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Chapter II FUNDAMENTAL PROPERTIES OF BOUNDED LINEAR
OPERATORS
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

2.1.1 Norm of bounded linear operator

Definition ( Linear operator)
A mapping T from a Hilbert space H to H is said to be a linear
operator if T satisfies the following (i) and ( ii) :
(i) additive : T(x + y) = Tx + Ty for any x, y ∈ H.
(ii) homogeneous: T(αx) = αTx for any x ∈ H and any complex
number α.

Identity operator
The identity operator I is defined by Ix = x for all x ∈ H.

Zero operator
The zero operator 0 is defined by 0x = 0 for all x ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition
A linear operator T on a Hilbert space H is said to be bounded if there
exists c > 0 such that

∥Tx∥ ≤ c∥x∥ for all x ∈ H.

∥T∥is defined by

(1) ∥T∥ = inf{c > 0 : ∥Tx∥ ≤ c∥x∥for all x ∈ H}.

∥T∥ is said to be the operator norm of T.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition (B(H))
B(H) is defined as the set of all bounded linear operators on a Hilbert
space H.

Needless to say, B(H) can be regarded as an extension of the set of all
2 × 2 matrices.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
For any bounded linear operator T,

∥T∥ = sup{∥Tx∥ : ∥x∥ = 1}.

Proof
Put b = sup{∥Tx∥ : ∥x∥ = 1}.
If T is bounded, then

∥Tx∥ ≤ ∥T∥∥x∥ = ∥T∥ for ∥x∥ = 1,

Therefore b ≤ ∥T∥ by the definition ( 1).
Conversely for any vector x ∈ H,

∥Tx∥ =

∥∥∥∥T
(
∥x∥ x

∥x∥

)∥∥∥∥ =

∥∥∥∥T
(

x
∥x∥

)∥∥∥∥ ∥x∥ = b∥x∥.

Therefore ∥T∥ ≤ b.

Hence ∥T∥ = b = sup{∥Tx∥ : ∥x∥ = 1}.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
For any bounded linear operator T, ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}

Proof
Since {x : ∥x∥ = 1} ⊆ {x : ∥x∥ ≤ 1}

sup{∥Tx∥ : ∥x∥ ≤ 1} ≥ sup{∥Tx∥ : ∥x∥ = 1} = ∥T∥.

Conversely

sup{∥Tx∥ : ∥x∥ ≤ 1} ≤ sup{∥Tx∥
∥x∥ : ∥x∥ ≤ 1}

= sup{∥Ty∥ : ∥y∥ = 1}
= ∥T∥ Since ∥T∥ = sup{∥Tx∥ : ∥x∥ = 1}

Hence ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
For any bounded linear operator T, the following formula holds:

∥T∥ = sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1}.

Proof

By Schwarz’s inequality, |(Tx, y)| ≤ ∥Tx∥∥y∥ = ∥Tx∥ for ∥y∥ = 1.

Therefore, sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1} ≤ sup{∥Tx∥ : ∥x∥ = 1}

Therefore, using the result ∥T∥ = sup{∥Tx∥ : ∥x∥ = 1}, we get

sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1} ≤ ∥T∥.

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
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On the otherhand,

sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1} ≥ sup{|(Tx, Tx
∥Tx∥ )| : ∥x∥ = 1}

( Since ∥ Tx
∥Tx∥∥ =

∥Tx∥
∥Tx∥ = 1)

Therefore

sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1} = sup{∥Tx∥ : ∥x∥ = 1} = ∥T∥

( Since |(Tx, Tx
∥Tx∥ )| =

1
∥Tx∥∥Tx∥2 = ∥Tx∥ and ∥T∥ = sup{∥Tx∥ : ∥x∥ = 1})

Hence
∥T∥ = sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1}.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
For any linear operator T on a Hilbert space H, the following
statements are mutually equivalent:
(i) T is bounded.
(ii) T is continuous on the whole space H.
(iii) T is continuous on some point x0 on H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof

To prove (i) =⇒ (ii)
Assume that T is bounded.
Then ∥Tx∥ ≤ ∥T∥∥x∥ for all x ∈ H.
Let x0 ∈ H.
Let {xn} be any sequence in H converging to x0.
Hence ∥xn − x0∥ → 0.

Then ∥Txn − Tx0∥ = ∥T(xn − x0)∥ ≤ ∥T∥∥xn − x0∥ → 0.

That is, xn → x0 =⇒ Txn → Tx0. Hence T is continuous at x0.
Since x0 in H is arbitrary,
T is continuous on the whole space H.
Hence (i) =⇒ (ii)
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To Prove (ii) =⇒ (iii)
Since T is continuous on the whole space H,
T is continuous on all points on H.
Hence T is continuous on some point x0 on H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To Prove (iii) =⇒ (i)
Assume that T is continuous on some point x0 on H.
To prove that T is bounded.
On the contrary, assume that T is not bounded.
Then for each natural number n, there exists a nonzero vector xn such
that

∥Txn∥ > n∥xn∥.

Put yn = xn
n∥xn∥ .

Then ∥yn∥ = 1
n

Therefore x0 + yn → x0,

but ∥T(x0 + yn)− Tx0∥ = ∥Tyn∥ = ∥Txn∥
n∥xn∥ > n∥xn∥

n∥xn∥ = 1.
This shows that T is not continuous at x0 which is contrary to (iii).
Hence T is bounded.

Hence (i) =⇒ (ii) =⇒ (iii) =⇒ (i)
Hence (i),(ii) and (iii) are equivalent.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
Let S and T be bounded linear operators on a Hilbert space H. Then
the following properties hold:
(i) ∥αT∥ ≤ |α|∥T∥ for any α ∈ C.
(ii) ∥S + T∥ ≤ ∥S∥+ ∥T∥.
(iii) ∥ST∥ ≤ ∥S∥∥T∥.

