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CHAPTER 2

Elliptic pifferential Equations

—

2.1 OCCURRENCE OF THE LAPLACE AND POISSON EQUATIONS

In Chapter 1. we have seen the classification of second order partial differentigl equation into
elliptic. parabolic and hyperbolic types. In this chapter we shall c0n51der' various properties
and techniques for solving Laplace and Poisson equations which are elliptic in nature,

Various physical phenomena are governed by the well known Laplace and Poisson equations.
A few of them. frequently encountered in applications are: steady heat conduction, seepage
through porous media, irrotational flow of an ideal fluid, distribution of electrical and magnetic
potential, torsion of prismatic shaft, bending of prismatic beams, distribution of gravitational
potential, etc. In the following two sub-sections, we shall give the derivation of Laplace and
Poisson equations in relation to the most frequently occurring physical situation, namely, the
gravitational potential.

2.1.1 Derivation of Laplace Equation

Consider two particles of masses m and m, situated at Q and P separated by a distance r a
shown in Fig. 2.1. According to Newton’s universal law of gravitation, the magnitude of the

force, proportional to the product of their masses and inversely proportional to the square of
the distance, between them is given by

F =™ Q2.

r

where G is the gravitational constant. It represents the vector p@ assuming unit mass at
Q and G =1, the force at Q due to the mass at P is given b
y

r3 r
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? Q(m)

X

Fig. 2.1 lllustration of Newton’s universal law of gravitation.

which is called the intensity of the gravitational force. Suppose a particle of unit mass moves
under the attraction of a particle of mass m, at P from infinity up to Q; then the work done

by the force F is
IFF-dr=J-rV(ﬁ)-dr=ﬂ (2.3)
o o r r

This is defined as the potential V at Q due to a particle at P and is denoted by
"y

V=—-o> (2.4)

-
From Eq. (2.2), the intensity of the force at P is

F=-VV (2.5)

Now, if we consider a system of particles of masses my,m,,...,my which are at distances

fsh, ..., r, Tespectively, then the force of attraction per unit mass at Q due to the system 1is
2 m; 2 m;

F= E VT' =vy — (2.6)

i=1 ! i=1 hi

The work done by the force acting on the particle is

J"F-dr:iTL':-v (2.7)
e i=1 %
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Therefore,

where

?

V2=divV=——+—s+—5
dx~  dy° A"

is called the Laplace operator.
In the case of continuous distribution of matter of density p in a volume 7, ye have

Vix,y,2)= J.J-J. B(;“I_”‘i‘{r (29
T

where r={(x=&)> +(v=1)" +(z - )22 and Q is outside the body. It can be verified thy

ViV =0 | (2.10)
which 1s called the Laplace equation.

2.1.2 Derivation of Poisson Equation '

Consider a closed surface § consisting of particles of masses my, m,,...,m,. Let Q be any
n
point on S. Let £ m; =M be the total mass inside S. and let g,, g5, ..., g, be the gravily
i=1 ‘ "
ficld at Q due to the presence of my, ms, ..., m,, respectively within S. Also, let .El g; =g the
1=

entire gravity field at Q. Then, according to Gauss law, we have

” g-dS =-4xGM 21D
s

. . . . 1 . . asses
where M =ﬂj pdt,p is the mass density function and 7 is the volume in which the ma
T
are distributed throughout. Since the gravity field is conservative, we have

R (2.12)

where V is a scalar potential. But the Gauss divergence theorem states that

[ s [[] v-eas
S ,

Also. Eq. (2.11) gives

oo
g
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Egs. (2.13) and (2.14), we have

Combining
”I (V-g+4nGp)dr =0
T
an]'\lng
V.g=—4nGp=V-VV
Therefore.

This equation is known as Poisson’s equation.

2.2 BOUNDARY VALUE PROBLEMS (BVPs)

The function V, whose analytical form we seek for the problems stated in Section 2.1. in
addition to satisfying the Laplace and Poisson equations in a bounded region IR in R?, should
also satisfy certain boundary conditions on the boundary JIR of this region. Such problems
are referred to as boundary value problems (BVPs) for Laplace and Poisson equations. We
shall denote the set of all boundary points of IR by JIR. By the closure of IR, we mean the

set of all interior points of IR together with its boundary points and is denoted

by R. Symbolically, R.= RUJIR.

