
CHAPTER 3 

Parabolic Differential Equations 

3.1 OCCURRENCE OF THE DIFFUSION EQUATION 

The diffusion phenomena such as conduction of heat in solids and diffusion of vorticity in 

the case of viscous fluid flow past a body are governed by a partial differential equation of 

parabolie type. For example, the flow of heat in a conducting medium is governed by the 

parabolic equation 
OT 

pC div (KVT) + H (r, T, 1) 
dr 

(3.1) 

where P is the density, C is the specific heat of the solid, T is the temperature at a point with

position vector r. K is the thermal conductivity, 1 is the time, and H (r, T,1) is the amount of 

heat generated per unit time in the element dV situated at a point (x. y, z) whose position 

vector is r. This equation is known as diffusion equation or heat equation. We shall now 

derive the heat equation from the basic concepts. 

1et Vbe an arbitrary domain bounded by a closed surface S and let V =VUS. Let 7 (a| 

) be the temperature at a point (r. y, z) at time r. If the temperature is not constl 

flows from a region of high temperature to a region of low temperature and 1oi 
Fourier law which states that heat flux q (r. ) across the surface element dS with nori1l 
proportional to the gradient of the temperature. Therefore,

heat 

the ows 

(3.2 
qr,)=-KVT (r. t) 

where K is the thermal conductivity of the body. The negative sign indicates that ue flux 

Vector po0ints in the direction of decreasing temperature. Let be the oulward 
vector and q be the heat flux at the surface element dS. Then the rate or ne through the elemental surface dS in unit time as shown in Fig. 3.l 1S 

ard unit normal 

rate of heat flowing ou 

dQ = (q-n)dS 
(3.3) 
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Fig. 3.1 The heat flow across a surface. 

Heat can be generated due to nuclear reactions or movement of mechanical parts as in inertial 

measurement unit (1NU). or due to chemical sources which may be a function of position. 

temperature and time and may be denoted by H(r. T. ). We also define the specific heat of 

a substance as the amount of heat needed to raise the temperature of a unit mass by a unit 

temperature. Then the amount of heat dQ needed to raise the temperature of the elemental 

mass dim =p dl to the value 7T is given by dQ = CpT dr. Therefore. 

-1 d 
dt 

The energy balance equation for a small control volume V is: The rate of energy storage in 
Vis equal to the sum of rate of heat entering V through its bounding surfaces and the rate 

of heat generation in V. Thus. 

(3.4) 
S 

Using the divergence theorem. we get 

(r.)+ div q(r. 1)- H(r. T. r)|dl = 0 (3.5) 

Since the volume is arbitrary, we have 

dT r.) - div q (r. r)+H(r.T,1) (3.6) 

Dubstituting Eq. (3.2) into Eq. (3.6). we obtain 

(3.7) PC l-y.[KVT (r. )]+ H(r. T. i) 
di 



184 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 

If we detine thermal diffusivity of the medium as 

pC 

then the differential equation of heat conduction with heat source is 

Hr.T. r) 1 T (r.)-v?T(r.i)+ 
(3.8 a d K 

In the absence of heat sources. Eq. (3.8) reduces to 

aT (r.) Q Tr.rn (3.9 
di 

This is called Fourier heat conduction equation or diffusion equation. The fundamental prohlam 

of heat conduction is to obtain the solution of Eq. (3.8) subject to the initial and boundan 
conditions which are called initial boundary value problems. hereafter referred to as IBVP s. 

3.2 BOUNDARY CONDITIONNS 

The heat conduction equation may have numerous solutions unless a set of initial and boundarv 

conditions are specified. The boundary conditions are mainly of three types. which we now 

briefly explain. 

Boundary Condition I: 7he temperature is prescribed all over the boundary surface. That 

is. the temperature 7T(r. n is a function of both position and time. In other words. T = G(r. t) which 

is some prescribed function on the boundary. This type of boundary condition is called the 

Dirichlet condition. Specification of boundary conditions depends on the problem under 

investigation. Sometimes the temperature on the boundary surface is a function of position 

only or is a function of time only or a constant. A special case includes T(r. i) =0 on tne 

surface of the boundary. which is called a homogeneous boundary condition. 

