the above conditions are only sufficient for wlentilying an extreme
point. but not necessary. That 1s, stationary point may be an extreme pomt without satistying the
above conditions.

SAMPLE PROBLEMS

‘{é‘f 2707. (Input-Allocation Problem) A manufacturing concern produces o product consisting of two
raw materials, sav A, and As. The production Sunction is estimated ay

=y ) = 3.6x) - 0.4.\',3 + 1.6x, - 0.2,\‘32
where Z represents the quantity (in tons) of the product produced and, X, and x, designate the input
amounts of raw materials A, and Ay The company has Rs. 50,000 10 spend on these two raw
materials. The unit price of A, is Rs. 10,000 and of Ay is Rs. 5,000. Determine how much mput
amounts of A, and A, be decided so as to maximize the production output.

Solution. Since the company must operate within the available funds, the budgetary constraint is
10,000x; + 5.000v, < 50,000 or 2y + x < 0.

We reduce this inequality constraint to an equality by imposing an additional assumption that the
company has to spend every available single paisa on these raw materials. Then, the constraint is
2r + x, = 10. Also, obviously x, > () and Xy 2 0. The problem of the company can thus be written

as the following NLPP :
Maximize = = f(x, x,) = 3.6x, - 044* + 161, - 0.20,2 subject to the constramts -
2y + =10 and v, 20
or Maximize z = f(x,, x,) subject to the constraints :
hxox) =0 and x.x 20
where h (x), x,) = 2x, + %, = 10. Observe that f(x,, x,) and 4 (X, x5) are both differentiable w.r.1.
X and x,.

Also, we observe that the objective function z = J(x}, x2) is a concave function and the said
constraint is an equality constraint, Therefore, the necessary and sufficient conditions for a maximum
are -

h=Ah, fo=xh, and -n (\j. xa) = 0

That is,

3.6 - 0.8x) = 24, 1.6 - 0.4x,
The first two of these yield

Aoand  2x) 4\, = 10,

A=18- 04y, = 16 - 0.4,
ad 50 the elimination of A gives 0.4y, - 0.4y, - 0.2 = 0,
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Now since 1, - 10 2y, the last equation gives
=0
0ay, 040 2 V7
o1 v, 42 =00 00 N = 3.3
Thus. w10 2q 73

“ . " . ) . , h
The maximum value of the objective function s thus, given 0y .
f(3,5. %) = 360339 0425 + 16(3%) l
- 107 (lmmm)

Thus. m order 1o have a maximum production of 10.7 ton
of raw material A and 3 units of raw material B, P

nes. the company must input 3.3 UMITS

. ion of the following
&, . um solution :
%708, Obrain the necessary and sufficient conditions for the optim

NLPP :

ints :
: . N 5 eyhiect to the constrat
Minimize z = f(x, xy) = de=h bt 2e! subject

s.Sc. (Math.) 2001]
Xy + ) = 7. s X2 > 0. [Kera[d

Solution. Let us introduce a new differentiable Lagrangian function L (xj, X2 ») defined by
Ly, v A) =[x w) - Al + A2 )
=3en !+ 2eatS — A + X2 7 7)
where A is the Lagrangian multiplier. |
Since the objective function & = f(x, Xp) IS cONVEX and the constraint an equality, the necessary
and sufficient conditions for the minimum of f(x|, xp) are given by

Qlf ___6(,1\,+l _A=0 or >\=6el\l*l
ox,

oL =20t - A=0 or A= 2e0td
a.\‘:

aL o - —
éi=”(-V|+-Y3-7)=0 or .\]+.\2—7

Using these three, we get
belhi*! = 205 or et = et = 87_“1*5

or log3 + (2x, + ) =7 - x, +5 or x = (11 - log3).

Thus ¥y =7 - L1l - log3) = (10 + log3)/3.