If a function f € ) (f “belongs to” ¢'™), then all its derivatives of order n are continuous.
If it belongs to ¢!, then we mean f is continuous.

0

There are mainly three types of boundary value problems for Laplace equation. If f € 9 and

Is specified on the boundary JIR of some finite region IR, the problem of determining a
function w(x, y, z) such that V2W=0 within IR and satisfying = f on JIR is called the
boundary value problem of first kind, or the Dirichlet problem. For example, finding the

Steady state temperature within the region IR when no heat sources or sinks are present and
When the temperature is prescribed on the boundary JIR, is a Dirichlet problem. Another

©Xample would be to find the potential inside the region IR when the potential is specified
on the boundary JIR. These two examples correspond to the interior Dirichlet problem.

Similarly, if feC(O) and is prescribed on the boundary JIR of a finite simply

o : . : . . :
Nnected region IR, determining a function y/(x, y, z) which satisfies sz/=0 outside IR and

iS Su . . . . .
o hCh that = £ on JIR, is called an exterior Dirichlet problem. For example, determination
¢ distribution of the potential outside a body whose surface potential is prescribed, is an

.

e A
i
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oblem. The second type of BVP is associated with vop Neun
; "

e the function ¥

¢ of IR, where Ayl dn

ior Dirichlet pr
exterior Dirl P (X, s 7) so that sz/ =0 within R whil Th
J e

roblem 1is tO determin
P denotes the normal derivatiye
¢ of |

mann problem. If v is the temperatur
t crossing per unit volume per ypj l‘i ]
Jated. The third type of BVP s C(mc(:;“ o
neq Wi
ith

specified at every poin

variable ¥. This problem 18 called the Neu

the heat flux representing
the normal direction, whic

the amount of hea
h is zero when 1nsu

2. _ _
jon ¥ (X, ¥ z) such that V- =0 within R, while , b(’”ﬂdary

f, where 120 is specified at every point of .
m. If we assume Newton’s law of coill hi
&, the

the determination of the funct

condition of the form dylon +hy =

is called a mixed BVP or Churchill’s proble .
heat lost is hy, where ¥ is the temperature difference from the surrounding medium ang |, "
’ §

a constant depending on the medium. The heat f su_pp}ied at a point of th.e boundary g pari
conducted into the medium and partly lost by radiation (o the surroundings. Equating lhesi

amounts, we get the third boundary condition.

2.3 SOME IMPORTANT MATHEMATICAL TOOLS

Among the mathematical tools we employ in deriving many important results, the Gau

divergence theorem plays a vital role, which can be stated as follows: Let JIR be a clog
surface in the xyz-space and IR denote the bounded region enclosed by JIR in which Fis
a vector belonging to <D in R and continuous on IR. Then

” F-ﬁdS:j”Vde 0

IR R

where dV is an element of volume, dS§ is an element of surface area, and /i the outward di¥?
normal.

Green’s identities which follow from divergence theorem are also useful and they can ¥

derived as follows: Let F=fg, where f is a vector function of position. and ¢ 15 st
function of position. Then,

[[[v-aprav=([ 7tpas
& IR

Using the vector identity

V-(E¢)=f-Vp+ ¢V £

we have
I.Ljf-v¢dV=££ﬁ.f¢dS_J'.Lj oV £ dV

4



ELLIPTIC DIFFERENTIAL EQUATIONS 111

If we choose f =V, the above equation yields

.[.!V""VV’dV:!i[¢ﬁ-vwdS—I£j¢v2de (2.17)

Noting that -V is the derivative of Y in the direction of /i, we introduce the notation

it-Vy = dyidn
into Eq. (2.17) to get

Ig Vo-Vyav = y (D%%dS ~[[[ ov2y av (2.18a)
R R

This equation is known as Green’s first identity. Of course, it is assumed that
both ¢ and ¥ possess continuous second derivatives.

Interchanging the role of ¢ and y, we obtain from relation (2.18a) the equation

[[[ve-voav- 1] wg—idS—”J. WV dv (2.18b)
R IR R
Now, subtracting Eq. (2.18b) from Eq. (2.18a), we get
III (¢V2V/_ WV2¢)dV = II (¢% - V/g%) ds (2.19)
R IR

This is known as Green’s second identity. If we set ¢=v in Eq. (2.182) we get

Ig (V9)*av = J!; ¢%d5 -Iy oV2p av (2.20)

which is a special case of Green’s first identity.