Boundary Condition II: The flux of heat. i.e. the nomal derivative of the temperature dl 10 
is prescribed on the surface of the boundary. It may be a function of both position an 

i.e.. 

time. 

d= f(r. I) 
On 

This is called the Neumann condition. Sometimes, the normal derivatives of tempeia 
ature may 

be a function of position only or a function of time only. A special case inciu 

T 
0n the boundary 

s 

dn vhih 

This homogeneous boundary condition is also called insulated boundary co 
states that the heat tlow is zero. 
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Boundary Condition I11: A linear combination of the temperature and its normal deri vative 

is prescribed on the boundary, i.e., 

K+hT = G(r, 1) 
dn 

where K and h are constants. This type of boundary condition is called Robin's condition.it 

means that the boundary surface dissipates heat by convection. Following Newton's law of 

cooling. which states that the rate at which heat is transferred from the body to the surroundings 
is proportional to the difference in temperature between the body and the surroundings, we 

have 

-K h(T-T) 
dn 

As a special case, we may also have 

hT =0 
an 

which is a homogeneous boundary condition. This means that heat is convected by 

dissipation from the boundary surface into a surrounding maintained at zero temperature. 

The other boundary conditions such as the heat transfer due to radiation obeying the 
fourth power temperature law and those associated with change of phase, like melting, ablation. 

etc. give rise to non-linear boundary conditions. 

3.3 ELEMENTARY SoLUTIONS OF THE DIFFUSION EQUATION 

Consider the one-dimensional diffusion equation 

(3.10) T1 3T 
Ox Cd 

- co <x < o, 1> 0 

The function 

exp [-(x-5)4a1)] (3.11 T(x,1)= 
4ra 

where is an arbitrary real constant, is a solution of Ey. (3.10). It can be verified easily as 

follows: 

- expl-(r -51(4a)] 
2 

T = 

4ta 4 

aT -2 r-5) exp[-(x-FI(4a) 
ax 4ra 4 
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Therefore. 

1 4a22API=(x-$)(4an1 I T 

dx 4Ta1 2t 

the 
which shows that the function (3.11) is a solution of Eq. (3.10). The function (3 11 

as Kernel, is the elementary solution or the fundamental solution of the heat equation c. known 

infinite interval. For t> 0, the Kernel T(x, 1) is an analytic function of x and t and it o 

be noted that T(x. 1) is positive for every x. Therefore, the region of influence for the itfusion 

equation includes the entire x-axis. It can be observed that as Ixlo, the amount of heat 

transported decreases exponentially. 

In order to have an idea about the nature of the solution to the heat equation, conside 

a one-dimensional infinite region which is initially at temperature fr). Thus the problem i 

described by 

T PDE ax 
(3.12) -co<X< o, t> 0 

IC: T(x, 0) = f(x). - oo<r<o, t =0 (3.13) 

Following the method of variables separable, we write 

(3.14) T(x,)= X (x) B) 

Substituting into Eq. (3.12), we arrive at 

X1=2 
X aP 

(3.15) 

where is a separation constant. The separated solution for bB gives 

(3.16) B Ceh 
sical 

lf A>0, we have B and, therefore, T growing exponentially with time. From realisuc py 

M as 

considerations, it is reasonable to assume that f (x)>0 as lxl oo, while 7(X, 1)1s 

Ixlco But. for T(x, 1) to remain bounded, 2 should be negative and 

take A =-u. Now from Eq. (3.15) we have 

X"+X =0 
Its solution is found to be 

X = C Cos ux + C2 Sin ux 
Hence 

(3.17 

T(x, 1, ) = (A cos ux + B sin ux)e 
" 
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is a solution of Eq. (3.12), where A and B are arbitrary constants. Since f(x) is in general not 

neriodic. it is natural to use Fourier integral instead of Fourier series in the pre sent case. Also, 
pe 
since A and B are arbitrary, we may consider them as functions of and take 

