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Parabolic Differential Equations

3.1 OCCURRENCE OF THE DIFFUSION EQUATION

as conduction of heat in solids and diffusion of vorticity in
ast a body are governed by a partial differential equation of
a conducting medium is governed by the

The ditfusion phenomena such
the case of viscous fluid flow p
parabolic type. For example, the flow of heat in
parabolic equation

1)

LS )

,L)C%I—qzdiv([‘\’VT)+H(r. T.1) (
r

where 2 is the density. C is the specific heat of the solid, T is the temperature at a point with

position vector r. A is the thermal conductivity. 7 is the time, and H (r.T.1) is the amount of
', 7) whose position

heat gencrated per unit time in the element dV situated at a point (x, )
all now

*vector is r. This equation is known as diffusion equation or heat equation. We sh
derive the heat equation from the basic concepts.

Let Vbe an arbitrary domain bounded by a closed surface S and let V=Vus. Let T(x)

=.1) be the temperature at a point (x, v, z) at time f. If the temperature is not constant. heal
flows from a region of high temperature to a region of low temperature and follows the
Fourier law which states that heat flux q (r. ) across the surface element S with normal i B
proportional to the gradient of the temperature. Therefore
\ ‘))
A ™
q(r,1)==-KVT(r.1) .
where K is the thermal ¢ . . ot fUN
ermal conductivity of the body. The negative sign indicates that the heal

Vector points | : . . -mal
! n the direction of decreasing temperature. Let /i be the outward untt “Ol“:m
g (

vector and q be the he: . . ;
1 be the heat flux at the surface element 8. Then the rate of heat flowing

through the elemental surf: .
g emental surface @S in unit time as shown in Fig. 3.1 is
g 3.1

B 3.3
dQ =(q-n)dS
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Fig. 3.1 The heat flow across a surface.

Heat can be generated due to nuclear reactions or movement of mechanical parts as in inertial
measurement unit (IMU). or due to chemical sources which may be a function of position.

remperature and time and may be denoted by H (r.T.r). We also define the specific heat of

5 substance as the amount of heat needed to raise the temperature of a unit mass by a unit
remperature. Then the amount of heat dQ needed to raise the temperature of the elemental

mass dm=pdl" to the value T is given by dQ = CpT dl’. Therefore.

0= [[[ cor ar
,_

dO . aT
dr ZJ;I. (p (?F

dr

The energy balance equation for a small control volume V' is: The rate of energy storage in
I is equal to the sum of rate of heat entering V' through its bounding surfaces and the rate
of heat generation in V. Thus,

AT (r.1) .. c . . .
o —_— p— . 4 3.4
l‘” Cp e dl IJ q-n 1’5+”J. Hr.T,0ndl (3.4)
l S J
Using the divergence theorem. we get
r.ar : :
J:” chg—(r.!)+d1\'q(r.r\“H(r. T.1)y|dl"'=0 (3.5)
|
-
Since the volume is arbitrary. we have
pC—(i—]:—;Eﬁ =—divq(r.0)+ H(r.T,1) (3.6)
ar

SUb:.ti[uling Eq. (3.2) into Eq. (3.6). we obtain

aT(r. 1)
(_ _ =

5 VA(KVT(r.0]+H((r.T. 1) (3.7)
cr

p
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If we define thermal diffusivity of the medium as

K
a=——-
pC
then the differential equation of heat conduction with heat source is
1 AT (r.1) 5 H.T.t
—————=\_'T(r.n++———~l .
o or K (3%,
In the absence of heat sources. Eq. (3.8) reduces to
AT (r.1) 5
———=aVT(r.1) _
o (3.9,

This is called Fourier heat conduction equation or diffusion equation. The fundamental prob)

) S - . . - - G . . ¢ e

of heat conduction is to obtain the solution of Eq. (3.8) subject to the initial and boundam
o i . . ey ) N I

conditions which are called initial boundary value problems. hereafter referred to as IBVP;

3.2 BOUNDARY CONDITIONS

ave numerous solutions unless a set ot initial and boundan

The heat conduction equation may h
are mainly of three types. which we now

conditions are specified. The boundary conditions
briefly explain.
The temperature 18 prescribed all over the boundary surface. That

Boundary Condition I:
which

is. the temperature 7(r. 1) is a function of both position and time. In other words. T =G(r.1)
is some prescribed function on the boundary. This type of boundary condition is called the
Dirichlet condition. Specification of boundary conditions depends on the problem under
investication. Sometimes the temperature on the boundary surface 1s a function of positior
only or is a function of tme only or a constant. A special case includes T(r. n=0on the
surface of the boundary. which is called a homogeneous boundary condition.