24 PROPERTIES OF HARMONIC FUNCTIONS

Solutions of Laplace equation are called harmonic functions which possess a number of
intcresting properties, and they are presented in the following theorems.

Theorem 2.1 If a harmonic function vanishes everywhere on the boundary, then it is identically
Zero everywhere.

Proof 1If ¢ is a harmonic fUl{CtiOH, then V2¢=0in R. Also, if $=0 on JIR, we

shall show that #=0in R = RU JR. Recalling Green’s first identity, i.e., Eq. (2.20), we get

2 v 2 V20 d
Iﬂ(w) av !lgaands jﬂ 6 dv
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at once, the relation

”<vwmvu)

IR

and using the above facts we have,

i follows that the integral will be satisfied only if Ve
P04y

Since (Vq’))“\ is positive,
I ' i 2 Iy
IR. Since ¢ is conlinuous in IR and ¢

at ¢ 1s @ consiant 1mn s ero o .
it

implies th
follows that ¢ =0 in R.

Theorem 2.2 1f ¢ isa harmonic function in R and J¢/dn =0 on JIR, then b s a
ISty

in R,
Green's first identity and the data of the theorem, we arrive y

£U<V¢FJV=0
IR

implying V@ =0, i.e., ¢ 1sa constant in IR. Since the value of ¢ is not known on the bounda

Proof Using

JR while d¢/dn =0, it is implied that ¢ is a constant on ZIR and hence on R
Theorem 2.3 If the Dirichlet problem for a bounded region has a solution, then it is unigue.
Proof 1f ¢, and ¢, are two solutions of the interior Dirichlet problem, then
Vg =0 in RR: ¢ =f ondR
V39, =0 in IR; ¢,=f ondR
Let y =@ —¢,. Then
Vip =V "V2¢2 =0 in R;
v=h-¢=f-f=0 ondR

Therefore,

Viy=0in R, w=0 ondR
. o
Now using Theorem 2.1, we obtain 7 =0 on E which implies that ¢, = ¢ Hence: the solun”
of the Dirichlet problem is unique. g
. e

Theorem 2.4 If the Neumann problem f. ' s

. c e or ) then
unique or it differs from one another by a :oﬁgtue::l(tiegngigmn has a soluton

2



rot W= —0s. Then

Hence from Theorem 2.
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proof  Let @ and &, be two distinet solutions of the Neumann problem. Then we have

V- =0 n R; . 8 7 on JRR.
on
> . a
V-o-=0 in R: f): =7 on R
an )
\—:(,fz'\_:o1 —T:o: =0 m R
aur Vel 30
- ——==0 on ZIR

2. wosaconstanton [R. e ¢ — @, =constant. Therefore. the solution

-

+ the Neumann problem is not unique. Thus. the solutions of a certain Neumann problem

iffer from one another by a constant only.

N e

2.4.1 The Spherical Mean

ler R be a region bounded by JIR and let P(x. ).

. )

t S(P.r) repre:

the domain IR

ﬁha
SPREnCA

as depicted in Fig.
1 mean of 1 denoted by @ is defined as

-} be any point in IR. Also.

esent a sphere with centre at P and radius r such that it lies entirely within

22 Let i be a continuous function in IR. Then the

ur)= u(Q) ds

Q'(Pl\

:
,.//_\_BIR
O &N <)
AT
&/ R
Q‘p ) ’_/
E p/
O -

Fig. 2.2 Spherical mean.
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point on the surface of the sphere S(P,r) apq

S A8 sy,
xed radius r, the value u(r) is the average of the vy '
dley |

where Q(£,7.¢) is any variable
For a fi
and henc
lar coordinates, W€ have

surface element of integration. | |
of 1 taken over the sphere S(P.7). e it is called the spherical mean, Taking
origin at P, in terms of sphcricul po
§:A’+rsinﬂcos¢
n=y+rsin @ sin ¢

{=z+rc059

Then, the spherical mean can be written as

2 n . . o 2 .
w(r) = 1 J'”J‘ “(x_l_rsingcosq),y+rsm9mn¢.z+rc0&.9)r sin 6 df dg
4yt J9=076=0

Also. since u is continuous on S(P,r),u too is a continuous function of r on some intervy|

0 <r £ R, which can be verified as follows:

u(r)= —];J-J‘ u(Q)sin@dode¢ = %4(—5—) '[(;” J: sin @ d0do=u(Q)

4

Now, taking the limit as r — 0, Q — P, we have

Lt u(r)y=u(P)

r—0

Hence. j7 is continuous in 0<r < R.