A A(U). B =B U). In this particular problem, since we do not have any boundary conditions 

which limit our cho1ce of u. we should consider all possible values. From the principles of 

superposition. this summation of all the product solutions will give us the relation 

T(x)= | T(x.1, u) du = A(ucos ux+ B(u)'sin ux]e du (3.18) 

which is the solution of Eq. (3.12). From the initial condition (3.13). we have 

T(x, 0) = f(x) = [A(A)cos (ux + B(4) sin ux] du (3.19) 

In addition. if we recall the Fourier integral theorem. we have 

f(x) cos ot - x)dx do (3.20) 

Thus. we may write 

- f(y) cos u(x- y) dy du 

f(y) (cos ur cos uy + sin ux sin Ay) dy du 

cos uxS(ycos uy dy +sin jux y) sin 4y dy du (3.21) 

Let 

A(u)= fly) cos uy dy 

B(u)= fly) sin ay dy 

hen Eq. (3.21) can be written in the form 

f(X) = LA(4) Cos ux + B(4) sin jux] du (3.22) 

Comparing Eqs. qs. (3.19) and (3.22). we shall write relation (3.19) as 

T(x.0) = f(x) =- Sy) cos (x- y)dy |du (3.23) 
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Thus, from Eq. (3.18), we obtain 

T(x.)=- S() cos u (x- y) exp (-aqu"1) dy |du 
(3.24) 

Assuming that the conditions for the formal interchange of orders of integration are sati.e 

we get 

TOa.=f exp-aut) cos ju (x -y) du |dy 
(3.25 

Using the standard known integral 

exp (-s) cos (2bs) ds =exp (-b) (3.26) 

Setting s = l Vat, and choosing 

b 2 ar 

Equation (3.26) becomes 

cos u(x- ¥)du = exp-(r-y)|(4ar)] (3.27) 
V401 

Substituting Eq. (3.27) into Eq. (3.25). we obtain 

T(x. 1)= fy) exp[-(r-y)M4ar)] dy (3.28) 

40Tt 
Hence, if f(y) is bounded for all real values of v, Eg. (3.28) is the solution of the pio described by Eqs. (3.12) and (3.13). 

blem 

EXAMPLE 3.1 In a one-dimensional infinite solid, - oo < x<o, the surtace initially maintained at temperature 70 and at zero temperature everywhere oulS Show that 

a<x<h 

surtace 

T(, 1)=- erf4- 

where erf is an error function. 
Solution The problem is described as follows: 

PDE: T, = dTw 
IC: T=To. 

a<x<b 

= 0 outside the above region 
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The general solution of PDE is found to be 

1 T(x.1) ATot 4Taa f)exp[-(r-5)/(4at)] d5 
Substituting the IC, we obtain 

T(x, 1)= =exp[-(r-3)(4a)] d5 
V4Tat Ja 

Introducing the new independent variable n defined by 

40t 
and hence 

d =40t dn 
the above equation becomes 

TCr.)=0 (b-x)NAat)-n dn = tb-x)N4d) dn-TJo c(a-x)N(4ar) dn 

VT a-x)N4ar) 

Now we introduce the error function defined by 

erf (2)=Jexp-dn 

Therefore, the required solution is 

T(x.)=0 erf -erf 
4a 

3.4 DIRAC DELTA FUNCTION 

ACCording to the notion in mechanics, we come across a very large force (ideally infinite) 
acling for a short duration (ideally zero time) known as impulsive force. Thus we have a 
Tunction which is non-zero in a very short interval. The Dirac delta function may be thought 

O as a generalization of this concept. This Dirac delta function and its derivative play a useful 
role in the solution of initial boundary value problem (IBVP) 

Consider the function having the following property: 

(1/2E, Itl<e 

(3.29) ,()={ 
|0. Irl>e 
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Thus. 

,0)d =.dt=1 (3.30) 

Mean- 
Let f) be any function which is integrable in the interval (-E, E). Then using theM 

value theorem of integral calculus, we have 

-e <a <e (3.31) fno()dt = - ft) dt = f(). 

Thus. we may regard d(t) as a limiting function approached by d, (1) as e->0, i.e. 