Boundary Condition I1: The flux of heat. i.e.. the normal derivative of the remperature ATl
is prescribed on the surface of the boundary. It may be a function of both position and tme.
1.€..

aT .

7;; = f(r.rn)
This is called the Neumann condition. Sometimes. the normal derivatives of temperdt!
be a function of position only or a function of time only. A special case includes

JdT

— = on the boundary
n i hich
- . W
This homogeneous boundary condition is also called insulated boundary condit”
states that the heat flow is zero.

e ]ﬂ;}.\

e
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i .
Boundary Condition II1: A linear combination of the temperature and its normal deri vative
is p;mcuhc d on the boundary, i.c.,

JaT
K*()—-+ hT =G(r, 1)

where K and /1 are constants. This type of boundary condition is called Robin’s condition. It
means that the boundary surface dissipates heat by convection. Following Newton’s Jaw” of
cooling. which states that the rate at which heat is transferred from the body to the surroundings
is proportional to the difference in temperature between the body and the surroundings, we

have
JT
~-K—=h(T-T
an ( a)
As a special case, we may also have
Kézsz 0
an

which is a homogeneous boundary condition. This means that heat is convected by
dissipation from the boundary surface into a surrounding maintained at zero temperature.

The other boundary conditions such as the heat transfer due to radiation obeying the
fourth power temperature law and those associated with change of phase. like melting, ablation.
etc. give rise to non-linear boundary conditions.

3.3 ELEMENTARY SOLUTIONS OF THE DIFFUSION EQUATION

Consider the one-dimensional diffusion equation

2
(?Tzio"_T’ —o<x<oo, t>() (3.10)
Ixt o ot
The function
| .7
T(x,1) = ———cxp[—(x— &)/ (4at)]
) 4ot (3.11)

Where & is an arbitrary real constant, is a solution of Eq. (3.10). It can be verified casily as

follows:
- ) e 2
_’/_Z: ] (A _i_lf cxp[—(.\‘—af)z/(-’l(rl)]
- JAmow  4en’ 21
) P .
ar L 220829y [—(x - & (4ar))

x Janat 4ext
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186 I
Therefore,
" 2
“ 1 (x—¢)~ 5 )T
_(?,_T_:__—l—— —~—+—\—§—3— exp[-(.r—ﬁ)“/(élat)]:lf)‘[
gl | 4nat 20t 4at” o ot

e function (3.11) is a solution of Eq. (3.10). The function (3.11), k
y solution or the fundamental solution of the heat cquatinﬁ fm}wn
or (he

infinite interval. For >0, the Kernel T(x. f) is an analytic function of x and 1 and it ¢y, al
be noted that T(x, 1) is positive for every x. Therefore, the region of influence for the diffuj. 0
10n

v-axis. It can be observed that as [x|— co, the amount of
eat

which shows that th
as Kernel, is the elementar

equation includes the entire
transported decreases exponentially.
In order to have an idea about the nature of the solution to the heat equation, congjge

a one-dimensional infinite region which is initially at temperature f(x). Thus the problen i

described by

)

or  JdT

PDE: —=0—7>, —co<x<oo, 1>0
pralirw: (3.12)
IC: T(x,0)= f(x). —co< x<oo, t=0 (3.13)
Following the method of variables separable, we write
T(x.t)=X(x) (1) (3.14
Substituting into Eq. (3.12), we arrive at
X" 15 _, (3.15)
X af

where A is a separation constant. The separated solution for B gives

listic physicd
wpleM®

If A>0, we have S and, therefore, T growing exponentially with time. From rea
considerations, it is reasonable to assume that f(x) — 0 as |x|—> co, while I T(

|xI— . But, for T(x, t) to remain bounded, A1 should be negative and thus ¥

take A =-u*. Now from Eq. (3.15) we have

Its solution is found to be
X =¢;cos {x+cysin fx

Hence

T(x,t, ) =(Acos Ax+ B sin yx)g—aﬂz'