2.4.2 Mean Value Theorem for Harmonic Functions

Theorem 2.5 Let 1 be harmonic in a region R. Also, let P(x, y, z) be a given point in R
and S(P, r) be a sphere with centre at P such that S(P, r) is completely contained in the domad
of harmonicity of u. Then

_ 1
u(P)=u(r)y=—— :
! P J-_[ u(Q)ds

S(P,r
Proof Since u is harmonic in IR, its spherical mean ii(r) is continuous in R and 1
given by ; :
— | |
u(r)= = .” 1 (Q) dS = n on '
& e 2 .
arr” o 4rr? Jo j() u(&,n,¢)r" sin @ d6 do
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rheretore.

du(ry J‘ e
dr ax Jo -[() (g, + iy Y ueg ) sin g do de

" I() In (g sin @ coy o+ , sin @ sin o+ Uy cos@)sin @ dO@ deg (2.23)

Noting that s 0 cos @, sin & sin ¢ and Cos € are the direction cosines of the normal /i on
SPL .

Viu=iu.: j , ~ . .
e + Juy + kug n=(iny, jny, kny),
the expression within the parentheses of the

integrand of Eq. (2.23) can be written as Vi - . Thus

du(r) 1 _
dr a3 I Vi ir? sin @ d6 de¢
SP.)
1 R
=—— |[[ Vuids
T 3p
l cprp .
= — V-Vu dV (by divergence theorem)
AR
= ] = ([ Viudv =0 (since u is harmonic)
drr- VP

du . o et
Therefore, ~— =0, implying i is constant.
dr

R toae 2779 ~ relaty
Now the continuity of i at r=0 gives, from Eq.(2.22), the relation

| :
u(r)=u(P)=——-s “. u(Q) ds

(2.24)
4r S(P.r)

243 Maximum-Minimum Principle and Consequences

Theorem 3 ¢ Let IR be a region bounded by JIR. Also, let u be a function which is

“ontinuous in 3 closed region R and satisfies the e Laplace equation Vi =0 in the interior
of R Further. if 1 is not constant everywhere on IR, then the maximum and minimum values
of U musg occur Only on the boullddly 591R

e
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4 harmonic function but not constant everywhere on R it
. 044

. . ) . o IhIC
interior point P in IR, Since M is the o’
| b lh(, me(I[

nUm

Proof  Supposc u is
let o attain its maximum value M at some
. . LI . . iy 2 .
of 1 which is not a constant, there should exist a sphere S(P, r) about P such thy 50m
' € of

the values of won S(P,r) must be less than M. But by the mean value Property, the
¢ UC

of u at P is the average of the values ol i on S(P,r), and hence it is less than y Th
: N
contradicts the assumption that «=M atP. Thus « must be constant over the eNtire

sphere S(P.r).
wside IR which can be connected to P by an arc lying entircly

I.et O be any other point i
eres and using the Heine-Borel theorey,

within the domain IR. By covering this arc with sph
(0 choose a finite number of covering spheres and repeating the argument given above, y,

conclusion that « will have the same constant value at Q as at P. Thys

can arrive at the
the region IR. Therefore, u can attain i

cannot attain a maximum value at any point inside

maximum value only on the boundary ZIR. A similar argument will lead to the conclusion

(hat & can attain its minimum value only on the boundary JIR.
Some important consequences of the maximum-minimum principle are given in the following

theorems.

