
CHAPTER 2 

Elliptic Differential Equations 

2.1 OCCURRENCE OF THE LAPLACE AND POISSON EQUATIONs 

In Chapter 1, we have seen the classification of second order partial differential equation into 

elliptic. parabolic and hyperbolic types. In this chapter we shall consider various properties 
and techniques for solving Laplace and Poisson equations which are elliptic in nature. 

Various physical phenomena are governed by the well known Laplace and Poisson equations. 

A few of them, frequently encountered in applications are: steady heat conduction, seepage 

through porous media, irrotational flow of an ideal fluid, distribution of electrical and magnetic 

potential. torsion of prismatic shaft, bending of prismatic beams, distribution of gravitational 
potential. etc. In the following two sub-sections, we shall give the derivation of Laplace and 
Poisson equations in relation to the most frequently occurring physical situation, namely, the 

gravitational potential. 

2.1.1 Derivation of Laplace Equation 
Consider two particles of masses m and mi situated at Q and P separated by a distanceras 
shown in Fig. 2.1. According to Newton's universal law of gravitation, the magnitude of tne 
force, proportional to the product of their masses and inversely proportional to the square o 
the distance, between them is given by 

mm F G (2.1) 

where G is the gravitational constant. It r represents the vector PQ, assuming unt SS 

O and G =1, the force at due to the mass at P is given by 

F=-4r (2.2) 

106 
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Fig. 2.1 Ilustration of Newton's universal law of gravitation. 

which is called the intensity of the gravitational force. Suppose a particle of unit mass moves 

under the attraction of a particle of mass mj at P from infinity up to Q; then the work done 

by the force F is 

(2.3) 

This is defined as the potential V at Q due to a particle at P and is denoted by 

(2.4) V=-2 

From Eq. (2.2), the intensity of the force at P is 

F=-VV (2.5) 

Now, if we consider a system of particles of masses m, m2,..., m, Which are at distances 

2 T, respectively, then the force of attraction per unit mass at Q due to the system is 

(2.6) 
i=1 

The work done by the force acting on the particle is 

i-V (2.7) 
i=1 
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Therefore. 

vy = -V - ? = 0. 0 
(2.8) i=1 

where 

= div V= + 

is called the Laplace operator. 
In the case of continuous distribution of matter of density p in a volume T, we ha ave 

V (x, y, z)= (ff PE.7.5jr 
(2.9) 

where r= {(*-5)+ (y- n)* +(z-)*]and Q is outside the body. It can be verified that 

(2.10) 

which is called the Laplace equation. 

2.1.2 Derivation of Poisson Equation d 
Consider a closed surface S consisting of particles of masses m, m2,..., n,,. Let Q be any 

point on S. Let 2m, = M be the total mass inside S. and let g1» 82, .... 8n be the gravity 
i=l 

field at Q due to the presence of m, m2...., nm,, respectively within S. AIso, let 8 = 8, ne 

entire gravity field at Q. Then, according to Gauss law, we have 

g dS= -47GM (2.11) 

S 

where M = J pdT, p is the mass density function and r is the volume in which ne 
masses 

are distributed throughout. Since the gravity field is conservative, we have 

(2.12) 
g= VV 

where V is a scalar potential. But the Gauss divergence theorem states that 
(2.13) 

-ff V.gdr 
Also, Eq. (2.11) gives 

(2.14) 

J-dS=4rG ||| pdr 
S 
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Combining Eqs. (2.13) and (2.14), we have 

(V.g+4rGp) dt =0 

implying 

V g=-4rGp = V. VV 

Therefore, 

vy -4rGp (2.15) 

This equation is known as Poisson's equation. 

2.2 BOUNDARY VALUE PROBLEMS (BVPs) 

The function V, whose analytical form we seek for the problems stated in Section 2.1, in 

addition to satisfying the Laplace and Poisson equations in a bounded region R in R', should

also satisfy certain boundary conditions on the boundary R of this region. Such problems 

are referred to as boundary value problems (BVPs) for Laplace and Poisson equations. We 

shall denote the set of all boundary points of IR by oR. By the closure of IR, we mean the 

set of all interior points of R together with its boundary points and is denoted 

by R. Symbolically. R. = RUOR. 