- gﬁ?f\"
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s a solution of Eq. (3.12). where A and B are arbitrary constants. Since f(x) is in general not

periodic. it is natural to use Fourier integral instead of Fourier series in the present case. Also,
since A and B are arbitrary. we may consider them as functions of 4 and take

A=A(W). B=B(). In this particular problem. since we do not have any boundary conditions

which limit our choice of 4. we should consider all possible values. From the principles of
superposition. this summation of all the product solutions will give us the relation

T(x.t)= _[,) Tx.t, pydy = J.( ‘ [A(p)cos ux+ B(u)sin uxle ™" du (3.18)
J)

which is the solution of Eq. (3.12). From the initial condition (3.13). we have

T(x.0)= f(«U:Jj [A(u)cos px+ B(u)sin px]du (3.19)
)

In addition. if we recall the Fourier integral theorem. we have

R T .
,fff)=—'[r J. flx)cosmit—x)ydx | dw (3.20)
rdo |-

Thus. we may write

] = [ o 7
f'(_t)=—J. f fly)cos uix—yv)dy du
mdo [ |

=lJ‘m.J.m _f(_\-)(cosy.rcosy}-+sin,uxsinp}-)d)-idﬂ
T Y0 | e |

el

=l | cos ,u.er f(yv)cos 4y dy+sin ux‘l‘ ) f(y)sin uydy du (3.21)
T Y0 L — — f

Let

/-\(.u):ljwc flv)ycos uvdy
T éy—

Bfﬂr:lr fly)sin uydy
7[ —_—

Then Eq. (3.21) can be written in the form

f(_r;zjm [A(u)cos px+ B(u)sin ux)du (3.22)
0
Cnmparing Eqgs. (3.19) and (3.22). we shall write relation (3.19) as
Tix.0)= f«x;=lj‘{w J- fyycos pix—y)dy id# (3.23)
. zdo |1
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Thus. from Eq. (3.18), we obtain

T(x. ,)__J' U f(y)cos t(x—y)exp (—ou” r)d\}lp

(324’

Assuming that the conditions for the formal interchange of orders of i Integration are Satisfieg
we get

T(x,t)=— J‘ f(\)“ exp (—ou~ r)cos,u(\—\)d,u]

(325
Using the standard known integral
I exp (—=s~) cos (2bs) ds = ——exp (—bz) (3.26)
0 2
Setting s :y\/c?, and choosing
R Y
b= :
2Jar
Equation (3.26) becomes
o i , ;
e M cos p(x = v)du = —=—exp [~(x - v)*/(4a1)] (3.27)
fo Hlx=y)au =—reexpl .

Substituting Eq. (3.27) into Eq. (3.25) we obtain

V(o)) dy (328

Hence. if f(y) is bounded for all real values of v, Eq. (3.28) is the solution of the probler
gescrlbed by Egs. (3.12) and (3.13).

\ ‘\
<h
/ MMPLE 3.1 In a onéJdlmensmnal infinite solid, —ee < x < oo, the surface a <% e
. act
Initially maintained temperature 7, and at zero temperature everywhere outside the .
Show that

=3 o (G o[22
< ' ar

where erf is ap error function.

Solution  The problem ig described as follows:
PDE:TrzaT_U. —ee <y <o
IC: =T, a<x<hp

=0 outside the above region
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The general solution of PDE is found to be

]

T'(x,1)= Neror J‘_m f&) exp[—(_r—§)3/(4a’!)]d‘§

substituting the IC. we obtain

T b
T(x,t)=—=2 ~(x=¢)°
P IJ-H exp [—(x=&)/(4ot)] dS

Introducing the new independent variable n defined by

and hence

d& = /4ot dn

the above equation becomes

(b—x)/N(d4at) 2 b—x 5 — , -
T(x.1)= Ty v 1% g = Ty | 2 -0 N(Gan) 2 B 2 pla—x)N(@ar) —n?
— e n=—|—= e dn-— e ' dn
NTT Ya-x)N@ar) 2 |\ do Jrr Jo