Theorem 2.7 (Stability thcorem). The solutions of the Dirichlet problem depend continuously

on the boundary data.
Proof Let u; and iy be two solutions of the Dirichlet problem and let f; and f; be given

continuous functions on the boundary IR such that

Vi =0 in Ri 1w =f ondIR,
Vi, =0 in R; u,=f> ondR

let u =, —us. Then,

on /IR

V=V Vi, =0 in R; u=f - f
__/‘3 on JIR. B)

Hence. 1 is a solution of the Dirichlet problem with boundary condition « = f,

R, Thus

(he maximum-minimum principle, «cattains the maximum and minimum values on J

at any interior point in IR, we shall have, Tor a given £ >0,

&< ”llllll == ”lll:l\

< &

Therelore,
lul<e in IR, implying lt) —us 1< €
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ot
Hc‘nL\. 1

N =fl<e ondR. then i —uyl<e on R

Thns. Sl?l‘alﬂl change:R In the initial data bring about an arbitrarily small change in the
wolution. This completes the proof of the theorem.

5 , o
Theorem 2.8 Let {f,} be a sequence of functions. each of which is continuous on R and

harmonic on R If the sequence {f,} converges uniformly on JRR. then it converges uniformly

on R

Proof Since the sequence {f,} converges uniformly on JR. for a given £>0. we
can always find an integer N such that

fy=f,l<€e for n.m>N

Hence. from stability theorem. for all #n,m> N. it follows immediately that
\fi—f <€ m R

Therefore. {f,} converges uniformly on IR.

EXAMPLE 2.1 Show that if the two-dimensional Laplace equation V2u =0 is transformed

by introducing plane polar coordinates r. & defined by the relations x =7 cos 8.yv=rsmé. 1
takes the form

*u 1 du 1 9%
it A Wil S =

bl + 2 2 0
o rar 1o

Solution  In many practical problems. it is necessary to write the Laplace equation
in various coordinate systems. For instance. if the boundary of the region /IR is a circle.

then it is natural to use polar coordinates defined by x=rcos 8. y =r sin §. Therefore.

b bl ) —
r-=x"+)". 6 = tan |(4" x)
. sin & cos @
r, =cos 8. r, =sin 6. 6, =- ’ 6, =
X - 4 r
since
( sin@ !
—ur +usd = u cosb-u
u=u(r.6) U = Uple TR L T ¢y
Similarly.
cos @’

u, =i,ry + 1gh, =| u, sin 8 +1ig



118 INTRODUCTION TO Fasmiay DerFeReNTIAL EQUATIONS
Now for the socond onder demvanves.
sn &’
s %, oo @ —xe oo wooosf-up,— = s
- s =4

B
= r
= »

N

oo @

Stk uan &

sin & cos & _siné

v A — & — W one
o [ ¥, SNC W .
= ey - B

’

|
']
1.

Ssmalarh, e can show IdEl

cos 2 o8
X, = u,SmO+u_ — g2 sn &
' -

. oos @ sinf " cosé .
n ZQ""?L O ﬁ"‘k_l.' —_— g i
< - - r

=3 T DR 3 R 3 s = *n -
By aadms BEgs (225 and (2.20) and &guanng 0 IoTo.
l.."‘i,.!-——l.."—;-“—‘"“:ﬂ ——

w N 3

at the Laplace aguinx

only. whereas in polar coordinames. 138

= 3 . = | - e s
shich s the Leplace agueson in polar coondinates. One can observe
BD JOOTEnERSS DE JORSIED QOSTIWRDR

= CEreaen JOONEE

i
!

vEREh: JOSInacmIs.
R X=T :“Sf

coordinates ro 8. - defined by the refsbons 3

~at

EXAMPLE 22> Shoe the m ovimdncal
on Voa =0 takes the form

L. . -
= . I LEDIAST gualNT

S
=F e . o

- ~ ~
~ - - -~
B 1 = } B ot I~

< - 2 4" i < i <« \

L e i -_ =

< ~ — =\

. - s
N e s am - \ 2P .
L 2 N3N QQOTIINEISS 1S

C . ¥ 3 = B
Salapex  The Laplace aguabon m (aress

- - -
- - " -
- - ¢ o= oW
K = - - - N
N S - =
-~ = o S
I A £ v
™ T ."'q:\"-" S RTmAC 2T pme s oy Tem e an ] 3 e ;
5!!-‘.- i MONRS OWCLWMTUE U 2TTONIET &3 VORI COONNGIDISS anye
- - -
FT =y =" & — rem Yl - .
- "-—-ﬂ LI N - — a