(3.32) dit)= Lt ô(0)
E0 

As E0, we have. from Eqs. (3.29) and (3.30), the relations 

(in the sense of being very large) 

if t = 0 (3.33) 
, t) = Lt S (t)= 

E0 
0. if 1#0 

(3.34) t) d =1 

This limiting function 8(t) defined by Eqs. (3.33) and (3.34) is known as Dirac delta function 

or the unit impulse function. Its profile is depicted in Fig. 3.2. Dirac originally called it an 

improper function as there is no proper function with these properties. In fact, we can oDServe 

that 

=o) dt = Lu o (t) dt = Lt 0=0 
E0 E0 Il>e 

1/2e 

Fig. 3.2 Profile of Dirac delta function. 

Sense 

Obviously, this contradiction implies that &(t) cannot be a function in the oraia 

Some important properties of Dirac delta function are presented now: 
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o)dt =1 
PROPERTY I: 

PROPERTY II: For any continuous function f(),

St)o) dt = f(0) 
Proof Consider the equation 

Lt f) S,(t)dt = Lu f). S0 
-e <ë <e E0 

As e0, we have g>0. Therefore 

ft)ot) d= f(0) 
PROPERTY III: Let f(1) be any continuous function. Then 

t-a) f) dt = fla) 

Proof Consider the function 

1/e, 
, 0-a) ={ 

a<t <a +e 

elsewhere 

Using the mean-value theorem of integral calculus, we have 

0<0<1 d(t-a) f) dt = . S0dt = f(a + Oc) 

Now, taking the limit as e>0, we obtain 

t-a) f() dt = f(a) 

Dus, the operation of multiplying f(t) by d(t -a) and integrating over all t is equivalent to 

Substituting a for in the original function. 

PROPERTY IV: S(-1) = 8) 

PROPERTY v: ô(at) =+8). a>0 
a 
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PROPERTY VI: S() is a contnuously dlerentible, Dirac della luction vaniol. 

or larpe 

, then 

/)S)dt=/'(0) 

Proof Using the rule ol ntegration by parts, we get 

/S)dh =1/()8)-| /' da 

Using Eq. (3.33) and property (1D, the above equations becomes 

S)S')dh=-/'(0) 

PROPERTY VI: 
S-u)f)dh= -/'(a) 

Having discussed the one-dimensional Dirac delta function, we can extend the delinition to 

IWo dinmensions. Thus. for every / which is cotinuous Over the region S containing the 

point (.7). we deline d(N S.-) in such a way that 

8(r-S, -1) S(N, P)do = f(5.) 
(3.35) 

S 

Note that d(r-$. -17) is a formal limit of a sequence of ordinary functions, i.c. 

(3.3 

d(r- S. y-)= 11 d,(r) 
>0 

where = (r- 5)+ ("- 1). Also observe that 

S(r-5)&(y-1) S(r. P)ds dy =/(G.) 
(3.37) 

Now. comparing Eqs. (3.35) and (3.37), we see that 
(3.38) 

d(r-5.y- 7) = S(r-$)8(r-) 

Thus, a two-dimensional Dirac delta function can be expressed as the product or 

dimensional delta functions. Similarly, the definition can be extended to higher dineus 
ISions. 

EXAMPLE 3.2 A one-dimensional intinite region -oo<r<o is initially keP 
** 

usly 

temperature. A heat source of strength g, units, situated at = releases its heat Istant 

at time 1= T. Determine the temperature in the region for I>T. 
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niltally. the region -o<A< o is al zero temperature. Since the heat source 

is situated al x =s and releases heat instantancously at t =t, the released temperature 

Solution 

at=and 7 = T I8 a o- function type. Thus, the given problem is a boundary value problem 

described by 

PDE: 8(,1)_1 0T 

k 

IC: T(r, 1) = F(x) = 0, -ooX < o, t = 0 

&(x, 1) = g,ö(x- E) S81 - T) 

The general solution to this problem as given in Example 7.25, after using the initial condition 

F(r) = 0, is 

d' TCx) X .A g(r', 1) expl-*-x)7[4«(t -t)}] dx' (3.39) 