Now we introduce the error function defined by
of 2 < 9)
erf (z =—J. exp(-n7)d
) 77 Jo p(=n")dn

Therefore. the required solution is
T b—x a-x
T(x1)==2 erf( )—erf(a !
2 dor dot

3.4 DIRAC DELTA FUNCTION

ACcording to the notion in mechanics, we come across a very large force (ideally infinite)

:}Cling for a short duration (ideally zero time) known as impulsive force. Thus we have a

il{nction which is non-zero in a very short interval. The Dirac delta function may be thought

Of as a generalization of this concept. This Dirac delta function and its derivative play a useful

fole in the solution of initial boundary value problem (IBVP). )
Consider the function having the following property:

1/2¢, lrl<e
Op(t) = (3.29)
0, Iri>¢



‘e : :
| 190  INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Thus.
£ ]

- o.(1)dt = dr =1
oo e(1)é -[—s 2€ (330,

Let f(r) be any function which 1s integrable 1n the interval (=€, €). Then using the Me
_ ) Mean

f integral calculus. we have

- L, .
[ _f(f)ﬁf(t)dt:_zzf_g Faydi=f(&).  —e<é<e a3

value theorem O

Thus. we may regard &(r) as a limiting function approached by &,(1) as € =0, e,

Sit)= Lt 0.(1) (3.32)
e—0

As € — 0, we have. from Egs. (3.29) and (3.30). the relations

(in the sense of being very large)

St)= Lt 8,(1)=4" if 1=0 (3.33)
£—0
0. if 120
rc o(t)dr=1 (3.34)

This limiting function 6(1) defined by Egs. (3.33) and (3.34) is known as Dirac delta function

or the unit impulse function. Its profile is depicted in Fig. 3.2. Dirac originally called it an
improper function as there is no proper function with these properties. In fact, we can observe
that

1= éwdr= 1t [ 8ydi= Lt 0=0
—0 lt>e £—0

£—0
?,.
112e
-£() € ==

Fig. 3.2 Profile of Dirac delta function.

Obviously. this ¢ e ) . )
Some im) . A ORU'ddIICtIOI) implies that §(¢) cannot be a function in the ordinary sens
portant properties of Dirac delta function are presented
now:

\ y
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PROPERTY I: I O()dr =1

PROPERTY II: For any continuoys function £(r),

f: F(®) o) dr = £(0)

Proof Consider the equation

Lt [ rs.wan- L@ e<ice

As £ >0, we have & — 0. Therefore,

[ rwsma= o
PROPERTY III: Let f(r) be any continuous function. Then
f_: S(t—a) f(t)dr= f(a)
Proof Consider the function

l/e, a<t<a+e
o, (t—a)=

0, elsewhere

Using the mean-value theorem of integral calculus, we have
co 1 rate
[ su-arm di==["" fmdi=fa+6e.  0<o<1
—00 E Ja
Now, taking the limit as £ — 0, we obtain

T S(t—a) f(tyde = f(a)

—0o0

Thus, the operation of multiplying f(r) by 6 (r —a) and integrating over all ¢ is equivalent to
Substituting a for t in the original function.

PROPERTY 1y O(—t)=d(t)