Proof
(i)Consider

∥αT∥ = sup{∥(αT)x∥/∥x∥ = 1}.
= sup{|α|∥Tx∥/∥x∥ = 1}
= |α| sup{∥Tx∥/∥x∥ = 1}
= |α|∥T∥

Hence ∥αT∥ = |α|∥T∥
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Consider

∥S + T∥ = sup{∥(S + T)x∥/∥x∥ = 1}.
= sup{∥Sx + Tx∥/∥x∥ = 1}
≤ sup{∥Sx∥+ ∥Tx∥/∥x∥ = 1}
≤ sup{∥Sx∥/∥x∥ = 1}+ sup{∥Tx∥/∥x∥ = 1}
= ∥S∥+ ∥T∥

Hence∥S + T∥ ≤ ∥S∥+ ∥T∥
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Consider

∥ST∥ = sup{∥(ST)x∥/∥x∥ = 1}.
= sup{∥S(Tx)∥/∥x∥ = 1}

Since S is bounded, ∥Sx∥ ≤ ∥S∥∥x∥, for all x inH.

Hence ∥S(Tx)∥ ≤ ∥S∥∥Tx∥ for all x ∈ H.

Since T is bounded, ∥Tx∥ ≤ ∥T∥∥x∥, for all x inH.

Hence ∥S(Tx)∥ ≤ ∥S∥∥T∥∥x∥ for all x ∈ H.

Hence sup{∥S(Tx)∥/∥x∥ = 1} ≤ ∥S∥∥T∥

Hence ∥ST∥ ≤ ∥S∥∥T∥

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

2.1.2 Adjoint operator
In what follows, an operator means a bounded linear operator on a
complex Hilbert space H without specified.

Let T be an operator. For each fixed y ∈ H, consider a function f
defined by

f(x) = (Tx, y) on H.

According to Riesz’s representation theorem, there exists uniquely
u ∈ H such that

f(x) = (Tx, y) = (x,u) for all x ∈ H.

Definition
T∗, the adjoint operator of T, is defined by

(Tx, y) = (x, u) = (x, T∗y) for x, y ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem
Let T be an operator on a Hilbert space H. Then T∗ is also an operator
on H, and the following properties hold:
(i) ∥T∗∥ = ∥T∥.
(ii) (Tl + T2)

∗ = T∗
1 + T∗

2.
(iii) (αT)∗ = αT∗ for any α ∈ C.
(iv) (T∗)∗ = T.
(v)(ST)∗ = T∗S∗.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof

T∗ is Linear
Let y1, y2 ∈ H and α, β ∈ C.
For any x ∈ H,

(x,T∗(αy1 + βy2)) = (Tx, αy1 + βy2)

= (Tx, αy1) + (Tx, βy2)

= α(Tx, y1) + β(Tx, y2)

= α(x,T∗y1) + β(x,T∗y2)

= (x, αT∗y1) + (x, βT∗y2)

= (x, αT∗y1 + βT∗y2)

Hence T∗(αy1 + βy2) = αy1 + βy2.
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T∗ is bounded
For y ∈ H,

∥T∗y∥2 = (T∗y,T∗y) = (TT∗y, y) ≤ ∥TT∗y∥∥y∥ ≤ ∥T∥∥T∗y∥∥y∥
=⇒ ∥T∗y∥ = ∥T∥∥y∥

=⇒ sup{∥T∗y∥/∥y∥ = 1} ≤ ∥T∥
=⇒ ∥T∗∥ ≤ ∥T∥ . . . (1)

Hence T∗ is bounded linear operator on H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (i)
If T is an operator, then T∗ is also an operator with ∥T∗∥ ≤ ∥T∥.
Hence T∗∗ is also an operator and ∥(T∗)∗∥ ≤ ∥T∗∥. …(2)
For any x, y ∈ H,

(y, (T∗)∗x) = (T∗y, x) = (x,T∗y) = (Tx, y) = (y,Tx)

=⇒ (T∗)∗ = T . . . (3)

From(2) and (3), ∥T∥ ≤ ∥T∗∥ . . . (4)

From(1) and (4), ∥(T∗)∥ = ∥T∥

Hence (i) is proved.
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To prove (ii)
For x, y ∈ H,

(x, (T1 + T2)
∗) = ((T1 + T2)x, y)

= (T1x + T2x, y)
= (T1x, y) + (T2x, y)
= (x,T∗

1y) + (x,T∗
2y)

= (x,T∗
1y + T∗

2y)
= (x, (T∗

1 + T∗
2)y)

(T1 + T2)
∗ = (T∗

1 + T∗
2)

Hence (ii) is proved.
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (iii)
For x, y ∈ H, and α ∈ C,

(x, (αT)∗y) = ((αT)x, y) = (αTx, y) = α(Tx, y) = α(x,T∗y) = (x, αT∗y)

Hence (αT)∗ = αT∗
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (iv)
From (3), (T∗)∗ = T. Hence (iv) is proved.

To prove (v)
For x, y ∈ H,

(x, (ST)∗y) = ((ST)x, y) = (S(Tx), y) = (Tx,S∗y) = (x,T∗S∗y)

Therefore (ST)∗ = T∗S∗.

Hence (v) is proved. Hence the theorem.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Corollary
Let T be an operator. Then
(i) ∥T∗T∥ = ∥TT∗∥ = ∥T∥2.
(ii) T∗T = 0 if and only if T = 0.

To prove (i)
Since ∥T∗∥ = ∥T∥,

∥T∗T∥ ≤ ∥T∗∥∥T∥ = ∥T∥2. . . . (1)

Conversely,

∥Tx∥2 = (Tx, Tx) = (T∗Tx, x) ≤ ∥T∗Tx∥∥x∥ ≤ ∥T∗T∥∥x∥2

Therefore for x ∈ H with ∥x∥ = 1,

∥Tx∥2 ≤ ∥T∗T∥

=⇒ sup{∥Tx∥2/∥x∥ = 1} ≤ ∥T∗T∥

=⇒ ∥T∥2 ≤ ∥T∗T∥ . . . (2)
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

From (1) and (2), ∥T∥2 = ∥T∗T∥ . . . (3)

Replacing T by T∗ in (3), we get ∥T∗∥2 = ∥(T∗)∗T∗∥…(4)
Since ∥T∗∥ = ∥T∥, we get ∥T∥2 = ∥TT∗∥…(5)

From (3) and (5), ∥T∗T∥ = ∥TT∗∥ = ∥T∥2.