If a function fec (f"belongs to" c), then all its derivatives of order n are continuous. 

If it belongs to c0, then we mean f is continuous. 

There are mainly three types of boundary value problems for Laplace equation. If fec and 

is specified on the boundary R of some finite region R, the problem of determining a 

function v(x, y, 2) such that vy =0 within R and satisfying = f on OR is called the 

boundary value problem of first kind. or the Dirichlet problem. For example, finding the 

Steady state temperature within the region R when no heat sources or sinks are present and 

When the temperature is prescribed on the boundary OR, is a Dirichlet problem. Another 

Cxample would be to find the potential inside the region R when the potential is specified 

On the boundary OR. These two examples correspond to the interior Dirichlet problem. 

Similarly, if fec0and is prescribed on the boundary R of a finite simply 

nected region IR, determining a function y(x. y, z) which satisfies Vy=0 outside IR and 

uch that y = f on OR, is called an exterior Dirichlet problem. For example, determination 
e distribution of the potential outside a body whose surface potential is prescribed, is an 
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problem is to determine the 
function y(X, y, 2) so that v =0 within n 

specified at every point of dR, where ayion 
denotes 

ne normal derivati. 

with von Neumann. The thin IR while dyiðn i 

exterior Dirichlet problem. 
The second type 

ot BVP is associated with 

dylon is 
of the field 

variable y. This problem is called the 
Neumann 

problem. If y is the tem 

the heat flux representing the amount of heat crossing per unit volume ner . 

the normal direction, which is zero 
when insulated. 

1he third type of BVP is cone 

temperature, ylon is 
unit ime alon 

rned wnth 

the determination of the function y(x, y, z) such that V"y =0 within R, whil. 

R 

ile a boundary 

condition of the form dyldn+hy = f, where h20 1s specnea at every point of an 

and h>0n 

This 

is called a mixed BVP or 
Churchill's problem. It we assume Newton's law of. 

heat lost is hy, where y is the temperature 
difference from the surrounding medium an. 

law of cooling, ,the 

a constant depending on the medium. The heat f supplied at a point of the boundary 

conducted into the medium and partly lost by radiation to the surroundings. Eauatin 
these 

amounts, we get the third boundary 
condition. 

2.3 SOME IMPORTANT 
MATHEMATICAL TOOLS 

2.3 

Among the mathematical tools we employ in deriving many important results, the Gas 

divergence theorem plays a vital role, which can be stated as follows: Let OR be a close 

surface in the xyz-space and R denote the bounded region enclosed by dR in which F s 

a vector belonging to c in R and continuous on R. Then 

(2.16 
fF h ds iv-Fdv 

OR R 

where dV is an element of volume, dS is an element of surface area, and î the outward drat 

normal. 

Green's identities which follow from divergence theorem are also useful and they ta 

derived as follows: Let F =fø. where f is a vector function of position and o s a 

function of position. Then, 

Scalar 

R R 

Using the vector identity 

V-(Ep)=f Vo+ØV-f 
we have 

ff tVo dv=f to ds -(fov.f av 
R OR R 
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tf we choose f = V, the above equation yields 

Vo VydV = [[ øn-vy ds -||| 6vy dV (2.17) R R R 

Noting that n Vy 1s the derivative of Y in the direction of î, we introduce the notation 

n-Vy=dyldn 
into Eq. (2.17) to get 

(2.18a) 
OR R 

This equation is known as Green's first identity. Of course, it is assumed that 
both o and y possess continuous second derivatives. 

Interchanging the role of ó and y, we obtain from relation (2.18a) the equation 

J V Voav = |f s-lfwo av (2.18b) 
R OR R 

Now, subtracting Eq. (2.18b) from Eq. (2.18a), we get 

wvy-vv*av = J} | On On 4 (2.19) 
R R 

This is known as Green's second identity. If we set o = in Eq. (2.18a) we get 

(2.20) 
OR R 

which is a special case of Green's first identity. 

2.4 PROPERTIES OF HARMONIC FUNCTIONS 

Solutions of Laplace equation are called harmonic functions which possess a number of 
interesting properties, and they are presented in the following theorems. 