PROPERTY - 5(at)=l5(t)» a>0
a

T
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PROPERTY VI RITAEEL continuously ditferentiables Divac delta tunction vangy)
i 14 ||“P |“| 1”' ’
. then he
J(O (1)t /7(0)
Proof Using the rule ol integration by parts, we e
f A dE | (D] f /(O
Using Eq. (333 and property (1D, (he above equations becomes
J- [ O ()i /()
PROPERTY VI _[ 51— a) [ ()de==["(a)
Having discussed the one-dimensional Dirac delta function, we can extend the delimttion o
two dimensions. Thus. for cvery / which s continuous over the region S containing the
point (&.77). we define S(x— & y—1) in such a way that
” S(e—E v S yydo = [E D (3.35)
s
Note that S(x =&,y =1 is a formal limit of a sequence of ordinary functions, i.¢.
(5‘(.\‘-«:’,“, _\‘--I])T— L.t ()“,.(l') (3.30)
£0
p) ay D
where = = (v —&)° 44(_\-—;])3_ Also observe that
- - . vy B 3 37)
” S —EE (=) f(x v)dy dv =[5 (-
Now. comparing Egs. (3.35) and (3.37), we see that
- . X . o 1.38)
O(x—=&, y—1= O(x—&E)o(v—1) (
. . , ; ¥ : . . Cwo ones
Thus. a two-dimensional Dirac delta function cin be expressed as the product of two ! "
. - - . N . - ey s . 1 s Lo
dimensional delta functions. Similarly, the defimtion can be extended to highet dimenstt
. . C e . L . . 4
A one-dimensional infinite region —eo <y <o I8 initially kep! al
;ulL‘Umh

& releases its heat instant

EXAMPLE 3.2
temperature. A heat source of strength g, units, situated at v =

at time 7= 7. Determine the temperature in the region for 1> 7.
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Solution  Initially, the region —oo < v < oo iy at zero temperature. Since the heat source
is situated at v =g and releases heat instantancously at 7 =7, the released temperature
at v=¢ and 7r=7 is a O- function type. Thus, the given problem is a boundary value problem
described by

PDI: ()ﬁl + }"(\__’_)_ — _1_ ,({L

. —, —mw< x<oo, | >()
ox° k o Ji

IC: T(x,1)=F(x)=0, —co< x< oo, =0

g, 1)=g.6(x-8)8(1—1)

The general solution to this problem as given in Example 7.25, after using the initial condition
[(x)=0, 1s

T(vn=2 J" ar__ J‘w (X 1) exp [=(x = x)2/{da(t — 1)) ] dx’ (3.39

X, = — — (X, cX —(X— X - ax .-

kdr=o Jdmor(r—1") dv=-e & P ) >7)

Since the heat source term is of the Dirac delta function type, substituting
gx,1)=g,0(x=8)8(—-1)

into Bq. (3.39), and integrating we get, with the help of properties of delta function, the
relation

a g, expl-(x—&2 a1} o
Tiv V=2 55 o(t—1)d
I'(x,1) /\'\/ZEJ.U r—l'—ll ( T)dr

Therefore, the required temperature is

ae. expl—(x =& da( - 1)}
T(x”):__({’,_K\CXPl S

k Jamra(t—7)

fort>r1

EXAMPLE 3.3 An infinite one-dimensional solid defined by —ee < x < e is maintained at

Zero temperature initially. There is a heat source of strength ¢ (1) units, situated at x =g, which
releases constant heat continuously for 7> 0. Find an expression for the temperature distribution
I the solid for r> 0.

Solution  This problem is similar to Example 3.2, except that g(x, 1) =g (1) S(x=&) is

4 Dirac delta function type. The solution (o this IBVP is

o (! g, (") 2y , ,
- — ——-———'——__—:—.::7—““0)( [_(.\ —-<) 4o (t—1t ) It (340)
T(x,1) K J.’,:O W("f) p ‘5 [ 1
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as ¢ (1) = constant = g, (say). Let us introduce a new variable p defineq by
S &

It is given
o Y-
x-¢& or ,_[,:l(.x &)

’Izvf4a(r—?7 Paa
Therefore, 2
1 (x=¢)
ar = =
n 200
Thus. Eq. (3.40) becomes
2
S exp (=117 ,
T(X,t)zgs ZK\/; J.(x-f)/\/m 772 n
However.
2 2
-1 -1 2
—d— < = - +2e7 7
an| 1 n°
Hence.
_r’2 “ o ,
ol £ - J ¢ed
A EIS £z 2K\/E‘ B n 2 (x=&)//(4ar) T
(x=&)1[4ar

Recalling the definitions of error function and its complement

2 of (00) =1
erf(x)_\/i_zJ‘Oe dn, erf (e0)

erfc(x)=1-erf (x) = % UOOO exp (—772 Ydn - J.o exp(—ﬂz)dﬂ)