To prove (ii)
Assume T∗T = 0. Then
0 = ((T∗T)x, x) = (T∗(Tx), x) = (Tx, Tx) = ∥Tx∥2.
Hence Tx = 0 for all x ∈ H and hence T = 0.
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

2.1.3 Generalized polarization identity and its
application

Definition ( 1)
A bilinear functional f(x, y) on a complex vector space X is defined as
follows:

f(x, y) = gy(x) = hx(y)

is a complex valued function with respect to x and y such that gy(x) is
a linear functional on x and hx(y) is a conjugate linear functional on y,
that is, hx(αy) = αhx(y) for any α ∈ C.

Theorem (1)
If f(x, y) is a bilinear functional on a complex vector space X, then

f(x, y) =
1
4 {f(x + y, x + y)− f(x − y, x − y)}

+ i 14 {f(x + iy, x + iy)− f(x − iy, x − iy)}

holds for any x, y ∈ X.
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2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (2 Generalized polarization identity )
If T is an operator on a Hilbert space H, then

(Tx, y) = {(T(x + y), x + y)− (T(x − y), x − y)}
+ i{(T(x + iy), x + iy)− (T(x − iy), x − iy)}

holds for any x, y ∈ H.

Proof:
Define f on H × H as

f(x, y) = (Tx, y) for all x, y,∈ H.

Now for fixed y ∈ H, define gy on H as

gy(x) = f(x, y) for all x ∈ H.
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Then for x1, x2 ∈ H,

gy(x1 + x2) = f(x1 + x2, y)
= (T(x1 + x2), y)
= (Tx1 + Tx2, y)
= (Tx1, y) + (Tx2, y)
= f(x1, y) + f(x2, y)
= gy(x1) + gy(x2)

Also for α ∈ C and x ∈ H,

gy(αx) = f(αx, y)
= (T(αx), y)
= (αTx, y)
= α(Tx, y)
= αf(x, y)
= αgy(x)

Hence gy(x) is linear on x on H.Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Now for fixed x ∈ H, define hx on H as

hx(y) = f(x, y) for all y ∈ H.

Then for x1, x2 ∈ H,

hx(y1 + y2) = f(x, y1 + y2)

= (Tx, y1 + y2)

= (Tx, y1) + T(x, y2)

= f(x, y1) + f(x, y2)

= hx(y1) + hx(y2)

Also for α ∈ C and y ∈ H,

hx(αy) = f(x, αy)
= (Tx, αy)
= α(Tx, y)
= αf(x, y)
= αhx(y)
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Hence hx(y) is conjugate linear on y on H.
Therefore f(x, y) = (Tx, y) is a bilinear functional on a Hilbert space H.
Therefore from the result, ”If f(x, y) is a bilinear functinal on a
complex vector space X, then

f(x, y) =
1
4 {f(x + y, x + y)− f(x − y, x − y)}

+ i 14 {f(x + iy, x + iy)− f(x − iy, x − iy)}

holds for any x, y ∈ X.” we get

(Tx, y) = {(T(x + y), x + y)− (T(x − y), x − y)}
+ i{(T(x + iy), x + iy)− (T(x − iy), x − iy)}

holds for any x, y ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (3)
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i) , (ii) and (iii) are mutually equivalent:
(i) T = 0.
(ii) (Tx, x) = 0 for all x ∈ H.

(iii) (Tx, y) = 0 for all x, y ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof:
Assume (ii) that (Tx, x) = 0 for all xinH.
Hence for all x, y ∈ H,

(Tx, y) = {(T(x + y), x + y)− (T(x − y), x − y)}
+ i{(T(x + iy), x + iy)− (T(x − iy), x − iy)}

= 0

Hence (ii) =⇒ (iii)
On the other hand, assume (Tx, y) = 0 for all x, y ∈ H.
Taking y=x, we get (Tx, x) = 0 for all xinH.
Hence (iii) =⇒ (ii)
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Assume (i) that T = 0.
Then Tx = 0 for every xinH.
Hence (Tx, y) = 0 for every x, yinH.
Hence (i) =⇒ (iii)
Conversely assume that (Tx, y) = 0 for every x, y ∈ H.
Then taking y = Tx, (Tx,Tx) = 0 for every x ∈ H.
=⇒ ∥Tx∥2 = 0 for every x ∈ H.
=⇒ Tx = 0 for every x ∈ H.
Hence T = 0 for every x ∈ H.
Hence (iii) =⇒ (i) Therefore (i) =⇒ (iii) =⇒ (ii)
Hence (i) , (ii) and (iii) are mutually equivalent.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition
The special types of operators are defined as follows:

self-adjoint operator : T∗ = T.

normal operator : T∗T = TT∗.

quasinormal operator : T(T∗T) = (T∗T)T.

projection operator : T2 = T(idempotent) and T∗ = T.

unitary operator : T∗T = TT∗ = I.
isometry operator : T∗T = I.
positive operator (denoted by T ≥ 0 ): (Tx, x) ≥ 0 for all x ∈ H.

hyponormal operator : T∗T ≥ TT∗,
where A ≥ B means A − B ≥ 0 for self-adjoint operators A and B.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (4)
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i) , (ii) , (iii) and (iv) hold:
(i) T is normal if and only if ∥Tx∥ = ∥T∗x∥ for all x ∈ H.

(ii) T is self-adjoint if and only if (Tx, x) is real for all x ∈ H.

(iii) T is unitary if and only if ∥Tx∥ = ∥T∗x∥ = ∥x∥ for all x ∈ H.

(iv) T is hyponormal if and only if ∥Tx∥ ≥ ∥T∗x∥ for all x ∈ H.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

corollary 5
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i), (ii) and (iii) are equivalent:
(i) T is isometry.
(ii) ∥Tx∥ = ∥x∥ for all x ∈ H.

(iii) (Tx,Ty) = (x, y) for all x, y ∈ H.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (6 Cartesian form)
If T is an operator, there exist self-adjoint operators A and B such that
T = A + iB. Necessarily A = 1

2 (T + T∗) and B = 1
2i (T − T∗),

respectively.