Theorem 2.1 Ifa harmonic function vanishes everywhere on the boundary, then it is identically 
zero everywhere. 

Proof If o is a harmonic function, then V-o=0 in R. Also, if o =0 on OR, we 

shall show that o=0 in R= RUGR. Recalling Green's first identity, i.e., Eq. (2.20), we get 

R R R 
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and using the above facts we have. at once, the relation 

Voav =0 

IR 

satisfied only if Vo=0. Thi Since (Vo) is positive. it follows that the integral will be satisficd onl.. 

o is zero on oR, n implies that ó is a consiant in R. Since o iS Continuous in R and d i 

follows that o = 0 in R. 

then o is a constant Theorem 2.2 If o is a harmonic function in R and døldn = 0 on OR, then 

in IR. 

Proof Using Green's first identity and the data ot the theorem, we arrive a 

fvav=0 
IR 

undary implying Vo=0, i.e.. o is a constant in R. Since the value of o is not known on the boundan 

OR while dpldn =0, it is implied that o is a constant on dR and hence on R 

Theorem 2.3 If the Dirichlet problem for a bounded region has a solution, then it is unique. 

Proof If o and o, are two solutions of the interior Dirichlet problem, then 

V=0 in R: =f on dR 

Vo=0 in R: O2f on dR 

Let y = Ù-. Then 

v - vo =0 in R; 

V=4-02 =f-f =0 on oR 

Therefore. 

V-y=0 in R, W= 0 on dR 
the SOluton 

Now using Theorem 2.1, we obtain = 0 on R, which implies that d, = O2. Henc 

of the Dirichlet problem is unique. 
either 

Theorem 2.4 If the Neumann problem for a bounded region has a solution, 

unique or it differs from one another by a constant only. 

then it is eh 
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Proef Let and o be two distinct solutions of the Neumann problem. Then we have 

o =0 in IR: f on oIR. 
dn 

00 f o =0 in R: on oR 
dn 

tet v=- Then 

v=To -V*o = 0 in IR 

on IR 
dn 

Hence trom Theorem 2.. v is a constant on IR. i.e.. o - ó = constant. Therefore, the solution 

of the Neumann problem is not unique. Thus. the solutions of a certain Neumann problemn 
can differ trom one another by a constant only. 

2.4.1 The Spherical Mean 

Let R be a region bounded by OR and let P(x. 1. =) be any point in R. Also. 

et SP.r) represent a sphere with centre at P and radius r such that it lies entirely within 

the domain R as depicted in Fig. 2.2. Let u be a continuous function in IR. Then the 

spherical mean of u denoted by ii is defined as 

r)= ) ds 
4Tr s(P.r) 

(2.21) 

OIR 

R 
SP. 

Fig. 2.2 Spherical mean. 
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where Q(G.n, 2) is any variable point on the surface of the sphere S(P. 

e 

and IS is the 
of the values 

Taking the 
of u taken over the sphere S(P, r), and hence it is called the spherical mean. 
surface element of integration. For a fixed radius r, the value a(r) is the averao 

origin at P, in terms of spherical polar coordinates, we have 

=x+r sin 6 cos 

= y+r sin 6 sin ø 

=z+r cos 6 

Then, the spherical mean can be written as 

u(x+r sin 6 cos o, y+r sin 6 sin o, z +r cos 6) r sin 0 de do 
4Tr o=0 J0=0 

Also, since u is continuous on S(P, r), u to0 1s a continuous function of r on some interval 

0<rSR, which can be verified as follows: 

Tr)= u(Q) sin 6 de do = " sin de dg = u(Q) 

Now, taking the limit as r> 0, Q>P, we have 

(2.22 Lt r) =u(P) 
r0 

Hence, i+ is continuous in 0SraR. 