>

ELLIPTIC DIFFERENTIAL EQUATIONS 119
since

w=u(r0.:)

. ) sin &
W, =ur +ul +u.z =u cosf— uﬁ[ )
’

o . cos @
W= 1,8, +uz =u, sinf +u, )

;
wo=u,r +u,l tu =u

for the second order derivatives, we find

=), =), r +(1 gl +(u ).z,

= l 1, cos @ —uy Lsm ¢ ﬂ cos 6 + [u,- cos @ —ug ( Ll ﬂ (— o 9)
r Ar . r 9 r

sin @ sin @
- [u,r cos @ —1,g— tlUg— }cus 6
r r
. sin & cos @ sin @
+L1:,.H cos @ —u, sin 6 — gy — g )L— } - (2.28)
r r r

Stmilarly

i =)y = )Ty Ty )g Oy + Uty Ty

AR
i cos 8| . . cos 8| (cos@
=| . sin @ +ug 1 sin 6 + i:u,. sin @ + ug
re r 9
Ar

r

(S

cOs g cOos %) .
sin @

= § S — U
=| u,, sn 6+ uy, . 0 2
_ cos 6 sin 8\ cos 6
+ (um sin @ + 1, COS 6+ lige ~—;— —lig : “ ; ) (2.29
(2.30)
“:..' = “.':
Adding Egs. (2.28)-(2.30), we obtain

a 1 ] 5

K-“::u“_+;u,»+—?ut;9 +H:: (..-*l)
r
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EXAMPLE 2.3 Show that in spherical

polar coordinates r, 6. ¢ defined by 1,
| © rel
y = rsin @ sin ¢, 2 =7 cos 6. the Laplace equations V2 = takeg

atinnS

the f[)rm

x=rsin@ cosg,

' 1 J%u
i(’_3@)+_1 i(sinb‘?fﬂ}"—. S O
ar dr ) sin@ J6 20 ) sin” 8 J¢

Solution In Cartesian coordinates, the Laplace equation is

2, = =
V=g, tity, Hi 0

. : 2 2, .2,.2 .
In spherical coordinates, u=u(r.8.9). 1~ =X"+) +27, cos @ =2/r, tan ¢ = y/x.

It can be easily verified that

cos @ cos cos @ sin ¢ sin @
9‘_:_—___@, 6‘. = — 9: = —
. r - r r
sin @ _cos@ 6. =0
o rsin@’ Y psin@ .
Now,
) cos @ cos sin
Uy =u,r, +ugh +updy =u, sin @ cos @ +uy cos@cosd Up — ¢
' ’ ' ’ F rsin @

cos @ sin ¢ + Uy COS @

wy =u,r, gy +uy@, =u, sin @ sin @ +uy ey

sin &
w, =u,r. +ugl. +uyd. =u,cos 8 +uy (— - J

For the second order derivatives,

U =), r + (1 )gly +(uy) 0P

= (u,‘ sin & cos @ + ug 0sbcosd Uy SI{I ¢9J -(sin & cos @)
r r sin

+ (ur sin € cos @ + ug
-

cos @ cos ¢ sin ¢ (M)
4 6

+(u,.sin9cos¢»+u9w_u sin¢) (___S_ID_Q_J
9

r rsin @ rsin @

b e
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2 ] Y 5
i 2 2 208" 8 cos” o 8
= (sin~ 8 cos” P, + — 0 cos” ¢ sm- ¢

+ Lu,. sin @ sin @ +uy

+ Lu, sin @ sin @ + 1y

.2 -
=(sin~ @sin~ P, +

Ty T T Hge e

Y rosinT @
) o3 >
281 & cos 8 cos™ @

S 2sin @ cos @
— I+ u | = ol o
r r |

rosin @ r r

[ Y ~rne i o i 5 2 N
_=cos 6 cos ¢ sin ¢ cos"@cos" ¢ sinT @
t+u, 2 Wi nsBi, 4

> .- T

sin @ cos @ . cosTdcos@singd  sin @ cos (,‘)1
~ . ~ T — :’
r rosin” @ rosin” o

b

. Y . )
cos@sin™ @ 2cos@sin B cos” 01
“
rosin @ re

: : cos @ sin @ Cos @ : .
Uy =), r + (g0 + (1, )y 0 = Lu,. sSn@snQ+uy —————+u, ) (sin & sin @)

r Y sin

T

r Yrsing

cos @sin @ oy, SOs o ] cos ¢ sin @
o ?