Proof
Define A and B as A = 1

2 (T + T∗) and B = 1
2i (T − T∗).

Then A∗ = ( 1
2 (T + T∗))∗ = 1

2 (T∗ + T) = A
and B∗ = ( 1

2i (T − T∗))∗ = 1
−2i (T∗ − T) = 1

2i (T − T∗) = B.
Hence A and B are both self-adjoint and
A + iB = 1

2 (T + T∗) + i 1
2i (T − T∗) = T.

Conversely suppose that T = C + iD, where C and D are self-adjoint.
Then T + T∗ = C + iD + C − iD = 2C and
T − T∗ = C + iD − C + iD = 2iD.
Thus C = 1

2 (T + T∗) = A andD = 1
2i (T − T∗) = B.

Hence the result.
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

2.1.4 Several properties on projection operator

A Hilbert space H can be decomposed into H = M + M⊥.
By the theorem, ”Let M be a closed subspace of a Hilbert space H. Any
vector x in H can be uniquely represented as follows:

x = y + z where y ∈ M and z ∈ M⊥ ”

for any x ∈ H, x = y + z, where y ∈ M and z ∈ M⊥.
Define P : H → H as Px = y
This transformation P defines a linear operator from H onto M.
This P is said to be an orthogonal projection of H onto M and it is
denoted by PM.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition
R(T), the range of T, is defined by R(T) = {Tx : x ∈ H}, and N(T),
the kernel of T, is defined by N(T) = {x ∈ H : Tx = 0}

Theorem (1)
If PM is a projection onto a closed subspace M of a Hilbert space H,
then PM is an operator such that P∗

M = PM and P2
M = PM. Conversely

if P is an operator such that P∗ = P and P2 = P, then M = R(P) is a
closed subspace and P = PM, i.e., P is a projection onto M.
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2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof
Let PM be a projection onto a closed subspace M of a Hilbert space H.
To prove that PM is an operator such that P∗

M = PM and P2
M = PM.

To prove: PM is linear
Let x1, x2 ∈ H and α, β ∈ C.
Since H = M ⊕ M⊥,
x1 = y1 ⊕ z1 and x2 = y2 ⊕ z2, where y1, y2 ∈ M and z1, z2 ∈ M⊥.
Then PMx1 = y1, PMx2 = y2 Consider

PM(αx1 + βx2) = PM(α(y1 ⊕ z1) + β(y2 ⊕ z2))

= PM((αy1 ⊕ αz1) + (βy2 ⊕ βz2))

= PM((αy1 + βy2)⊕ (αz1 + βz2))

= (αy1 + βy2) = αPMx1 + βPMx2

( Since (αy1 + βy2) ∈ M and (αz1 + βz2) ∈ M⊥)

Hence PM is an linear operator.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove: PM is bounded
Let x ∈ H. Then x = y + z, where y ∈ M and z ∈ M⊥.
Now by definition, PMx = y.
Therefore, ∥PMx∥2 = ∥y∥2 ≤ ∥y∥2 + ∥z∥2 = ∥x∥2

Hence ∥PMx∥ ≤ ∥x∥.
Hence PM is bounded.
Therefore PM is a bounded linear operator.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove P∗
M = PM

Let x1, x2 ∈ H. Then x1 = y1 ⊕ z1 and x2 = y2 ⊕ z2, where y1, y2 ∈ M
and z1, z2 ∈ M⊥.
Also PMx1 = y1, PMx2 = y2

⟨PMx1, x2⟩ = ⟨y1, x2⟩
= ⟨y1, y2 + z2⟩
= ⟨y1, y2⟩+ ⟨y1, z2⟩
= ⟨y1, y2⟩+ 0
= ⟨y1, y2⟩+ ⟨z1, y2⟩
= ⟨y1 + z1, y2⟩
= ⟨x1,PMx2⟩
= ⟨P∗

Mx1, x2⟩

Hence P∗
M = PM.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove P2
M = PM.

If x ∈ H, then PMx ∈ M ⊆ H.
Therefore, PM(PMx) = PMx
=⇒ P2

Mx = PMx.

Hence PM is an operator such that P∗
M = PM and P2

M = PM.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Conversely, assume that P is an operator such that P = P∗ = P2.
Let M = R(P).
To prove: M = R(P) is a closed subspace and P = PM, i.e., P is a
projection onto M.
Let x be a limit point of M = R(P).
Hence there exists a sequence {Pxn} of points in M = R(P) such that

Pxn → x.

=⇒ P2xn → Px.( Since Pis continuous. )

=⇒ Pxn → Px. (Since P2 = P.)

Hence Px = x.
Therefore x ∈ R(P) = M.
Hence M = R(P) contains all its limit points.
Hence M is closed.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Consider

⟨(I − P)x,Px⟩ = ⟨x − Px,Px⟩
= ⟨x,Px⟩ − ⟨Px,Px⟩
= ⟨x,Px⟩ − ⟨x,P∗Px⟩
= ⟨x,Px⟩ −

⟨
x,P2x

⟩
= ⟨x,Px⟩ − ⟨x,Px⟩
= 0

Therefore (I − P)(x) ⊥ Px.
Hence x = Px ⊕ (I − P)x, where Px ∈ M and (I − P)x ∈ M⊥.
Therefore PMx = Px for all x ∈ M.
Hence P = PM is a projection onto M. Hence the theorem.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (2)
If an operator P is a projection, then
(i) ∥x∥2 = ∥Px∥2 + ∥(I − P)x∥2.

(ii) (Px, x) = ∥Px∥2 ≤ ∥x∥2.

(iii) I ≥ P ≥ 0.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof
Let P be a projection operator.

=⇒ P = P∗ = P2.