2.4.2 Mean Value Theorem for Harmonic Functions 

Theorem 2.5 Let u be harmonic in a region R. Also, let P(x. y, z) be a given po1nt 
and S(P, r) be a sphere with centre at P such that S(P, r) is completely contained in the dua 

of harmonicity of u. Then 

u(P)=kir)= |u(Q) dS 
4Tr 

SP.r) 

Proof Since u is harmonic in R, its spherical mean k(r) is continuous in in R and is 

given by 

)= (Q) dS = G. 7. )r2 sin 6e de do 4Ttr sP.r) 47T 0 J0 
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Theretore. 

du() 
uS, + 1,l, t ur5,) sin e de do dr 

4r Jo Jo (E sin 6 cos ot u, sin 0 sin o +u cos 0) sin 0 de do (2.23) 

Noting that sin & cOs ), Sin & sin Ù and cos 6 are the direction cosines of the normal i on SP. r). 

Vu = iug + jun + kug, i = (in. jn2, knz). 
the expression within the parentheses of the integrand of Eq. (2.23) can be written as Vu n. Thus 

4t2 Vu r sin 0 de do 

u n dS 

du(r) 
dr 

S(P.r) 

S(P.r) 

IIv.Vu V.Vu dV (by divergence theorem) 
V(P.r) 

v'u dV =0 (since u is harmonic) 
4Tr V(P.r) 

Therefore. = 0, implying 7 is constant. du 

dr 

Now the continuity of + at r= 0 gives. from Eq.(2.22), the relation 

2 JuQ) ds 
47tr s(P.r) 

(2.24) ür)=u(P) = 

44.3 Maximum-Minimum Principle and Consequences 

neorem 2.6 Let IR be a region bounded by dR. Also, let u be a function which is 

cont in a closed region R and satisfies the Laplace equation V*u = 0 in the interior 
of 

Further, if u is not constant everywhere on R, then the maximum and minimum values 
must occur only on the boundary OR. 



116 INTRODUCTION To PaRTIAL DIrTERENTIAL EQUATIONS 

possible is the maximur 
Proof Suppose u is a harmonic funclion bul nol constant everywhere on R Ie 

let n aain its maximum value M at some interior point P in R. Since M is the 

h that some of 
of u which is nol a constant, there should exist a sphere S(P, r) about P such that 

value 
the values of u on SP,) must be less than M. But by the mean value property, the 

This 
of u at P is the average of the values of u on S(P, r), and hence il is less than M 

contradicts the assumption that H = M at P. Thus u must be constant over the ons: 

sphere S(P. r). 

Let Q bc any other point inside R which can be connected to P by an arc lying entirel. 

within the domain R. By covering this arc with spheres and using the Heine-Borel theorer 
to choose a finite number of covering spheres and repeating the argument given above. we 
can arri ve at the conclusion that u will have the same constant value at Q as at P. Thus 

rem 

cannot atlain a maximum value al any point inside the region R. Therefore, u can attain its 

maximum value only on the boundary R. A similar argument will lead to the conclusion 

that u can attain its minimum value only on the boundary IR. 

Some important consequences of the maximum-minimum principle are given in the following 

theorems. 

Theorem 2.7 (Stability theorem). The solutions of the Dirichlet problem depend continuously 

on the boundary data. 

Proof Let u and u2 be two solutions of the Dirichlet problem and let fi and f be given 

continuous functions on the boundary dIR such that 

=0 in R: = Si on d'R, 

Vu, = 0 in R: 2 /2 on dR 

Lel = -12. Then, 

Vu= V - V l2 = 0 in IR: u = fi - f on dRR 

By 
Hence, 1 is a solution of the Dirichlet problem with boundary condition u = f- J» on OR. 

Thus 
the max imum-minimum principle, u attains the maximum and minimum values on dK 

l any interior point in R, we shall have, for a given e > 0, 

t<Unin >lnax 

Therelore, 

Iul<e in IR, implying lu - 12 <8 
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Hence. if 

-f2l<e on dR. then u -uz <e on R 
Thus. small changes in the initial data bring about an arbitrarily small change in tne 

solution. This completes the proof of the theorem. 

Theorem 2.8 Let ) be a sequence of functions, each of which is continuous on R and 

harmonic on R. If the sequence ,} converges uniformly on 3R, then it converges uniformly 

on R. 

Proof Since the sequence {f,} converges uniformly on R, for a given E>0, we 

can always find an integer N such that 

J-me for n, m>N 

Hence. from stability theorem, for all n, m> N, it follows immediately that 

n-Jme in R 

Therefore. U.} converges uniformly on R. 