T(x.)=J=0 4ra(t-1))' 
Since the heat source term is of the Dirac delta function type, substituting 

g(x,)= g,S(x- 5) 8(1- r) 

into Eq. (3.39), and integrating we get, with the help of properties of delta function, the 

relation 

8s T(x. t) == 

k 4ro Jo 
exp-(xS)14a1)} 5-T)dt' 

Vt-1 

Therefore, the required temperature is 

TC)=G8, exp-(r-S74a-t)}|for > T 

k 4Ta (t-T)

EXAMPLE 3.3 An inlinile one-dimensional solid defined by - oo <x<o is maintainedl at 

zero temperature initially. There is a heat source of strength g,() units, situated at x= g, which 

releases constant heat continuously for t > 0. Find an expression for the temperature distribution
in the solid for t>0 

Solution This problem is similar to Example 3.2, except that g(r, 1)= 8, () 8(r- g) is 

Dirac delta function type. The solution to this IBVP is 

&,) 
T(x1)= J-o47at-t)expl-(r-5/{4«( -t))]]dt' (3.40) 
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defined by 
It is given as g,(t) = constant = 8, (Say). Let us introduce a new variable n define 

or -t'= 
4 (t-1) 

Therefore, 

dt'= (-5)dn 
20 

Thus. Eq. (3.40) becomes 

exp (-dn 
T(X.)= 87 

2KT r-54a 

However 
e e 

+2eF 

dn 

Hence, 

T(x.)=8 2K-T 
dn -2 J-Iai 

x-E)I 4t 

Recalling the definitions of error function and its complement 

erf (r)= dn. erf (o) = 1 

2 

erfc (x)=1-erf (x) = exp-dn-exp(-7*)dn 
0 

exp(-rdn 

the temperature distribution can be expressed as 

fx,1)= exp-(r-E(4ar)]- 1-erf 
4a1 20 

Alternatively, the required temperature is 

KV27xp -(r-£)(4ar))-Serfe-

V40t 
T(x,1)=S,||t 

2a J 



PARABOLIc DirrERENTIAL EQUATIONS 195 

3.5 SEPARATION OF VARIABLES METHOD 

Consider the equation 

0T 
= (3.41) 

Among the many methods that are available for the solution of the above parabolic partial 

differential equation. the method of separation of variables is very effective and straightforward. 
We separate the space and time variables of T(x. 7) as follows: Let 

T(x. )= X(x) B(r) 
be a solution of the differential Eq. (3.41). Substituting Eq. (3.42) into (3.41). we obtain 

(3.42) 

X1B 
X a B 

= K. a separation constant 

Then we have 

dx 
- KX = 0 (3.43) 

dr 

dp_aKB =0 (3.44) dt 

In solving Eqs. (3.43) and (3.44). three distinct eases arise: 

Case I When K is positive. say , the solution of Eqs. (3.43) and (3.44) will have the form 

=cze (3.45) 

Case 1 When K is negative. say -. then the solution of Eqs. (3.43) and (3.44) will have 

the form 

X =q cos Ar +C Sin Ar. -ai'i 
B= C3e (3.46) 

Case l11 When K is zero, the solution of Eqs. (3.43) and (3.44) can have the form 

B C3 (3.47) 

nus, various possible solutions of the heat conduction equation (3.41) could be the following: Thu 

T(. 1)= (ce+cheAN ) EaÅ 

T(x. )= (si cos Ax +c sin Ar)eAt (3.48) 

T(x.) = cir +c 
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where 

EXAMPLE 3.4 Solve the me-dimCnsiOnal 0uson Cquaton 1n the reyion (),e. 

subject lo the conditions 

(i)T remains inilc as -

(ii) T= (0, if x= () and r for all 

)SxN/2 
X, 

(iii) A/= (0, 7 

Solution Since T should salisfy the diffusion cyuation, the threc possible solutions 

T(x,1)= (re t 2 )e 

TCx,1)= (c cos Ax + 2 Sin 2x)e 

T(x,1)= (C1X + C2)) 