To prove (i)

∥Px∥2 + ∥(I − P)x∥2 = (Px,Px) + ((I − P)x, (I − P)x)
= (Px,Px) + (x, x)− (x,Px)− (Px, x) + (Px,Px)
= (P2x, x) + ∥x∥2 − (Px, x)− (Px, x) + (P2x, x)
= (Px, x) + ∥x∥2 − 2(Px, x) + (Px, x)
= ∥x∥2

Hence (i) is proved.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (ii)
For any x ∈ H,

(Px, x) = (P2x, x) = (P∗Px, x)
= (Px,Px)
= ∥Px∥2

≤ ∥Px∥2 + ∥(I − P)x∥2

= ∥x∥2

Hence (Px, x) = ∥Px∥2 ≤ ∥x∥2.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (iii)
For any x ∈ H,

((I − P)x, x) = (x, x)− (Px, x) = ∥x∥2 − ∥Px∥2 ≥ 0.

Hence I − P ≥ 0. Therefore I ≥ P.
Also (Px, x) = ∥Px∥2 ≥ 0 and hence P ≥ 0.
Therefore I ≥ P ≥ 0.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (3)
Let M1 and M2 be two closed subspaces, and let P1 and P2 be two
projections onto Ml and M2, respectively. Then the following (i) and
(ii) hold:
(i) M1 ⊥ M2 ⇔ P1P2 = 0 ⇔ P2P1 = 0.
(ii) M1 ⊆ M2 ⇔ P1P2 = P1 ⇔ P2P1 = P1 ⇔ P1 ≤ P2 ⇔ ∥P1x∥ ≤

∥P2x∥ for all x ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Proof

To prove (i)
Let M1 ⊥ M2.
Since P2 is a projection on M2, for any x ∈ H, P2x ∈ M2.

⇒ P2x ∈ M⊥
1 ( Since M1 ⊥ M2,M2 ⊆ M⊥

1 .)

⇒ P1(P2x) = 0 (Since P1 is projection onto M1)

⇒ P1P2x = 0, for all x ∈ H.

⇒ P1P2 = 0.

Hence M1 ⊥ M2 ⇒ P1P2 = 0…(1)
Now P1P2 = 0 ⇔ (P1P2)

∗ = 0∗ ⇔ (P∗
2P∗

1) = 0∗ ⇔ P2P1 = 0.
Hence P1P2 = 0 ⇔ P2P1 = 0. …(2)
Now if P2P1 = 0,
then for any x1 ∈ M1, P2x1 = P2(P1x1) = P2P1x1 = 0.
=⇒ x1 ∈ M⊥

2 .
Therefore M1 ⊆ M⊥

2 and hence M1 ⊥ M2.
Hence P2P1 = 0 =⇒ M1 ⊥ M2. …(3)
From (1),(2) and (3), M1 ⊥ M2 ⇔ P1P2 = 0 ⇔ P2P1 = 0.Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (ii)

Assume that M1 ⊆ M2. Then for any x ∈ H,

P1x ∈ M1 ⊆ M2.( Since P1 is projection onto M1.)

=⇒ P2(P1x) = (P1x)( Since P2 is projection onto M2.)

=⇒ P2P1x = P1x, for all x ∈ H.

=⇒ P2P1 = P1.

Hence M1 ⊆ M2 =⇒ P2P1 = P1.…(4)

Now P2P1 = P1 ⇔ (P2P1)
∗ = P∗

1

⇔ P∗
1P∗

2 = P∗
1

⇔ P1P2 = P1

Hence P2P1 = P1 ⇔ P1P2 = P1. . . . (5)
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Let P1P2 = P1. Then for any x ∈ H,

(P1x, x) = ∥P1x∥2 = ∥P1P2x∥2 ≤ ∥P2x∥2 = (P2x x).

=⇒ (P1x, x) ≤ (P2x x) and hence P1 ≤ P2.

Therefore P1P2 = P1 =⇒ P1 ≤ P2.…(6)

Let P1 ≤ P2. Then

(P1x, x) ≤ (P2x x), for all x ∈ H.

=⇒ ∥P1x∥2 ≤ ∥P2x∥2 for all x ∈ H.

=⇒ ∥P1x∥ ≤ ∥P2x∥ for all x ∈ H.

Hence P1 ≤ P2 =⇒ ∥P1x∥ ≤ ∥P2x∥ for all x ∈ H. . . . (7)

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Suppose that ∥P1x∥ ≤ ∥P2x∥ for all x ∈ H.
Then for any x1 ∈ M1, using the result,
” If P is a projection, then ∥x∥2 = ∥Px∥2 + ∥(I − P)x∥2,” we get

∥P2x1∥2 + ∥(I − P2)x1∥2 = ∥x1∥2 = ∥Px1∥2 ≤ ∥P2x1∥2.

=⇒ ∥(I − P2)x1∥2 = 0.
=⇒ (I − P2)x1 = 0.
=⇒ x1 − P2x1 = 0
=⇒ x1 = P2x1 ∈ M2.

=⇒ M1 ⊆ M2.

Hence ∥P1x∥ ≤ ∥P2x∥ for all x ∈ H. =⇒ M1 ⊆ M2. . . . (8)

From (4),(5),(6),(7)and (8), we get
M1 ⊆ M2 ⇔ P1P2 = P1 ⇔ P2P1 = P1 ⇔ P1 ≤ P2 ⇔ ∥P1x∥ ≤ ∥P2x∥
for all x ∈ H.
Hence the theorem.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

From (4),(5),(6),(7)and (8), we get
M1 ⊆ M2 ⇔ P1P2 = P1 ⇔ P2P1 = P1 ⇔ P1 ≤ P2 ⇔ ∥P1x∥ ≤ ∥P2x∥
for all x ∈ H.
Hence the theorem.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (4)
Let P1 and P2 be two projections onto M1 and M2 , respectively. Then
(i) P = P1P2 is a projection iff P1P2 = P2P1.

(ii) If P1P2 = P2P1, then P = P1P2 is a projection onto M1 ∩ M2.