EXAMPLE 2.1 Show that if the two-dimensional Laplace equation vu = 0 is transtormed 

by introducing plane polar coordinates r.& defined by the relations x = r cos 8, y = r sin 6, it 

takes the form 

'u, 1 du do 

dr r dr 

Solution In many practical problems. it is necessary to write the Laplace equation 

in various coordinate systems. For instance. if the boundary of the region dR is a circle. 

then it is natural to use polar coordinates defined by x=r cos 6, y =r sin 6. Therefore. 

tan (y/x) 

sin & cos & 

= cos 6, Sin 6. 

Since 
Sin 

,1,+1g6, =| , cos 6 -u u =u(r, 0) 

Similarly. 
cos & 

4y 1,yt Mgb, =| u, sin6 + ug 
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No i the snd order ieniauvK 

sin & 

Thei 

-

sin 6 s-z, sin 8- 

r nhow that 

sin - Sin & 

sin s 

Baading Eas S and 2 and aquating to zenn, we e 

is the Lapia* aquation in polar vvninates. One can obserne that the LaplaY Auan 

Canesian ardinares has OnTEnt eñients only. w hereas in polar cmrdinates it h 

ents 

EXAUPLE2 Soa hat in c indncal arinats r.B.: detinad by the relanns i =rast 

= he Laniar auation -a = 0 takes the form 

. 
Snaion The Laplacr aquation in Cartasian cxordinates is 

The relaas heraen Canesian and ylindncal wrdinates give 

= tanytL 
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Since 

u =u(r,6, z) 

u, u,r, +u,6, + u,2, = u, cos 6 Sin@) 

cos 6 
u ,r, + u,6, +u, 3, = u, sin 6 + 

r 

, = u,r+u,6, +u, =u 

for the second order derivatives, we find 

= (4,), = (u,), ' +(u)gG, + (4,), z 

sin 6 sin Sin 
= 4, cos -4g cos e+| u, cos 6 - u- 

sin sin 6 
,, cos 6-u, +u cos 6 

sin 6 cos & sin (2.28) 
ya COs 6-u, sin6-uge 

-

Siilarly 

yy ()= (4,),Iy t(uy )g6, + (u,) 

cos 6 cos 6 cOs 

=|u, sin 6+ug sin +| u, sin 6 + g 7 

cos cos 6 
sin 6 

4, Sin 6 + Mgr r 

sin cos 6 (2.29) 
14pp Sin 8+u, cos 6 + upe: 

(2.30) 

Adding Eqs. (2.28)-(2.30). we obtain 

(2.31) Vu = u,r +-, +54ge t U 
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the Show that in spherical polar coordinates r,6, ø defined h 

relations 
EXAMPLE 2.3 

akes he form X=r sin cos , y=r sin 6 sin o, z =r cos 6, the Laplace equations v2ux0 ta 

2, du 1 sin 68sin?e du =0 

r sin e 3e 

Solution In Cartesian coordinates, the Laplace equation is 

0 Vu =ut +y +z 

In spherical coordinates, u = u (r, 0, ), r =x* +y+z*, cos 6 = Jr, tan d = ylt. 

It can be easily verified that 

cos cossÙ cos sinnó sin 6 

r 

COs sin o 
=0 

rsin 6 r sin 6 

Now, 

Sin o 

uT in 6 
cos cos 

Uy u +ugb, + u,Ó, = u, sin & cos +ug 

cos e sin o, p cOsp 
y4y +ugb, tUO, = U, sin 6 sin o + ug 

r Sin 6 

sin 6 
u =u,: tugb, + uO: = u, cos 6 +ug 

For the second order derivatives, 

= (), + (")g6, +(uy)p Ó 

cos 6 cos o 
sin ), 

Sin .(sin 6 cos ó) 
r sin 6, 

u, Sin & cos + ug 

cos 6 cos o sin o cos 6 cos 2 
u, sin 6 cos + uge 

" sin 6 )e r 

sin _ sin 
r sin o rsin , 

cos 6 cos o u, sin 6 cos o+ ug 
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= (sin cos* o)u,r 
cos cos* o sin o 