cos @ sin @ Cos @ Cos @
+u

rsin@ ! rsin e
[
3 ) 2
cos~@sin~ o Cos™ @
Hog + 5 lgp
r- rosin” @

. . 2 - ~ o /
2sin @ cos@sin” @ 2cos @ sin @
tUpg| —

r

. o Y . < 4
2sin@cos@sin” @ . cos @ cos™ 0

3 . bl :
¢ sin @ cos~@sin~ @ cosT o
+u, +
e

r r

-

rosin @

2 .
sSin@cos @ sin@cos¢  cos”@sin O cos o

3

3 v .02
resin- @ r-sin- @

|
L)
rJ

[
>y
‘s
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Similarly.
w.. =), - )g 8-+ )o 9:
1 Sin 9 Sin 9 '
sin & . cos @ —u J .-(_
=|u, cns(?-uﬂ-/) (L059)+(\”r o ), | .
\ r
. : 29
5 2 sin @ €OS 17 u sin
—u,, cos 8- /r 08— 2
sin” 6 cos @ sin &
+ U, +u9 ——/2 (2}.1
r r
Adding Eqgs. (2.32)~(2.34). we obtain
B 1 + 2 + COSG " O
Vou=u, +—5Uu +—F> U —u : o =
Tyt %2 sin26’ 6" .77 rPsin
which can be rewritten as
2
1 5 . Ju 1 a 7]
V2u=_‘?_(r2§ﬁj+—_-—-—’[sm9——— +—5 —= (235
ar Jdr ) sin@ d0 26 ) sin“8 Jd¢

2.5 SEPARATION OF VARIABLES

e number of classical linear
ds on the shax
n in Cartesiat

plicable to 2 larg
dinate system in general depen
dimensional Laplace equatio

The method of separation of variables is ap
homogeneous equations. The choice of the coor
of the boundary. For example, consider a two-
coordinates. A 20T
Viu=u, +u, =0 (230
XX yy

ume the solution in the form
u(x )= X0 Y () (2

We ass

Substituting in Eq. (2.36), we get
X"Y+Y"’X=0

i.e.
X” YI/
N k

X Y

where k is a separation constant. Three cases arise




g
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case 1 Let k= pz. p is real. Then

d*X p
P -p°X=0 and ; +p2Y=O

y*
whose solution is given by

X =ceP" +ce ™

and
Y = C3 COS py +C4 sin py
Thus. the solution is

u(x, y)=(c;e?™ + c,e ") (c3 cos py + ¢y sin py)

Case I Let k =0. Then

L:xf =0 and %;—g— =0
Integrating twice, we get
X =c5x+cq
and
Y=c;y+tcg

The solution is therefore,
u(x, y)=(csx+cg) (c7y +Cg)

Case III Let k=— p2. Proceeding as in Case I, we obtain

X =g cOs px+cg sin px

Hence, the solution in this case is

u (x, y) = (C9 CcOs px + ClO Sil‘l pX) (Cl 1€P'y + (‘12€_p'\v)

In all these cases, ¢;(i=1,2,..
using the boundary conditions.

123

(2.38)

(2.39)

(2.40)

..12) refer to integration constants, which are calculated by
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M FOR A RECTANGLE

le 18 defined as follows:

2.6 DIRICHLET PROBLE
The Dirichlet problem for a rectang
PDE: Vi
w(x.b) =1l v

g<y=da, 0<y<h

= (.
u (0, v)=0, u(x,0)= f(x

. (24
general solution of the governing PDE,
i i ; . . - USIp
of variables sepd dn Section %5 The various pOS.Mble 50]u[j0nn e
are given by Eqgs. (2.38-2.40). Of these three solutions, we ha-w’
h is consistent with the physical nature of the problem and the ;ﬂ to
Vep

d in Fig. 2.3.

