
INHERITANCE:

EXTENDING CLASSES

INTRODUCTION:

 Reusability is yet another important feature of OOP. If we could reuse

something that already exists rather than trying to create the same all over again.

It reduce frustration and increase reliability. Fortunately, C++ strongly supports

the concept of reusability. This is basically done by creating new classes, reusing

the properties of the existing ones. The mechanism of deriving a new class from

an old is called inheritance. The old class is referred to as the base class and the

new one is called the derived class or subclass.

 The derived class inherits some or all of the traits from the base class. A class

can also inherit properties from more than one class or from more than one level.

 A derived class with only one base class is called single inheritance.

 One with several classes is called multiple inheritance.

 The traits of one class may be inherited by more than one class. This

process is known as hierarchical inheritance.

 The mechanism of deriving a class from another ‘derived class’ is known

as multiple inheritance.

DEFINING DERIVED CLASSES:

 The general form of defining a derived class is:

Class derived-class-name: visibility-mode base-class-name

{

… //

… // member of derived class

…//

};

 The colon indicates that the derived-class-name is derived from then base-class-

name. The visibility-mode is optional. It may be either private or public. The

default visibility-mode is private. Its base class are privately or publicly derived.

Ex:

Class derived: private base // private derivation

{

members of derived

};

Class derived: public base // public derivation

{

members of derived

};

Class derived: base // private derivation by default

{

members of derived

};

When a base class is privately inherited by a derived class, ’public members’ of

the base class becomes ‘private members’ of the derived class and therefore the

public members of the base class can only be accessed by the member functions

of the derived class. They are inaccessible to the objects of the derived class. A

public member of a class can be accessed by its own objects using dot operator.

When the base class is publicly inherited, ’public member’ of the base class

become ‘public members’ of the derived class and therefore they are accessible

to the objects of the derived class. In both the cases, the private members are not

inherited, the private members of a base class will never become the members of

its derived class.

Inheritance, some of the base class data elements and member functions

‘inherited’ into the derived class. We can add data and member functions and thus

extend the functionality of the base class. Inheritance, when used to modify and

extend the capabilities of the existing classes, becomes a very powerfull tool for

incremental program development.

SINGLE INHERITANCE:

 A derived class with only one base class is called single inheritance.

A

B

 Base class B and derived class D. The class B contains one private data

member, one public data member, and three public member functions. The class

D contains one private data member and two public member functions.:

PROGRAM:

#include <iostream>

using amespace std;

class B

{

int a; // private; not inheritable

public:

int b; // private; ready for inheritance

void set_ab();

int get_a (void);

void show_a (void);

};

class D : public B // public derivation

{

int c;

public:

void mul (void);

void display (void);

};

//---

Void B :: set_ab (void)

{

a=5; b=10;

}

int B :: get_a() B

{

return a;

 }

Void B :: show_a()

{

Cout<< ”a= “ << a << ”\n”;

}

Void B :: mul()

{

c = b * get_a ();

}

Void B :: display()

{

Cout<< ”a= “ << get_a<< ”\n”;

Cout<< ”b= “ << b << ”\n”;

Cout<< ”c = “ << c << ”\n\n”;

}

//--

int main ()

{

D d;

d.set_ab ();

d.mul ();

d.show_a ();

d.display ();

d.b = 20;

d.mul ();

d.display ();

return 0;

}

OUTPUT:

a = 5

a = 5

b = 10

c = 50

a = 5

b = 20

c = 100

The class D is a public derivation of the base class B. Therefore, D inherits all the

public members of B and retains their visibility. Thus, a public member of the

base class B is also a public member of the derived class D. The private members

of B cannot inherited by D. The class D, in effect, will have more members than

what it contains at the time of declaration.

MAKING A PRIVATE MEMBER INHERITABLE:

 If the private data needs to be inherited by a derived class. Modifying the

visibility limit of the private member by making it public. It accessible to all the

other functions of the program, thus taking away the advantage of data hiding.

 C++ provides a third visibility modifier, protected, which serve a limited

purpose in inheritance. A member declared as protected is accessible by the

member functions within its class and any class immediately derived from it. It

cannot be accessed by the functions outside these two classes. A class can now

use all three visibility modes.

class alpha

{

private: // optional

… // visible to member functions

… // within its class

protected:

… // visible to member functions

… // of its own and that of derived class

Public:

… // visible to all functions

… // in the program

};

When a protected member is inherited in public mode, it becomes protected in

the derived class too and therefore is accessible by the member functions of the

derived class. A protected member, inherited in the private mode derivation,

become private in the derived class.