sin e 

2 sin e cos ê cos* o 2 sin o cos 

2 cos cos o sin o cos cos* o sin o +4g% 
rsin 6 

sin o cos ó cos8 cos o sin o sin ó cos o + u 

r sin e rsin 8 

cos e sin o 2 cos 6 sin 6 cos* o (2.32) 
+14 

rsin 

cos sino y(), r, + (u, )g0, +(4,)0, = | u, sin 6 sin o + u (sin sin o) 
r sin 6 

cos sin o cos o cos sino +4, sin 6 sin o + u4 
r sin 8 8 

1, 
rsin 6 r sin & 

cos & sin o COs cos o 
4, sin 6 sin d +ug 

cos 8 sin upe+in 8 
= (sin 8 sin o)u, + -10 

rsin 66 

2 sin & cos o sin' o cos o sin o 

+4o 

2 cos cos sin o. cos e sino cos o 
r 2 sin +luo +14 

2 sin cos 6 sin o, cos 8 cos* o 

r sin 

sin o cos sin o cos d cos e sin ó cos O 

rsin rsine 

(2.33) 



122 INTRODUCTION 
TO 

PARTIAL 

DIFFERENTIAL 

EQUATIONS 

Similarly. 

(1u ),r + (u. gO, + (u.)%O 
sin & 

Sin 6 

= u, cos 6- Mg = (cos 8) +|u, cos 6- 4g r 

sin 
2 sin cos 6 

= uy COS6-U,8 

cos 6 sin6 sin 
+U 

(2.34 

Adding Eqs. (2.32)2.34). we obtain 

u =Ur sin?e 6 +u*2_in a"o 
= 0 

1 

COs 6 
ug = 0 

which can be rewritten as 

10u =0 (2.35 
sin d2 

2.5 SEPARATION OF VARIABLES 

The method of separation of variables is applicable to a large number of classical linear 

homogeneous equations. The choice of the coordinate system in general depends on the shape 

of the boundary. For example, consider a 
two-dimensional Laplace equation in Cartes1an 

coordinates. 

Vu=ux yy=0 
(2.36 

We assume the solution in the form 

u (x, y) = X(x) Y(y) 

(237 

Substituting in Eq. (2.36), we get 

X"Y+Y"X = 0 

i.e. 

where k is a separation constant. Three cases arise. 
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Let k = p*. p is real. Then 
Case 1 

dX-X =0 d 2Y =0 and 
d2 

dy 

whose solution is given by 

X = cjePA+C2ePA 

and 

Y = C3 cos py +C4 Sin py 

Thus, the solution is 

(2.38) u (x, y) = (CeP"+ C2¬"P") (c3 cos py + C4 sin py) 

Case 11 Let k = 0. Then 

d 0 
d2 

and 

Integrating twice, we get 

X = C5X +C6 
and 

Y = C7y +Cg 

The solution is therefore, 
(2.39) u (x, y) = (c5X + C6) (c7 y +©g) 

Case 1l Let k = -p. Proceeding as in Case I, we obtain 

X = C9 Cos px + Cio sin px 

Y = C1e"+C12e PY 

Hence, the solution in this case is 

(2.40) 
u (x, y) = (C9 cos px + C10 sin px) (¢1eP+C12ePY) 

"d these cases, ;(i =1, 2,..., 12) refer to integration constants, which are calculated by 

using the boundary conditions. 

In 
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2.6 DIRICHLET 
PROBLEM 

FOR A 
RECTANGLE 

The Dirichlet problem for a 
rectangle is defined as 

follows: 

PDE: V'u = 0. 
0SSa, 0S y<b 

u (0, y) =0, ux,0) = f(x) 
(2.41 

BCs: u (r, b) = u(a, y) = 0, 

This is an interior 
Dirichlet problem. 

The general 
solution of the governing Pr 

method of variables separable, is discussed in Section 2.5. The various possibla 

the Laplace equation are given by Eqs. 
(2.38-2.40). 

Of these three solutione 

choose that solution which is consistent with the physical
nature of the problem and th 

boundary 
conditions as depicted in Fig. 2.3. 