¢

" 2709. Solve the non-linear programming problem :
Optimize

2= 4x2 + 250 + x? - dxx, subject to the constraints :
Yy o a3 =15 2v - x4 2 = 20, [Delhi B.Sc. (Stat.) 2002]
Solution. Here, we have

f(x) = 4y + 200 + 0y - Ay, BE(X) =X+ g = 1S
h?(x) = 2x) = xp + 2xy = 20.
Construct the Lagrangian function
Lx. 2) = [(X) = A (%) = Rah® (x)

@A 4 207+ - dan) = Ay e oy - 15) = A2y - X+ g - 20
The stationary point (X, A,) has thus given the following necessary conditions :
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oL ] ‘
a" = 8y 4‘? )»| 7K2 = () oL -~ Ay 4 p 3 0

)) 2 Y - Ayt Ay =
oL 0xy
a\_} = 2\1 - )\I - ?)\2 -~ 0 ()I‘
;I' o, Tl by by 151 =0
JdL

= 2 o2 = g0 4 e
a}\z [.__\' Ny 4 2_\} - 20 = 0.
The solution to these simultaneoys line

ar equations yields
X = (%) = (3379, 103 8) and )

: : = (Ao Ay) = (4079, 52/9
The bordered Hessian matrix at this solution (x ) ‘ I+ A) = (4079, 52/9),
AR

isgivenhy
0 0 : 1 I I 7

0 0 . 2 -1 2

B | e, e
0, = 1 2 18 4 0
O U E R
L] 2 . 0 0 24

Here since n = 3 and m = 2, therefore n —

‘ m =1, 2m+1 = 5). This means that
check the determinant of H2 only and it must h ) e et o

ave the sign of (- )2,
Now, since det HE = 90 > 0, X, 1S @ minimum point. T O

&

PROBLEMS '

Solve the following non-linear programming problems, using the method of Lagrangian multipliers.
« . . o) .
2710. Minimize 2 = 6x)= + 5x,2 subject to the constraints

5 =3, x, x5 20 [Kerala M.Sc. (Math.) 2001]

P . g 9
2711. Minimize  f(x}, x2) = 3x)% + x,2 + 2x1xy + 61 + 2x, subject to the constraints -

2 - x3 =4, x, x5 20 [Nagarjuna M.Sc. (Stat.) 1989]

2712, Maximize ¢

Sxp + Xy — (X1 — xp)% subject to the constraints :

.’.'l + .,\.2 = 4, xl, x'z > 0-

2713. Maximize

(&}
|

= 4x; + 6x) - 2% - 2x1x, — 26,2 subject to the constraints :
X + 2.\:2 = 2, and X Xy > 0.
2714 Minimize 7 = 2x,2 + x2 + 3x32 + 10x; + 8x, + 6x; — 100 subject to the constraints :
Yot X+ ay =20, X, X, vy 2 0.
2415. Minimize z = x> + x,2 + x3% subject to the constraints :
4./\:‘ + XZZ + 2,\1 = 14, .Y|. x:, .\A3 > ().

2716. Determine the optimum solution for the following NLPP and check whether it maximizes or minimizes
the objective function : |

z = x7 - 10x) +,% - 63, + 532 - 4x; subject to the constraint :
Xp+x+x=7 and x 20, x, 20, x320.

2717. Solve the following NLPP :
Optimize z = 4x; + 9y - x|
4Xl + 3,\'2 = 15. 3‘] + 5.\’2 = I4; .\'l 20 .\'2 2 0.

2 _ xy* subject to the constraints :

2718. Minimize 7= xl2 + x22 + x32 subject to the constraints :

Xy + X+ 33 =2, 5x 4+ 20+ X3 =5, 4y, gy 20, o
[Annamalai MLE, (Nov.) 2002; Delhi B.Sc. (Stat.) 2004]
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i i aints
2719, Minimize 6y, 4 By vy o xy’ subject to the constr

" pd (‘
4r 4y = 160 3 50 7 e roduct of 1 parts 15 to he 4
T v that the P -
2720. A positive quantity b is to be divided into n parts in such a waj

R . K . _division
maximum. Use Lagrange's multiplier method to obtain the optimal sub