Proof

To prove (i)
Assume that P = P1P2 is a Projection. Then

P∗ = P.
=⇒ (P1P2)

∗ = P1P2

=⇒ P∗
2P∗

1 = P1P2

=⇒ P2P1 = P1P2
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

C
onversely,assume that P1P2 = P2P1.
Then P∗ = (P1P2)

∗ = P∗
2P∗

1 = P2P1 = P1P2 = P.
Also

P2 = (P1P2)(P1P2) = P1(P2P1)P2

= P1(P1P2)P2

= (P1P1)(P2P2)

= P2
1P2

2

= P1P2

= P

Hence P∗ = P and P2 = P.
Hence P = P1P2 is a projection.
Hence P = P1P2 is a projection iff P1P2 = P2P1. Hence (i) is proved.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

To prove (ii)
Assume that P1P2 = P2P1.
Then by (i), P = P1P2 is a projection.
Let x ∈ M1 ∩ M2.

=⇒ x ∈ M1 and x ∈ M2

=⇒ x = P1x and x = P2x
=⇒ x = P1x = P2x
=⇒ x = P1(P2x) = P1P2x
=⇒ x ∈ R(P1P2)

=⇒ M1 ∩ M2 ⊆ R(P1P2). . . . (1)
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Conversely,
R(P1P2) ⊆ R(P1) = M1.

and R(P1P2) = R(P2P1) ⊆ R(P2) = M2.

Hence R(P1P2) ⊆ M1 ∩ M2 …(2)
From (1) and (2), we get R(P1P2) = M1 ∩ M2 . Hence P = P1P2 is a
projection onto M1 ∩ M2.
Hence (ii) is proved.
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2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (5)
Let P1 and P2 be two projections onto M1 and M2 , respectively such
that P1P2 = P2P1.
Then M1 + M2 is a closed subspace and P1 + P2 − P1P2 is the
projection onto M1 + M2.

Proof
Let P1 and P2 be two projections onto M1 and M2 such that
P1P2 = P2P1.

Let P = P1 + P2 − P1P2.

Then P∗ = P∗
1 + P∗

2 − P∗
1P∗

2.

= P1 + P2 − P2P1

= P1 + P2 − P1P2.

= P
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Also P2 = PP = (P1 + P2 − P1P2)(P1 + P2 − P1P2)

= P2
1 + P1P2 − P2

1P2 + P2P1 + P2
2 − P2P1P2

− P1P2P1 − P1P2
2 + (P1P2)

2

Since P1,P2 and P1P2 are projections,

P2
1 = P1,

P2
2 = P2,

(P1P2)
2 = P1P2,

P2P1P2 = P1P2P2 = P1P2,

and P1P2P1 = P1P1P2 = P1P2.

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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2.1.1 Norm of bounded linear operator
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2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Hence P2 = P1 + P1P2 − P1P2 + P2P1 + P2 − P1P2

− P1P2 − P1P2 + P1P2

= P1 + P2 − P1P2 = P

Hence P∗ = P and P2 = P.
Hence P = P1 + P2 − P1P2 is a projection.
Since M1 and M2 are closed, M1 + M2 is a closed subspace of H.

To show that P is the projection onto M1 + M2.

Since P1 and P2 are projections onto M1 and M2 respectively,

R(P1) = M1,

R(P2) = M2,

P1x1 = x1 for x1 ∈ M1 and P2x2 = x2 for x2 ∈ M2.
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Therefore Px1 = (P1 + P2 − P1P2)x1

= P1x1 + P2x1 − P1P2x1

= P1x1 + P2x1 − P2P1x1

= x1 + P2x1 − P2x1

= x1.

Similarly Px2 = x2.

Therefore x1 + x2 = Px1 + Px2 = P(x1 + x2) ∈ R(P).
=⇒ M1 + M2 ⊆ R(P).
Conversely,
Since P = P1 + P2 − P1P2 = P1 + P2 − P2P1 = P1 + P2(I − P1)
R(P) ⊆ R(P1) + R(P2(I − P1)) = R(P1) + R(P2) = M1 + M2.
Hence R(P) = M1 + M2
Hence P is the projection onto M1 + M2. Hence the theorem.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (6)
Let P1 and P2 be two projections onto M1 and M2 , respectively. Then
(i) P = P1 + P2 is a projection iff M1 ⊥ M2.

(ii) If P = P1 + P2 is a projection, then P is the projection onto
M1 ⊕ M2.

To prove (i)
Let P1 and P2 be two projections onto M1 and M2 , respectively.
If P = P1 + P2 is a projection, then

P2 = P
=⇒ (P1 + P2)

2 = P1 + P2

=⇒ P2
1 + P2P1 + P1P2 + P2

2 = P1 + P2

P2P1 + P1P2 = 0 . . . (1)
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2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

=⇒ P2(P2P1 + P1P2)P2 = 0
=⇒ P2

2P1P2 + P2P1P2
2 = 0

=⇒ P2P1P2 + P2P1P2 = 0
=⇒ 2P2P1P2 = 0
=⇒ P2P1P2 = 0

=⇒ P2P1P1P2 = 0
=⇒ (P1P2)

∗(P1P2) = 0
=⇒ (P1P2)

2 = 0
=⇒ P1P2 = 0
=⇒ M1 ⊥ M2
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Conversely, let M1 ⊥ M2. Then

P1P2 = = 0 = P2P1

Therefore P2 = (P1 + P2)
2

= P1 + P1P2 + P2P1 + P2

= P1 + P2 = P
Also P∗ = (P1 + P2)

∗

= P∗
1 + P∗

2

= P1 + P2 = P

Hence P is a projection. Hence(i) is proved.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Let P = P1 + P2 is a projection, then by (i) M1 ⊥ M2.
Therefore to prove that P is a projection onto M1 ⊕ M2,
it is enough to prove that M = R(P) = M1 + M2.
Let y ∈ M = R(P)

=⇒ y = Px, for some x ∈ H.

=⇒ y = (P1 + P2)x = P1x + P2x ∈ M1 + M2,

=⇒ y ∈ M1 ⊕ M2. (Since M1 ⊥ M2.)