The first condition demands thal T should remain finite as 1 We therefore reject the fir 

solution. In view of BC Gi),. the third solutíon gíves 

0=C ) + C2, 

implying thereby that both Cj and c2 are zero and hence T=) for all . This is a trivia 

solution. Since we are looking for a non-trivial solution, we reject the third solution a 

Thus, the only possible solutíon satisfying the first condition is 

T(x, 1) = (cj cos Ax + Cy sin lx)e 

Using the BC (ii), we havec 

0= (e cos Ax + C2 5in Ax)|, 

implying C = 0. Therefore, the possible solution is 

Tx,1)= (2 u sin 2x 

Applying the BC; T =0 when x = 7, we get 

sin A7 =() 2a = nIT 

where n is an integer. Therefore, 

A=n 
Hence the solution is found to be of the form 

T(x,1) = Ce 
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Noting that the heat conduction equation is linear, its most general solution is obtaincd by 
the principle of superposition. Thus 

applying 

T(x. )= e n sin nx 

Using the third condition, we get 

T(x, 0) = , sin nx 

n=l 

which is a half-range Fourier-sine series and. therefore 

Ta. 0) sin nx dx = sin nx dx+ (T -)sin nx dx C 
T 0 

Integrating by parts, we obtain 

T/2 
CoS 1 sin nr 

-(7 -
COS 7r sin nx 

2 
T/2 

2 

4 sin (nt/2) 
C 

Thus, the required solution is 

,-ant sin (n7t/2), 
T(x, 1) = Sin nx 

2 

EXAMPLE 3.5 A uniform rod of length L whose surface is thermally insulated is initially 

at temperature = 6. At time t= 0, one end is suddenly cooled to 6 = 0 and subsequently 

maintained at this temperature: the other end remains thermally insulated. Find the temperature 

distribution x. ). 

Solution The initial boundary value problem IBVP of heat conduction is given by 

PDE: =a 0SxSL. t >0 

20 BCs: 6 (0, 1) = 0. 

(L, 1) = 0. I> 0 

IC: e(x, 0) = Oy. 0S.SL 
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From Section 3.5, it can be noted that the physically meaningful and non-triui 

olution is 
e(x, 1) = e'(A cos Ar+ B sin Ax) 

is 
Using the first boundary condition, we oblain A = 0. Thus the acceptable solution 

0= Be- sin Ax 

d6-2Beal cos Ax 
dx 

Using the second boundary condition, we have 

0 ABeu cos AL 

implying cos 2L = 0. Therefore, 

The eigenvalues and the corresponding eigenfunctions are 

(2n +1)n n = 0,1, 2,. 
2L 

Thus. the acceptable solution is of the form 

=Bexp-a|(2n +1)/2L}'r*t] sin 

Using the principle of superposition, we obtain 

(2n+1 
e(x, 1)= B, exp [-al(2n + 1)/2L}4ri| sin| x 2 n=0 

Finally, using the initial condition, we have 

O0 

e2 B, sin 
2n+1 

-TTX 
2L 

n=0 

which is a half-range Fourier-sine series and, thus, 

21 x|dx 8,- 
2L 

2L 2n+1 n 2 
400 400 cos ((2n +) T/2} - cos 0] = (2n +1) (21 +1)T 
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Thus. 
the unva tOmyerattue distribution is 

4 &.)= epl-otn D/21)n|sin 

EAMPLE 3.6 

at nd a= l lt1s &epl niially at temperature 0° and its lateral surace is insulated There 

are n heat soureeS tn the ar The cnd r= t) is kept at 0°. and heat is sudlenly upplicdl t 

the end =L. so that there is a constant tlux 4o al = 1. Find the teperatune distributio 

A conducting bar ot unitornn eross-seetion lies along the ANiN With ends 

in the bar tor r>0 

Solution The given initial boundary valie problem can be deseribed as follows 

PDE: = 

BCs: T(0. n=0. 

IC: T(r. 0)= 0. 