[Hint : Let n parts be v, v, ...

x,. Then, the problem 1s
Maximize

- =1, 2. ....m]
. 4 oX - h. nnd X, P ‘) (’
I= Xp-Xyc..ex, subjectto x4 X b n

CONSTRAINTS -
27:5. CONSTRAINED OPTIMIZATION WITH INEQUALITY

. imal solution
ent) for the optima

We shall now derive the Kuhn-Tucker Conditions (necessary and suffici

of general NLPP. Consider the general NLPP :

. aints :
Optimize z = f(x|. Xy -.ov Xp) subject to the constr

c 20
Q¥ ww x,) £ C and  xp Xz o 0 =
where C is a constant.

Introducing the function h (x,,

<
x) _ g—C the constraint reduces to h (Xl. veos Xn) < 0. Thc
ey Xy )’
problem, thus. can be written as

E Rﬂ
Optimize z = f(x) subject to h(x) <0 and x 2 0, w;egeef,‘:ned by S2 = —h(x), 0
We now slightly modify the problem by introducing new variable
h(x) + S? = 0.

i constraint equation
The new variable S is called a slack variable and appears as its square in the q

> 0. Now the problem
so as to ensure its being non-negative. This avoids an additional constraint S 2 p
can be restated as

Optimize z = f(x), x € R" subject to the constraints :
hix)+S2=0 and x20.

This is a problem of constrained optimization in n + 1 variables and a single equality constraint
and can thus be solved by the Lagrangian multiplier method.

To determine the stationary points, we consider the Lagrangian function defined by

L(x S, A) = f(x) - Alh(x) + 3%, .
where A is the Lagrange multiplier. The necessary conditions for stationary points are

g ax] = axj - )\' ax] =0 for J
aL 2 b
= - = 0. ~(2)
S = ~(heo + S
oL |
= _ = R
3s 28\ = 0.

Equation (3) states that 35, = 0, which requires either A = O or S = 0. If §
h(x) =

= 0, (2) implies that
0. Thus (2) and (3) together imply A h (x) = 0.

The variable S was introduced merely to convert the inequality constraint into an equality one
and therefore may be discarded. Moreover, since §2 2 0, (2) gives h (x) < 0. Whenever h (x) < 0, we
get A = 0 and whenever A > 0, h(x) = 0. However, A is unrestricted in sign whenever h (x) = 0

The necessary conditions for the point x to be a point of maximum are thus restated as (in the
abbreviated form) :
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/
PR h, =0 (; | "
Ah - 0 ‘ ‘

" - Maximize
}\' A :: subject 1o
_— -

I
|
t
h <0 l
|
The set of such necessary conditiong is called

A similar argument holds for the minimizati

Minimize ; - on (.)f non-linear programming problem
¢ = f(x) subject to the constraints -
. £ h oo &) 2C and x> ¢
Introduction b 1(X) = g (X) — C reduces (he first constraj :
) . g St constraint 3 S
variable S, can be introduced in (X) 20 so that g e o ST GEW Serphes

N . W€ may have the equality constraint
hx) - So = 0. The appropriate Lagrangi 4 !

Kuhn-Tucker ¢ ‘onditions.

an function ig

L. 5o 0) = fxy - a lh(x) - 52
The following set of Kuhn-Tucker conditions is obtained -

——_—_—

f/ - khj =0 =12 ....n

|
l
Ah =0 Minimize f l
h>0 subject to :
A20

h >0, |
— |

Theorgm 27-1 (Sufficigngy. of ‘Kuhn-Tucker Conditions). The Kuhn-Tucker conditions for a
maximization NLPP of Maximizing f(x) subject 1o the constraints h (x) <Oand x >0 '

. . . . 2 U, are sufficient
conditions for a maximum of f(X), if f(x) is concave and h (x) is convex.

Proof. The result follows,

if we are able to show that the Lagrangian function
Lx, S, A) = f(x) - [h(x) + 57,
where S is defined by & (x) + S2 = 0, is concave in x under the given conditions.