BCs: ) =0,
This is an interior Dirichlet problem. The |
method \rable. is discusse
the Laplace equation
choose that solution whic
houndary conditions as depicte

v

u=fx) X
0 y=0
Fig. 2.3 Dirichlet boundary conditions.

en by Eq. (2.38):

Consider the solution giv
~PYY (¢4 cos py + €4 SiD py)

u(x, y)=(ce™ +cze

Using the boundary condition: u(0, y)=0, we get

(¢ +¢p) (c3c08 py+Cy sin py)=0

- py L
y = 0. But ¢3 €08 py + ¢80 py

which means that either ¢ +¢; =0 or ¢3€08 py +cysin p

therefore.
(1.4.‘
¢ +c =0
Again, using the BC; u(a, y) =0, Eq. (2.38) gives
. [I[J . -
(¢, +cye” ") (c3cos py + ¢y sin py) = 0
implying thereby
o+
¢ P +(,2e—up =0 eOl’S'
mogt!

); being ho

To determine the constants ¢y, ¢
B 1 629 we have 1 5 ]
T etemminant o solve Eqs. (2.42) and (2.43
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! |
=0

{‘”I’ 7 p

ptence ol non-tnvial solution, which is noy the ¢

jor the €A , “ase. Hence, only the trivial solution
() 15 possible.

”“‘ V)

¢ consider the solution given by |, (2.3¢ |
I we o y 1. (2.39) nix, y) (Cs5x +¢) (c7y+¢q), the boundary
cnditions: w(Oov) =ula, y) =0 apain yield a trivial solution. Hence, the possible solutions
given by Lags. (2.38) and (2.39) qye ruled our, Therefore.

. the only possible solution obtained
jom L. (2.40) s

Hix, v) (('q COS px + 1o sin I")("H(',n *'('I_ﬁ_(' /;r)

ing the BC: 1 (0, v) =0, we gel ¢y = 0. Also, the other BC: ula, y)=0 yiclds
Clo SN pa (cp el e My =

fornon-trivial solution, ¢, cannot be sero mmplying sin pa =0, which is possible if pa = nz or
penmla, n=1,2.3

principle iy

v Therefore, the possible non-trivial solution after using the superposition

o

v, v) E sin " [et,, exp (nzr yvia) + b, exp (—nrx yla)| (2.44)
a
nel

Now, Using the BC: ¢ D) =0, we el

sin s la, exp (nzbla) + b, exp (—nxbla)] =0

«

"lying therchy

a, exp (nabla) + b, exp (—nmbla) =0
Whig), Sives

exp (nabla) =12 oo
I) = "(’“ e =1L
n CxXp (--Hﬂ'h/(”
Mhe
ASIITTE
Hhon (2.44) now becomes

exp {nr (y —b)la} —exp {—nz(y —b)la)

MY, y) = 2 2a, sin ﬂ”’?“f‘i?[ 5 }

exp (—nrhla)
n=l

2 2“” —sin (naxfaysin i {nz(y — b)la)

o exp (—nmwbha)
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n be written in the fo
Then the solution ¢a m
Lat \-:, 1‘\{“\"‘""}"& NER: =
WX, V)= 2 A, sin (nrx/a) sinh {(n7(y - b)a)
. n=1
- condition: u(x.0) =
Finallv. using the non homogeneous poundary ¢ ( F2). we «
2 A_sin (nrx/a) sinh (—nabla) = f(x)

~hich is 2 half-range Fourier semes. Therefore.
2 a .
4_sinh (-nxbla)=— j‘ f(x) sin (nxia) dx
As P
lution for the given Dirichlet problem 1s

the required s0

Thus. t
Y 4, sin (n7xla) sinh {n7 (v — b)/a}

u(x. v)=
n=1

I f(x) sin (nx/a) dx

]
A ~ g sinh (- me/a)

2.7 THE NEUMANN PROBLEM FOR A RECTANGLE

The Neumann problem for a rectangle 1is defined as follows

0<x<a. 0<y<bh
uy(x,b)=f(x)

PDE: V-u=0.
BCs: u (0. v)=u,(a.y)=0, u, (x,0)=0,

-7y

h
(L=

The general solution of the Laplace equation using the method of variables separe

given in Section 2.5. and is found to be
u(x.¥)=(c; cos px+c, sin px) (c3eP +cye

The BC: u, (0. y)=0 gives
O=cyplcze™ +c,e™)

implving ¢, = 0. Therefore,
ulx.v)=c cos px(cie? +cse™)




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