Prior to apply ing heat suddenly to the end a= L. when r =0. the heat tlow in the bar is 

independent of time (steady state condition). Let 

T(N. )= 7T)+7,(t.) 

where T is a steady part and 7 is the transient part of the solution. Therefore. 

l-0 
Whose general solution is 

T Ar+B 

when =0. T, = 0. implying B = 0. Therefore, 

TAr 

Using the other BC: = q0. We get A = do. Hence. the steady state solution is T 
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For the transient part. the BCs and IC are redefined as 

(i) 70. )= T(0. 1)-T,,0) = 0-0=0 

ii) TL. 11dr = T L. 1/ðx - 0T, (L. 1)/dx = 9o -4o =0 

(ii) 7(x. 0) = T(x. O) -T,, (x) = -40x. 0 < x<L. 

Thus. for the transient part. we have to solve the given PDE subject to these conditicn. 

acceptable solution is given by Eq. (3.48). i.e. 
ons. The 

T(x.t) = e (A cos }x+ B sin Ax) 

Applying the BC (i). we get A = 0. Therefore. 

T(x.t) = Be sin 2x 

and using the BC (ii), we obtain 

dT = BleA cos L = 0 

dx =L 

implying L = (2n-1)n =1,2.. Using the superposition principle. we have 

2n- T(x.1)= B, expl-af(2n-1)/2L}r'i]sin 2L TX 
n=] 

Now. applying the IC (iii), we obtain 

Tr.0)=-4g,x = B, sin x 
n=l 

tha 2m- 
Multiplying both sides by sin TXand integrating between 0 to L and noting* 

2L 

0. 
21-1 (2mTx \dx = B B,sin TTX Sin 

2L 2L 
2 

We get at once. after integrating by parts. the equation 

4 
Sin 

(2m-1r 
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2m-1)n 

4L 
-1)"m-1 B 

L 
-40 n2 

which gives 

(-18Lg0 B 
(2m-1)2T2 

Hence. the required temperature distribution is 

T(x. 1) = qoX+d0 T- 
1=1L(2m-1)2 

2xpl-a{(2m-1)/L]?z2t| sin Tr 
2L 

EXAMPLE 3.7 The ends A and B of a rod, 10 cm in length, are kept at temperatures O"C 

and 100°C until the steady state condition prevails. Suddenly the temperature at the endA is 

increased to 20°C, and the end B is decreased to 60°C. Find the temperature distribution in 

the rod at time t. 

Solution The problem is described by 

PDE:=a 0< x<l10 
dt 

BCs: T(0, t) = 0, T(10.1) = 100 

Prior to change in temperature at the ends of the rod, the heat flow in the rod is independent 

of time as steady state condition prevails. For steady state, 

d=0 
d? 

whose solution is 

Ts) = Ar+B 

When x=0. T = 0, implying B = 0. Therefore. 

Ar 

hen x = 10, T = 100, implying A = 10. Thus. the initial steady temperature distribution in Wh 
the rod is 

()= 10 

rly when the temperature at the ends A and B are changed to 20 and 60, the final steady 

temperature in the rod is 
T(x)= 4.x+20 
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which will be attained after a long time. 'To get the temperature distribution 

intermediate period, counting time trom the moment the end temperatures wer 
tion Txt in the 

assume that 

T(x,)= 7(r. ) +Ts,(x) 

where T, (x, ) is the transient temperature distribution which tends to zero as 
Now 

Ta.) satisfies the given PDE. Hence, its general solution is of the form 

T(x, 1)= (4x +20)+e4" (B cos Ar+c sin Ax) 

Using the BC: T = 20 when x = 0, we obtain 

20= 20+ Be-aA 

implying B=0. Using the BC: T= 60 when x= 10, we get 

nt 
n = 1, 2,. .. Sin 102 = 0, implying 2 = 

10 

The principle of superposition yields 

nT 
T(x.1) = (4x+ 20)+ exp [-a (nr/l0)* (]sin * 

N=| 

Now using the IC: T= 10x, when = 0, we obtain 

10x = 4x +20+ , sin|a 
10 

or 

6x-20 e, sin 
nst 

X 

10 

where 

800 200 nT 
(6.x-20) sin x dx = -

nt 

Thus, the required solution is 

800 200 exp-10 
T(x, ) = 4x+20- 

nT 
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