The keyword private, protected, and public may appear in any order and any

number of times in the declaration of a class.

class beta

{

protected:

…

public:

…

private:

…

public:

…

};

Is a valid class definition.

class beta

{

…

…

protected:

…

public:

…

}

It is also possible to inherit a base class in protected made. In protected derivation,

both the public and protected members of the base class become protected

members of the derived class.

Visibility of inherited members:

Base class visibility public Derived class visibility protected derivation

 Derivation

Private Not inherited Not inherited Not inherited

Protected Protected Private Protected

Public Public Private Protected

1. A function that is a friend of the class.

2. A member function of a class that is a friend of the class.

3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have

direct access to both the private and protected data, the member functions of a

derived class class can directly access only the protected data. However, they can

access private data through the member functions of the based class.

MULTILEVEL INHERITANCE:

 The class A serves as a base class for the derived class B, which in turn serves

as a base class for the derived class C. The class B is known as intermediate base

class since it provides a link for the inheritance between A and C. The chain ABC

is known as inheritance path.

A derived class with multilevel inheritance is declared as follows:

Class A{…}; // Base class

Class B: public A {…}; // B derived from A

Class C: public B {…}; // C derived from B

A base class

B intermediate base class

C Derived class

This process can be extended to any number of levels.

PROGRAM:

#include <iostream>

using namespace std;

class student

{

protected:

int roll_number;

public:

void get_number(int);

void put_number(void);

};

void student :: get_number(int a)

{

roll_number = a;

}

void student :: put_number()

{

cout<< “Roll number;” << roll_number<<”\n”;

}

class test : public student // first level derivation

{

protected:

float sub1;

float sub2;

public:

void get_marks (float,float);

void put_marks(void);

};

void test :: get_marks(float x, float y)

{

sub1 = x;

sub2 = y;

}

void test :: put_marks()

{

cout<< “Marks in SUB1= ” << sub1<<”\n”;

cout<< “Marks in SUB2= ” << sub2<<”\n”;

}

Class result : public test // second level kderivation

{

Float total;

Public:

Void display(void);

};

Void result :: display(void)

{

total= sub1+sub2;

put_number();

put_marks();

cout<< “Total = ”<< total << “\n”;

}

int main ()

{

result student1; // student1 created

student1.get_number(111);

student1.get_marks(75.0,59.5);

student1.diaplay();

return 0

}

OUTPUT:

Roll number: 111

Marks in SUB1 = 75

Marks in SUB2 = 59.5

Total = 134.5

MULTIPLE INHERITANCE:

B-1 B-2 B-n

D

The syntax of a derived class with multiple base classes is as follows:

class D : visibility B-1, visibility B-2…

{

…

…(body of D)

…

};

Where visibility may be either public or private. The base classes are separated

by commas.

PROGRAM:

#include <iostream>

using namespace std;

class M

{

protected :

int m;

 public :

void get_m(int);

};

Class N

{

protected :

int n;

 public :

void get_n(int);

};

Class p : public M, public N

{

Public:

Void display(void);

};

Void M :: get_m(int x)

{

m=x;

}

Void N :: get_n(int x)

{

n=y;

}

Void p :: display(void)

{

Cout<< “m= ”<< m << “\n”;

Cout<< “n= ”<< n << “\n”;

Cout<< “m*n= ”<< m*n << “\n”;

}

int main()

{

P p;

p.get_m(10);

p.get_n(20);

p.display();

return 0

}

OUTPUT:

m=10

n=20

m*n=200

HIERARCHICAL INHERITANCE:

A

B C D

Additional members are added through inheritance to extend the capabilities of a

class. Another interesting application of inheritance is to use it as a support to the

hierarchical design of a program. Many programming can be cast into a hierarchy

where certain features of one level are shared by many others below that level.

Example: A hierarchical classification of students in a university.

Student

Arts Engineering Medical

Mech. Elec. Civil

In C++, such problems can be easily converted into class hierarchies. The base

class will include all the features that are common to the subclasses. A subclass

can be constructed by inheriting the properties of the base class. A subclass can

serve as a base class for the lower level classes and so on.