, using te 

solutions oi 

given 

U = 0 

X=0 

u = 0| 

U=f 
y = 0 

Fig. 2.3 Dirichlet boundary conditions. 

Consider the solution given by Eq. (2.38): 

u (x. y) = (C,e" + c2e P*) (C3 cos py +C4 Sin py) 

Using the boundary condition: u (0, y) = 0, we get 

(C + C2) (c3 cos py +C4 sin py) = 0 

which means that either cj + C2 = 0 or cz cos py + Ca sin py = 0. But cz cos py t4 

therefore, 

C tC2 = 0 

Again, using the BC; u(a, y) = 0, Eq. (2.38) gives 

(Ce +C2e ) (c3 Cos py + C sin py) =0 

implying thereby 
(243 

Ce+C^e =0 

To determine the constants c1, C2, we have to solve Eqs. (2.42) and (2.43); DC 
the determinant 

Cing homogeneous 
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tot the 
the existence of tence of non-trivial solution, which is not the case. Hence, only the trivial solution 

u(. y) = 0 IS possible. 

we consider the soluion given by Fq. (2.39) u(x, y) = (csx t C6) (Cay + CR), the boundary itis: u (0. y) = u (a, y) = 0 again yicld a trivial solution. Hence, the possible solutions piven an by Eqs. (2.38) and (2.39) are ruled out. Therefore, the only possible solution obtained from Eq. (2.40) is 

(A. V)= (Cy COs px + Co Sin px) (Ce + C2e ) 
sing the BC: u (0, y) = 0, we get c, =0. Also, the other BC: u (a, y) = 0 yields 

C10 SIn pa (cj|e" + CpeP) = 0 
or non-trivial solution, Cjo Cannot be zero, implying sin pa = 0, which is possible if pa = na or 
p ntla. n= 1, 2,3,... Therefore, the possible non-trivial solution after using the superposition principle is 

nT 
I(, V)= sin l4, exp (nT yla) + b, exp (-nt yla)| (2.44) 

NOW, Using the BC: u(N, b)= 0, we gel 

sin 4, exp (ntbla) + b, exp (-nTbla)] = 0 

mplying thereby 

exp (ntbla) + b, exp (-ntbla) = 0 
wich gives 

The 
ion (2.44) nov becomes 

exp (ntbla) 
n = 1, 2, ..., o 

exp(-nthla)

t(, V)= 2a,, sin (nTxla)| exp {n7 (y -b)/a} -

exp (-nt(y -b)la} 
2 exp (-ntbla) 

20 sin (ntvla) sin h {na(y - b)la} 

n=1 CX (-nTbha) 



126 INTRODUCTION TO PARTIAL 
DIFFERENTIAL 

EQUATIONS 

form 
Let 2a, Texp (-nrba)] = A,. Then the solution can be written in the fo 

u(a. y) = 4, sin (nTxla) sinh {nz(y -b)la 

get 
Finally. using the non-homogeneous 

boundary 
condition: u (x, 0) = f(x). 

A sin (nTxla) sinh (-nTbla) = f(x) 

n=l 

which is a half-range Fourier series. Therefore. 

L4 4, sinh (=nTbla) == )sin (nTxla) dr 
a 

Thus. the required solution for the given Dirichlet problem is 

2 u(x. y)= > 4, sin (nTxla) sinh {nz(y -b}la) 
n=l 

where 

f) sin (ntxla)dr 
a sinh (-ntbla) 0 

2.7 THE NEUMANN PROBLEM FOR A RECTANGLE 

The Neumann problem for a rectangle is defined as follows: 

PDE: Vu=0. 0sxSa. 0sysb 
4 

BCs: u, (0. y) = u, (a, y) = 0, u, (x, 0) = 0, u, x, b) = flx) 

The general solution of the Laplace equation using the method of variables separ 

given in Section 2.5. and is found to be 

u(x. y) = (G cos px + c2 sin px) (c3eP +Cae ) 
The BC: u, (0. y) =0 gives 

0=c2p(c3eP" + c4eP 
implying c = 0. Therefore. 

u(x. y) = cj cos px(czeP" +C�eP) 
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