Hence M ⊆ M1 ⊕ M2. . . . (1)
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Conversely, for any x = x1 ⊕ x2 ∈ M1 ⊕ M2,

Px = P1x ⊕ P2x
= P1(x1 + x2) + P2(x1 + x2)

= P1x1 + P1x2 + P2x1 + P2x2

= P1x1 + P2x2

= x1 + x2

= x

=⇒ x ∈ R(P) ⊆ M. …(2)
Hence M1 ⊕ M2 ⊆ M.
(1) and (2) =⇒ M = M1 + M2.
Hence P = P1 + P2 is the projection onto M1 + M2.
Hence (ii) is proved. Hence the theorem.
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2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

2.1.5 Generalized Schwarz inequality and square root of
positive operator

Definition (1)

A sequence {Tn} of operators on a Hilbert space H is said to be
uniformly operator convergent if there exists an operator T such that

∥Tn − T∥ → 0 as n → ∞,

and denoted briefly by Tn =⇒ T(u).

A sequence {Tn} of operators on a Hilbert space H is said to be
strongly operator convergent if there exists an operator T such that

∥Tnx − Tx∥ → 0 for all x ∈ H as n → ∞,

and denoted briefly by Tn =⇒ T(s).
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition (1)

A sequence {Tn} of operators on a Hilbert space H is said to be weakly
operator convergent if there exists an operator T such that

(Tnx, y)− (Tx, y) → 0 for all x, y ∈ H as n → ∞,

and denoted briefly by Tn =⇒ T(w).

Remark

Tn =⇒ T(u)impliesTn =⇒ T(s),

and
Tn =⇒ T(s)impliesTn =⇒ T(w).
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2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition (2)
Let A be an operator on a Hilbert space H and denote (A) by

(A) = {B : AB = BA, whereB is an operator on H}.

Remark
(i) (An) ⊇ (A) for any natural number n.
(ii) (p(A)) ⊇ (A) holds for any polynomial p(t) on t.
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2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Definition (3)

A sequence {An} of self-adjoint operators is said to be bounded
monotone increasing if there exists an operator A such that

Al ≤ A2 ≤ · · · ≤ An ≤ · · · ≤ A.

A sequence {An} of self-adjoint operators is said to be bounded
monotone decreasing if there exists an operator A such that

Al ≥ A2 ≥ · · · ≥ An ≥ · · · ≥ A.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (1(Generalized Schwarz inequality))
If A is a positive operator on a Hilbert space H, then

|(Ax, y)|2 ≤ (Ax, x)(Ay, y) for any x, y ∈ H.

Proof
Put [x, y] = (Ax, y), for all x, y ∈ H.
Then for all x, y z ∈ H,
(1)[x, x] = (Ax, x) ≥ 0, for all x ∈ H.
(2)[y, x] = (Ay, x) = (x, Ay) = (A∗x, y) = (Ax, y) = [x, y]
(3)[x+y, z] = (A(x+y), z) = (Ax+Ay, z) = (Ax, z)+(Ay, z) = [x, z]+[y, z]
(4)[λx, y] = (A(λx), y) = (λAx, y) = λ(x, y) = λ[x, y]
Hence [ ] satisfies the conditions of inner product except that
[x, x] = 0 =⇒ x = 0,
since [x, x] = 0 =⇒ (Ax, x) = 0 =⇒ A = 0 but not x = 0.
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2.1.5 Generalized Schwarz inequality and square root of positive operator
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Let y ̸= 0 and λ ∈ C.

0 ≤ ∥x + λy∥2 = [x + λy, x + λy]
= [x, x] + [x, λy] + [λy, x] + [λy, λy]
= ∥x∥2 + λ[x, y] + λ[y, x] + λλ∥y∥2
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Taking λ = − [x, y]
∥y∥2 , we get

0 ≤ ∥x∥2 +

(
− [x, y]

∥y∥2

)
[x, y] +

(
− [x, y]

∥y∥2

)
[y, x] +

(
− [x, y]

∥y∥2

)(
− [x, y]

∥y∥2

)
∥y∥2

= ∥x∥2 − |[x, y]|2
∥y∥2 − |[x, y]|2

∥y∥2 +
|[x, y]|2
∥y∥2

= ∥x∥2 − |[x, y]|2
∥y∥2

=⇒ |[x, y]|2
∥y∥2 ≤ ∥x∥2

=⇒ |[x, y]|2 ≤ ∥x∥2∥y∥2

=⇒ |[x, y]|2 ≤ [x, x][y, y]
=⇒ |(Ax, y)|2 ≤ (Ax, x)(Ay, y)

Hence the inequality.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (2)
If a sequence {An} of self- adjoint operators is bounded monotone
increasing, then there exists a self-adjoint operator A such that
An =⇒ A(s), that is, An strongly converges to A.

Proof
Assume that {An} is a sequence of self-adjoint bounded monotone
increasing operators.
To prove that An =⇒ A(s).
It is sufficient to prove the result in the case

0 ≤ A1 ≤ A2 ≤ · · · ≤ I.

Since H is complete, every cauchy sequence in H converges in H.
Hence it is sufficient to prove that {Anx} is a cauchy sequence.
i.e ∥Anx − Amx∥ → 0 as m,n → ∞, for all x ∈ H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Assume n > m. Using Generalized Schwarz inequality, we get

∥Anx − Amx∥4 = ((An − Am)x, (An − Am)x))2

≤ ((An − Am)x, x) ((An − Am)(An − Am)x, (An − Am)x)
≤ ((An − Am)x, x) ((An − Am)x, (An − Am)x)
= ((An − Am)x, x) ∥(An − Am)x∥2 . . . (1)

Therefore ∥Anx − Amx∥2 ≤ ((An − Am)x, x) = (Anx, x)− (Amx, x).
Since Am ≤ An ≤ I,
{(Anx, x)} and {(Amx, x)} are monotone increasing sequences and
their bound is (x, x).
Hence (Anx, x) → (x, x) as n → ∞, for all x ∈ H,
and (Amx, x) → (x, x) as m → ∞, for all x ∈ H.
Hence ∥Anx − Amx∥2 → 0 as n,m → ∞, for all x ∈ H.
i.e ∥Anx − Amx∥ → 0 as n,m → ∞, for all x ∈ H.
Hence there exists an operator A on H such that An =⇒ A(s).
Hence the theorem.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Theorem (3.Square root of a positive operator)
For any positive operator A, there exists the unique positive operator S
such that S2 = A and (S) ⊇ (A) (denoted by S = A 1

2 ) .