In that case the stationary point obtained from the Kuhn-Tucker

' conditions must be the global
maximum point.

Now, since h (x) + S2 = 0, it follows from the necessary conditions that AS> = 0. Since h (x) is
convex and A = 0, it follows that Ak (x) is also convex and — Ak (x) is concave. Thus, we conciude
that f(x) - Ah (x) and hence f(x) — A [k (x) + S%] = L(x, S, A) is concave in X.

Remark. By a similar argument it can be shown that for the minimization NLPP. Kuhn-Tucker
conditions are also the sufficient conditions for the minimum of the objective function, if the objective
function f(x) is convex and the function h (x) is concavg/’f N AN

L

Ve SAMPLE PROBLEM

/'7 /2721. Maximize z = 3.6x; — 0.4x,.2 + 1.6x, — 0.2x,> subject to the constraints :
2xp +x <10 and x|, x, 2 0.
Solution. Here f(x) = 3.6x) - 0.4x2 + 1.6xy - 0.21,2
g()=2x; +x, c=10
hx) =gx) - c=2x + x, - 10.

b ;
f df / ox; ‘ -~ - . .
* More precisely since A = ﬁ(: 5{—75-‘1 = _gﬂ measures the rate of variation of f w.r.t. A, then as the right-hand side
h; X; W

of h(x) < increases about zero, the solution space becomes less constrained and hence f(x) cannot decrease. This means that
A2, '
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The Kuhn-Tucker conditions are
Ao 0
df (%) N ah (x) 0 Wy MO o O nw < 0,
l)\l ()\' . F \ s
\ Ore
vhere A 18 the Lagrangian multipliet
That 1<,
1o 08y - 2A
1o 04 A
Ay ¢ v 101 0
2"1 by “) 0
A0 (5)
From egnation (3 either A = 0 or 2y, + V> 10 = 0.
Let A = 0, then (2) and (1) yield v, = 4.5 and vy = 4 With these values of v, and v, however,
' ained here for 5 = 0. Let then A # 0. which

(4) cannot be satisfied. Thus. optimal solution cannot be obt
Ids the stationary value

implies [from ()] that 2y, + 1 - 10 = 0. Ths together it 1y and (@) yie
Xy = (V. ) = (3.5, 3)
Now. 1t is casy to observe that /i (x) 18 convex in x. and f(x) is concave in x. Thus, Kuhn-Tucker
conditions are the sufficient conditions for the maximum. Hence x, = (3.5, 3) 1s the solution to the
given NLPP. The maximum value of : (corresponding t0 x,) is given by

/ =107 AN
~, yd & \
4

~ Y4 N -
/ Kuhn-Tucker Conditions for General NLPP with m (< 1) Constraints

Introducing S = (S;. S5 ... S,). let the Lagrangian function for a general NLPP with m (< n)
constraints be

Lx, S A) =f(x) -

"

ol x) + S

where A = (A,, .... A,) are the Lagrangian multipliers.

"

The necessary conditions for f(x) to be a maximum are :

oL of  m, o

Ay A= =0 for j= 1.2 .n (h
ox, dy, =1 'y, J
g-)%i =h + S,-2 =0 for i=1 2, ...m A2)
g—; = =25\ = for i=1.2 ...m R

where L = L(x. S, A). f=/(x) and h= h'(x).
Equation (3) states that®igher A, = 0 or §, = 0. By an argument parallel to that considered in the

case of single incqualil‘y constraint; the conditions (3) and (2) together are replaced by the conditions
(5). (6) and (7) below :

ANhb=20 for i=1.2 ..om A
<0 for i=1 2, ....m A0
=20 for i =1,2, ...m AN

The Kuhn-Tucker conditions for a maximum may thus be restated as
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o |

./,' *'i?lfbfh'/ (J=1.2.....m !