HYBRID INHERITANCE:

 Two or more types of inheritance to design a program. For instance, consider

the case of processing the student results discussed. Assume that we have to give

weightage for sports before finalizing the results. The weightage for sports is

stored in a separate class called sports. The new inheritance relationship between

the various classes would be shown

student

Test sports

Result

The sports class might look like;

class sports

{

protected:

float score;

public:

 void get_score(float);

void put_score(void);

};

The result will have both the multilevel and multiple inheritances and its

declaration would be as follows:

class result: public test, public sports

{

…

…

};

Where test itself is a derived class from student. That is

class test : public student

{

…

…

};

LIMITATIONS:

1. In inheritance, the base and inherited classes get tightly coupled. So

their independent use is difficult.

2. Wastage of memory and compiler overheads are the drawbacks of

inheritance.

VIRITUAL BASE CLASSES:

 Consider a situation where all the three kinds of inheritance, namely,

multilevel, multiple and hierarchical inheritance, are involved.

Grandparent

Parent 1 Parent 2

child

The duplication of inherited members due to these multiple paths can be avoided

by making the common base class as virtual class while declaring the direct or

intermediate base classes.

Class A

{

…

…

};

Class B1 : virtual public A

{

…

…

};

Class B2 : virtual public A

{

…

…

};

Class C : public B1, public B2

{

…

…

};

When a class is made a virtual base class, C++ takes necessary care to see that

only one copy of that class is inherited, regardless of how many inheritance paths

exist between the virtual base class and derived class.

ABSTRACT CLASSES:

 An abstract class is one that is not used to create objects. An abstract class is

designed only to act as a base class. It is a design concept in program development

and provides a base upon which other classes may be built.

 In real programming scenarios, the concept of abstract base classes holds great

significance. They are deliberately used in a program for creating derived classes

and are not meant for creating instance objects as demos.

The general form of using abstract class:

Class vechicle

{

Private:

data-type d1;

data-type d2;

public:

virtual void spec()=0;

};

Class LMV: public vehicle

{

Public:

Void spec ()

{

//LMV definition of spec function

}

};

Class HMV : public vehicle

{

Public:

Void spec()

{

//HMV definition of spec function

}

};

Class TW: public vehicle

{

Public:

Void spec()

{

//TW definition of spec function

}

};

CONSTRUCTORS IN DERIVED CLASSES:

 The constructors play an important role in initializing objects. No base class

constructor takes any arguments, the derived class need not have a constructor

function. However, if any base class contains a constructor with one or more

arguments, then it is mandatory for the derived class to have a constructor and

pass the arguments to the base class constructors. In case of multiple inheritance,

the base classes are constructed in the order in which they appear in the

declaration of the derived class. Similarly in a multi level inheritance, the

constructors will be executed in the order of inheritance. The constructor of the

derived class receives the entire list of values as its arguments and passes them

on to the base constructors in the order in which they are declared in the derived

class. The base constructors are called and executed before executing the

statements in the body of the derived constructor.

The general form of defining a derived constructor is

Derived_constructor

base1(arglist1),

base2(arglist2),

…

…

baseN(arglistN),

{

Body of derived constructor

}

C++ supports another method of initializing the class objects. This method uses what is

known as initialization list in the constructor function.

Constructor (arglist): initialization-section

{

Assignment-section

}

The assignment section is nothing but the body of the constructor function and is used

to assign initial values to its data members. The part immediately following the colon

is known as the initialization section.

MEMBER CLASSES: NESTING OF CLASSES:

 Inheritance is the mechanism of deriving certain properties of one class into

another. C++ supports yet another way of inheriting properties of one class into

another. This approach takes a view that an object can be a collection of many

other objects. That is, a class can contain objects of other classes as its members.

class alpha{…};

class beta{…};

class gamma

{

alpha a;

beta b;

…

};

All objects of gamma class will contain the objects a and b. This kind of

relationship is called containership or nesting. An independent object is created

by its constructor when it is declared with arguments.

class gamma

{

…

alpha a;

beta b;

public:

gamma(arglist): a (arglist1), b (arglist2)

{

}

};

Example:

gamma (int x, int y, float z) : a(x), b(x,z)

{

Assignment section (for ordinary other members)

}

The constructors of the member objects are called in the order in which they are

declared in the nested class.