2 0o
== [ ewenhan

the temperature distribution can be expressed as

£
_ag; _{__ (v EN2 __')‘::_é_l. [_erf—"—(—:——s—)}
T(x,1)= K {]275 exp [~(x=&)"/(4ar)] e ( Jaar
Alternatively, the required temperature is

ag

| [ ) Ix—&l . x=&
T X, :__...‘_. o — o . ~ _ f
(x, 1) [ i exp [~ (x— &) /(4an)] o erfe—==> tJ
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3.5 SEPARATION OF VARIABLES METHOD
Consider the equation

o _ 9T (3.41)

Among the many methods that are available for the solution of the above parabolic partial

differential equation. the method of separation of variables is very effective and straightforward.
We separate the space and time variables of T(x. ) as follows: Let

T'(x.t)=X(x)B( (3.42)
be a solution of the differential Eq. (3.41). Substituting Eq. (3.42) into (3.41). we obtain
X' 1B .
—- = — — = K. a separation constant
X ap

Then we have

X _kx =0 (3.43)
dy-

.

-‘% -—aKp=0 (3.44)
!

In solving Egs. (3.43) and (3.44). three distinct cases arise:

Case I When K is positive. say A% the solution of Egs. (3.43) and (3.44) will have the form

5

b% :(‘]t"“ +L__“,_-A\‘ ﬁ:fqé’aﬁ-r (345)

Case Il When X is negatve, say —A~. then the solution of Eqgs. (3.43) and (3.44) will have

the form
aid
X = ¢ cos Ax+cssin Ax B =cie” ! (3.46)

Case 11} When K is zero. the solution of Eqgs. (3.43) and (3.44) can have the form

X=gxtey  p=q (3.47)

s various possible solutions of the heat conduction equation (3.41) could be the following:
o= (L‘;(" - + Q‘Eg—/"“ )t’a/' !

Tv.n= (g»{ Cos Av+ (-5 sin /1.\'\)8;(”'_[ (348)

T(x.1}=c[x+ch
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where
’ N
() O (' # (gl

Jonal diffaaion equation the region (< ;-
/n

[T
)

LXAMPLE 3.4 Solve (he ane-diment

subject 10 the conditions

b Ay

(1y T remains finie as /

Gy 10 w0 and for all 1

X, (< x< 7l
AL =0, A no
(1) \ﬂ N ?, (ST

Solution ~ Since T Jhould satisfy the diffusion eguation, the three possible solutions u

(l'(X,’] (l‘ll’/ﬁl ’('2(' ’ )
A F “ /

Px, 1) = (cpcos Ax 4 ¢ 5in AX)C ”

T(x,1)=(cyxtcy)

The first condition demands that 7' should remain finite as 77 We therefore reject the 1
solution, In view of BC (i), the third solution gives

O=c; 04y, (V=0 T+

implying thereby that hoth ¢, and ¢, arc 7cro and hence 7 =0 for all L This is @ 1
solution. Since we arc Jooking for a non-trivial solution, we reject the third solution 2
Thus, the only possible solution satisfying the first condition is

)7
T(x,1) = (¢ cos Ax+ ey sin Ax)e oA

Using the BC (i), we have
0= "(c ¢ 7 Cein A |
€ eos Ax+ ey sin AX)|
implying ¢, = 0. Thercfore, the possible solution is

2

177
sin Ax

T(x,1)=ye
Applying the BC: T -0 when x =m, we gel
sin A =0 = Ax = nr
where n is an integer. Thercfore,
A=n
Hence the solution s found to be of the form

5
on

e — i o B
T(x,1)=ce SN Hx
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Noting that the heat conduction equation is linear, its most general solution 1is obtained by
-ap])l\’i”u the principle of superposition. Thus,

o0

)
I'(x,1)= E ('”v"m' "sin nx

n=I\
Using the third condition, we get

o0

T(x,0)= 2 c, sin nx

n=|

which is a half-range Fourier-sine series and, therefore,

2 7 . 2 w2 T .
c, =— I I'(x, 0) sin nx dx = — I X sin nx dx + (7r — x)sin nx dx
T Jo m|Jo /2