Al =0 (=12, ...m Maximize f ;
1 ¥ . ‘
h <0 (=12 ... m siubject to
A >0 <0 /

) Lk
where ' = - (=12, ... m).

d\» -

%

Theorem™ 27-2 (Su.fficwn_cy it K“h_n'T",Ck" Conditions). For the NLPP of maximizing f(X),
s R, subject 10 the inequality constraints k' (x) < 0 (i = 1, 2. .... m), the Kuhn-Tucker conditions
are also the sufficient conditions for a maximum, if f(x) is concave and all h (X) are convex functions
of X .
proof. Exercise for the reader.

The Kuhn-Tucker conditions for a minimization non-linear programming problem may tc
obtained in @ similar manner. These conditions in that case come out to be :

m .

fi =l_§0 Aihf (G=1,2 ...n
Aiht =0 Minimize f
h >0 subject to :

Ai 20 >0 (=12, .. m.

It can be shown that for this minimization problem, Kuhn-Tucker conditions are also sufficient
conditions for the minima if f(x) is convex and all k' (x) are concave in x, that is, — A (x) are also all

convex.
Note. If f(x) is strictly concave (convex), the Kuhn-Tucker conditions are sufficient conditions for an
absolute maximum (minimum). _
Remarks 1. We may consider x > 0 or —x < 0, to have been included in the inequality constraint

K (x) < 0.
2. In both the maximization and minimization NLPP, the Lagrange multipliers A; corresponding to the
equality constraints &’ (x) = 0 must be unrestricted in sign.

3. A general NLPP may contain the constraints of the ‘>’ or
maximization NLPP, zll constraints must be converted into those of ‘<’ type and in the case of

minimization NLPP, into those of ‘>’ type by suitable multiplication by —;/;
A v
L4

‘=" or ‘<" type. In the case of

SAMPLE PROBLEMS

e (3 =
£ 722.LDetermine X}, X, and x3 so as to

Maximize 7 = —x;* — x,2 = x3% + 4x; + 6x, subject to the constraints :
x|+ X $2, 20 + 3 <12, x,x 20 "‘
fx) = -x2 - 2 - x? + 4x + 6,

e —— Rl (x) = x, + x - 2, 2(x) = 2x; + 3x, - 12,
f’ The objective function is concave if the principal minors of bordered Hessian matrix, alternate in sign, beginning with the
Négauve sign. If the principal minors are positive, the objective function is convex. In the present case
-2 0 0
H=| 0 =2 0
0 0 -2

(I1AS 1992]

Solution, Here ‘x€ R

n=3 m=2 |H%| <0. Thusf(x) is concave.
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. Tucker conditions wil
Clearly. £(x) 15 concave® and h' (x), h (x) are convex n * [huq(;‘*:i)::J:; ohtained by the pamall
be the necessary and sufficient conditions for a maximum. These conditt
differentiation of the Lagrangian function ) o7
Lk SOA) = f(x) -~ Ay TRt (0 1’ a7 ) ¢ :\ [Lagrange multipliers
where § = (S 8. A = (A, &), §). S, being slack variables and Ay A, the Lagr 5.

The Kuhn-Tucker conditions are given by

(h /- .'g‘ e (y=12173
= .

) Aho=0 ((l, ; Il ?

@) W <0 =Ly

) A 20 (=172

Thus, in this problem, these are

(D) () -2 +4 =2 +2) (i) -2 +6=h 3 (iii) -2x, = 0.

@ O Mo +xn-2=0 (i) dy@x + - 12)=0

(3) () x;+x-2<0 (i) 20 +3xp - 1250

(4) A 20 A 20.

Now, there arise four cases :

Case 1. &, = 0 and &, = 0. (i), (i) and (iii) yield x, = 2%, = 3, % = 0.

However, this solution violates (3) [(i) and (if) both], and it must therefore be discarded.

Case 2. 4, = 0 and , # 0. (2) yield 2x, + 3x, = 12 and (1) () and (if) yield =2x, +4 = 24y,
~2x, + 6 = 3\, The solution of these simultaneous equations yields x; = 2/13, x, = 3/13,
), = 24/13 > 0; also (1) (iif) gives x; = 0. However, this solution violates (3) (i). This solution is
also thus discarded.

Case 3. A, #0 and L, #0. (2) (i) and (ii) yield x, + x, = 2 and 2x; + 3x,

= 12. These together
yield £, = -

6 and x, = 8. Thus (1) (i), (i) and (iii) give x3 = 0, A, = 68, A, = —26. However, this
solution is to be discarded since A, = —26 violates (4).

Case 4. A, #0 and A, = 0. (2) (i) yield x; + x, = 0. This together with (1) (i) and (ii) gives
x; = 1/2 and x, = 3/2, A, = 3 > 0. Further from (1) (iif) x, = 0. We observe that this solution does
not violate any of the Kuhn-Tucker conditions.

Hence, the optimum (maximum) solution to the given NLPP is

Xy = 1/2, Xy = 3/2, X3 = 0 With )\'l =3, A.z =0,
the maximum value of the objective function being z, = 17/2.

2723. Optimize 7 = 2x, + 3%, — (x;* + X, + x;%) subject to the constraints :

X1+ x <1, 2 +3x% <6 and x; 20, xp 2 0.

Solution. Here we have
fx) = 2 + 3xp ~ x2-x?-x% h@=x+x-1 and K (x) =2 + 3x -6

Before applying the Kuhn-Tucker conditions, it is essential to determine whether the problem 18

of maximisation or of minimisation type. For that, we construct the bordered Hessian matrix :

HB =(0.,P)
PT . Q (m+n)x (m+n)
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0
0 ()) : | | X
” o : ) 3 0 =3
HA - el
or ! 2 N ! .- 2'
-2 0 0 ’
I s
0 : 2 ) m+l =5
0o 0 0 2

‘ TR ) B '
cor maximisation, the sign of H should be (_yyn+n : I
For mé Since HF < 0 1 \ _ D" e, e while for minimisation it should be
m je. +ve. Sinc » the solution poing should imi jecti
i S ‘ _ ! maximise the objective function.
The Kuhn-Tucker conditions for this case are

2 - 2.\'] - A] - 2)\,2 = () (') 3 "
I T T
A] (2\'] + 31'2 ~6)=0 ) l ? @ ij . -+
A +x-1)=9 } - (iv) Tty -1<0 ..
2.\'l + 3,\~2 — 6 < 0. ...(Vi) }\'" A’Z > O, -..(Vil)

Four solutions corresponding to the following values of A, and A, can be obtained:

Case 1. A, = 0, A, = 0. |

Equations (1), (i) and (iii) give =1, x, = 3/2, X3 = 0. This solution does not satisfy
equation (i) and is, therefore, discarded.

Case 2. A; = 0, A, # 0.

The solution of equations (i), (#1), (iii) and (v) gives
X = 12/13, Xy = 18/13, X3 = 0 and }\'l = 1/13.

This solution again does not satisfy equation (vi) and is therefore discarded.
Case 3. A, # 0, A, = 0.
The solution of equations (i), (id), (iti) and (iv) yields
X =1/4 5 =3/4 x=0 and A =3,
This solution satisfies all the conditions, and gives z = 17/8.

Cased. A, # 0, A, # 0.

The solution of equations (i), (ii), (i), (iv) and (v) gives
X = —3, Xy = 4, X3 = 0, A’l = —34, A’Z = 13.

This solution violates condition (vii) and is, thus, unfeasible and is therefore discarded.
Since only one solution satisfies all the conditions, the same is the optimal solution.
Hence, x,° = 1/4, x,° = 3/4, x3° =0, and maximum z = 17/8. P
//"‘ 2
PROBLEMS Qﬁ ~

Use the Kuhn-Tucker conditions to solve the following non-linear programming problems :

2124. Minimize z = 2x2 + 12x,x, - Tx,% subject to the constraints :
2.1‘] + SX2 < 98, xl, X2 2 0.
= 8x) + 10x, - x;2 - x, subject to the constraints :