Integrating by parts, we obtain
i . mi2 . R
2 COs X sin nx [ COS X SIn nx
¢, =—||—x - 5 +4—(7 —Xx) +—
T n n- 0 1 n n- /2

or

4 sin (nrr/2)
(' e e ————
n

2
n-rmw
Thus, the required solution is

4 T i (nl2) .
T(x,1)=— Z S sin nx

n-

n=1

EXAMPLE 3.5 A uniform rod of length L whose surface is thermally insulated is initially
at temperature @ = @y At time =0, one end is suddenly cooled to & = 0 and subsequently

maintained at this temperature: the other end remains thermally insulated. Find the temperature

distribution A, 1).

Solution The initial boundary value problem IBVP of heat conduction is given by
ppE: 28 2a2 8. 0<x<L 1>0
At Ax"
BCs: 6(0.1)=0. 120
i({(l,.r)=(). >0
7%
IC: e\, 0)= 8“. 0y L
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From Section 3.5. it can be noted that the physically meaningful and non-triy;

Q(x,1)= ¢ (A cos Ax + Bsin Ax)

al sn}uri(m 1

Using the first boundary condition, we obtain A=0. Thus the acceptable solution j

6 = Be " sin Ax

36

dx

2
= ABe™ %" cos Ax

Using the second boundary condition, we have
—oA’t
0=ABe ™ "cos AL

implying cos AL = 0. Therefore,
The eigenvalues and the corresponding eigenfunctions are

1= (2n+l)ﬂ,

" o7 n=012,...

Thus, the acceptable solution is of the form

2n+1
6=Bexp[—a{(2n+l)/2L}27z’2t]sin( ’2’2 Jm

Using the principle of superposition, we obtain

& 1
6 (x.1)= Z B, exp [—a{(2n+1)/2LY 7*1] sin(z’;z zx

n=0

Finally, using the initial condition, we have

C o . [2n+]
90=ZB”sm[ Z; 71’)()

n=0 -

which is a half-range Fourier-sine series and, thus,

2L (2n+1
B =_j g s
=7, ()sm( >7 f[.l]d.x

_2 g2 (2n+1 ‘
- - COos
L O(Zn+])7r o8 2L ]”) 0

46,
oleos {2n+ 1) w/2) - cos 0]=

46, B
Cn+Dr Cn+ 7

|

e
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RS, e pequired emperature distiibution s

v

. _‘t)
1y e & 0 . v il
i = 2, 5 e Sl n b0 s | o

. » N 3 ) . 1 VN » \
pyAM? PE 3.6 A conducting bar of uniform cross section lies along the vanis with ends

at v=0 and o Lo T Rept mtadby at emperature OV aud s Lateral surtaee s insulated There

) N ~ SR AL ~ N b . Y v
qre o heat sources the bar The end v 0w Kept ac 09, and heat s suddenty apphed ot

sl ) ¢ | i . . . i
the e L.oso that there s aconstant flay gy at v 2 Find the emperature disteibution
i the bar tor 1> Q0.

Selution The gven mtal boundary value problem can be described as follows:

'))I. .)" '

PDL:: e '\
‘)I (‘)\‘

BCs: 7100 =0, >0
")"\u ) 0

o iy« !>

R 0

1IC: .M =0, O=a=L

Do - v ya \ . Y H
Prior to applying heat suddenly to the end v= /. when 7= 0, the heat How in the bar s
mdependent of time (steady state condition). Let

Fevn =150 D+ L
where 7, is a steady part and 7' is the transient part ol the solution. Therelore,
Yo
()-!(,\‘\

5

A%

= ()

Whose general solution is

Iy=AvtB
When .y =0, I,y =0, implying B =0. Therefore,
T, = Ay

()7'“)
—— = . We get A= qq. Hence, the steady state solution s
IZAS

Tos
Using the other BC:

Ii ~ — ([”_\
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For the transient part. the BCs and IC are redefined as
(1) T!H}.n:T((J.r;—T,‘)(())z()—():()
(i) JIT(L.1)/dx=dT(L.1)/dx—dT (L.1)Idx=qy—qy=0

(i) T =T(x.0)=T (x)=—qyx.0<x< L.

Thus. for the transient part. we have to solve the given PDE subject to these condit;
Ons. Tu.
acceptable solution is given by Eq. (3.48). i.e. tons

T(x.1)= ¢ (A cos Ax+ B sin Ax)
Applying the BC (i). we get A=0. Therefore.
Ty(x.t)= Be ™' sin Ax

and using the BC (ii). we obtain
AT, |
Jx |

x

=Bie ™ cos AL=0

implying AL =(2n— l)—2~,, n=1,2.... Using the superposition principle. we have

- . [ 2n-1
Tl(x.l):zB,,exp[—-a{(2n—1)/2L}2ﬂ'2)‘]51n:( a3
n=1 2L 4
Now. applying the IC (iii), we obtain
C (2n-1
Ti(x,0)=—gyx = Z B, sini mrx |
n=]

o . ([ 2m=] ung B
Multiplying both sides by sin : X : and integrating between 0 to L and nouins
)

L0, n+*m
.[] B, sin| 21! (2m=) el
5N | ———— X sin X dx =
) 2[_‘ } 217 /-J ! BIML n=ni
L2
we gel at once. afler integrating by parts. the equation
7

B 41 [F (2m-1 | L

g — >—| sin| V.4 l=3,,,—

2m—1)"7x- t_ ' 2 ] 2
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Ul.

)

-

gy ————(-)""' =8, ~
Qm-1rx* "
which gives
B, = (=D)"8Lqy_
(2m— 1)2]1'2

Hence. the required temperature distribution is

SL([ b (_l)m ] .
(.0 =gy +—> Y, —.,expl—a'{(Qm—])/L}zﬂzt]sin(zm frxJ
- m-1)" 2L

m=1 Z
EXAMPLE 3.7 The en_ds A and B of a rod, 10 c¢cm in length, are kept at temperatures 0°C
.nd 100°C until the steady state condition prevails. Suddenly the temperature at the end A 1s
increased to 20°C, and the end B is decreased to 60°C. Find the temperature distribution in
the rod at ime f. - °

Solution ~ The problem is described by

2
PDE:a—T:a’aF{. 0<x<10
d ax-
BCs: T(0,1) =0, T7(10.1)=100

Prior to change in temperature at the ends of the rod, the heat flow in the rod is independent
of time as steady state condition prevails. For steady state,

d’T
2 = 0
dx”
whose solution 1s
T = Ax+ B
When x=0. 7 =0. implying B =0. Therefore,
T( 0= Ax

When x =10, 7 =100. implying A=10. Thus. the initial steady temperature distribution n
the rod is
L

T (x)=10x

(s)

Slmi]aﬂ}'. when the temperature at the ends A and B are changed to 20 and 60, the final steady
t .
®Mperature in the rod is

T, (x)=4x+20
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which will be attained after a long time. To get the temperature disirip, 0
’ HL1On

intermediate period, counting time from the moment the end temperatures W ) In y
Cre (-h, e
g

X

assume that

T(x,t)=T(x, 1)+ 7}5,)(.\‘)

where 7,(x, 1) is the transient temperature distribution which tends to zerg as ¢

™ w N
; ‘\'(,1‘

T,(x, 1) satisfies the given PDE. Hence, its general solution is of the form
T(x,t)=(4x+20)+ e_“’{-’(B cos Ax + ¢ sin Ax)

Using the BC: 7 =20 when x =0, we obtain

20 =20+ Be ™"
implying B = 0. Using the BC: T=60 when x = 10, we get

sin 104 =0, implying 4 = T—g n=12,...

The principle of superposition yields

' 2 2 . nr
T(x,1)=(4x+20)+ 2 c, exp [-a(nz/10) t]sm(TaJx

n=1

Now using the IC: 7= 10x, when r=0, we obtain

nrw
10x =4x+20+ ¢, sin| —x
z n (10 )

or

6x—20= E c, Sin (%x)

where

Thus, the required solution is

o = 800 200 7\ L”Z]
T(.\,/)—4A+20—§Z[(—l) ——h——]exp[—a(-’-’—*) 7| sin 10X.

n=1 niw niw
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