2725. Maximize z
3 + 2 <6, x,20,x 20

[1AS 1991]

2 + x2 + x3% subject to the constraints :

le +X2S5, Xl +.t252. XIZI, .\‘222. .V:‘ZO.
0.3x2 - 2x, + 0.4x)2 - 2.4x, + 0.6x;x, + 100 subject to the constraints :
2+ x 24, x, % 20

2726. Minimize z=x
[IAS 1993)

2727, Minimize ;




OPERATIONS A
840 ESEARCY,

27 inimi . constraints
2728, Minimize e cot

-

log v, log vy subyject 0 i -
witnel and N7 0o

[ \ - |
ot 1o the conditions

o ’ 3 b “,
2720, Minimize ) W, Yy subie 0 v 0
p . )

\‘1 \l
o, and Yo

Ly, 6 Syt Y [Madurai B.E. (Flectronics) 199,
|
y ints
273, Maxinze 3 ) iect 1o the constratt '
Aaxinize 2y W tn sub “ e and T %27 0. [Dibrugarh M.Sc. (Stat.) 1994,
\ < \ AP I ) I
ol W, < 0024
) constraints
273 Manimize - Tyt 1 6y b SG subject to the cont

. 0 and v, 7 0. [Annamalai M.E. (Noy.
RPN U W, 29N ) 200

|
2732, Mavimize = 3y 4 xy subjectto {he constraints :
FRRA Y 2! ;‘ . e and x 2000 > 0. [Madras B.E. (Civil 1991,
PR R
2733, Maximize oy = 3\‘-’ + 2,0 subject to (he constraints :

> ' v 20
W+ PR <2 and Y10 N2

: .onstraints :
273, Minimize [y, v) = (- )2+ (- 5)? subject 10 the cons o
g, and - (.v|~2)2 + Xy % 3. [Madurai B.E. (Electronics) 1989)
-\ -\ B ¢

. . ract to supp! 60 units at t ‘
2735. A manufacturing firm produces a product A. The firm has the cont pply he end of

. H i 2
the first. second and third months. The cost of producing « units of Ain z\nyt :‘Ol—rl\g:v‘esv f:vigrryyinxg.cz: i";rm can
produce more units of A in any month and carry them to 2 subsequent mon n r the;e 0 mitial Of Rs. 25
per unit is charged for canying units of A from one month to the next. Assuming N e tolz;l o inventory,
determine the number of units of A to be produced in each month so as to minimi st.

[Hint : Minimum (total cost) & = Production cost + Carrying cost "
=x2 X X2+ 40x, + 250 - 60) + 250 * 2 7 0)

subject to the constraints :
Xt Xy 21200 x5t N +xy 2 180 1 2605 xp X X3 = 0

where x. X, and x3 = number of units of product A produced in first, second and third months respectively|

27:6. SADDLE POINT PROBLEMS

In Chapter 17, the saddle point of a payoff matrix was defined. Let (a;) be the payoff matrix for
{WO-person zero-sum game. 1f a,,; denote the payoff minima at i* over the rows and a;,; denote the
payoff minima at j* over the columns, then by Theorem 17-1 the saddle point ;. is given by
Qjrj Z Gjxjx 2 djjw
We now define the saddle points of functions. Let ¢ be a real valued function of several variabls

Let X = (X, ..., X,) and u = (s ves Uy, then for these variables we shall denote the function 0 by
o(x, u) X € R", u € R".

Definition 1 (Saddle point). Let ¢ (x, u) be a function of X € R" and u € R™ The functon
o (x, ) is said to have a saddle point at (x°, °) if and only if
0 (x, u) 2 ¢ (x° u®) 2 ¢ (x, u).
Definition 2 (Saddle value problem). Let x € R", u € R™ The problem of determining sadde
point value ¢ (x°, u) under the constraints x 2 0, and u 2 0, is called a saddle value problem:
We introduce the following notations :

) q)() - q) (xl)‘ u())
Assume that ¢ (x, u) is differentiable partially w.r.t. x and u.
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