Proof
Assume that 0 ≤ A ≤ I.
Let Sk be defined as follows:
For k = 1, 2, . . .

S0 = 0

andSk+1 = Sk +
1
2 (A − S2

k) . . . (1)

Since Sn is a polynomial of A,
Sn is a self-adjoint operator such that (Sn) ⊇ (A).
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claim: I ≥ Sk+1, for k = 0, 1, 2, . . .

S1 = S0 +
1
2 (A − S2

0)

=
1
2A

Therefore I − S1 = I − 1
2A ≥ 0

Assume that Sk ≤ I

Consider I − Sk+1 = I − (Sk +
1
2 (A − S2

k))

= I − Sk − 1
2A +

1
2S2

k

=
1
2 [2I − 2Sk − A + S2

k]

=
1
2 [(I − Sk)

2 + (I − A)] . . . (2)
≥ 0

Hence by induction, I ≥ Sk+1, for k = 0, 1, 2, 3, . . . . . . (3)Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I
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To prove Sk+1 ≥ Sk for k = 0, 1, 2 . . .

Consider S1 − S0 =
1
2 (A − S2

0) =
1
2A ≥ 0

Therefore S1 ≥ S0

Assume that Sk ≥ Sk−1 for some positive integer k.
Consider Sk+1 − Sk = (I − Sk)− (I − Sk+1)

=
1
2 [(I − Sk−1)

2 + (I − A)]− 1
2 [(I − Sk)

2 + (I − A)]

=
1
2 [(I − Sk−1)

2 − (I − Sk)
2]

=
1
2 [(I − Sk−1) + (I − Sk)][(I − Sk−1)− (I − Sk)]

=
1
2 [(I − Sk−1) + (I − Sk)][(Sk − Sk−1)]

≥ 0.
Hence by induction,

Sk+1 ≥ Sk for k = 0, 1, 2 . . . . . . (4)
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From (3) and (4),

0 = S0 ≤ S1 ≤ S2 ≤ · · · ≤ I . . . (5)

Hence {Sk} is a sequence of self-adjoint bounded monotone increasing
operators. Hence by the theorem,
”If a sequence {An} of self- adjoint operators is bounded monotone
increasing, then there exists a self-adjoint operator A such that
An =⇒ A(s), that is, An strongly converges to A.”
{Sk} has a limit S.
Therefore as k → ∞, in (1)
i.e in Sk+1 = Sk + 1

2 (A − S2
k), we get

S = S +
1
2 (A − S2)

=⇒ S2 = A . . . (6)
Since each Sk ≥ 0, S ≥ 0. . . . (7)

Since each (Sk) ⊇ (A), (S) ⊇ (A). . . . (8)

Hence for any positive operator A, there exists a positive operator S
such that S2 = A and (S) ⊇ (A).
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To prove that S is unique
Assume that there exists two positive operators S1 and S2 such that
S2

1 = A, S2
2 = A and (S1) ⊇ (A) and (S2) ⊇ (A).

Consider S2A = S2S2
2 = S2

2S2 = AS2. …(9)
=⇒ S2 ∈ (A) ⊆ (S1).
=⇒ S1S2 = S2S1.
Therefore
(S1 + S2)(S1 − S2) = S2

1 + S2S1 − S1S2 − S2
2 = S2

1 − S2
2 = A − A = 0.

…(10)
Since S1 ≥ 0 and S2 ≥ 0 (by (9)), there exists two positive operators R1
and R2 such that

R2
1 = S1andR2

2 = S2.

Consider

∥R1y∥2 + ∥R2y∥2 = (R1y,R1y) + (R2y,R2y)
= (R2

1y, y) + (R2
2y, y)

= (S1y, y) + (S2y, y)
= ((S1 + S2)y, y)Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I
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Put y = (S1 − S2)x, for any x ∈ H, then

∥R1y∥2 + ∥R2y∥2 = ((S1 + S2)(S1 − S2)x, (S1 − S2)x)
= (0, (S1 − S2)x)
= 0, for any x ∈ H.

=⇒ ∥R1y∥ = 0 and ∥R2y∥ = 0
=⇒ R1y = 0 and R2y = 0
=⇒ R1y = 0 and R2y = 0

=⇒ S1y = R2
1y = 0 and S2y = R2

2y = 0
Therefore ∥(S1 − S2)x∥2 = ((S1 − S2)x (S1 − S2)x)

= ((S1 − S2)(S1 − S2)x, x)
= ((S1 − S2)y, x)
= (0, x) = 0, for all x ∈ H.

=⇒ (S1 − S2) = 0
=⇒ S1 = S2

Hence the operator satifying A = S2 and (S) ⊇ (A) is unique.
Hence the theorem.

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Corollary
If A ≥ 0 and B ≥ 0 such that A commutes with B, then AB ≥ 0.

Proof
Since A ≥ 0, there exits a unique operator S such that S ≥ 0, S2 = A
and (S) ⊇ (A).
Since A commutes with B,

B ∈ (A) ⊆ (S).

=⇒ S commutes with B. ie., SB = BS.
Since B ≥ 0, (Bx, x) ≥ 0 for all x ∈ H.
Therefore for any x ∈ H

(ABx, x) = (S2Bx, x) = (SBx, Sx) = (BSx, Sx) ≥ 0.

=⇒ AB ≥ 0.
Hence the result.
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2.1.6 From diagonalization of self-adjoint matrix to
spectral representation of self-adjoint operator

Theorem
For any self-adjoint matrix A, there exists a suitable unitary matrix U
such that A = UΛU∗, where Λ is a diagonal matrix.

Proof
The proof is by induction on the dimension n of matrix A.
(i) When n = 1, the result is obvious.
(ii) Assume that the result holds for n − l. i.e., for a self-adjoint matrix
B of dimension n− 1, there exists a suitable unitary matrix Q such that

B = QMQ∗ . . . (1)

where M is a diagonal matrix.
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Let A be a self-adjoint matrix of dimension n.
Choose an eigenvalue λ1 of A.
Let e1 be the normalized eigenvector

e1 =


p11
p21

...
pn1


corresponding to λ1.
Take a system {e1, f2, . . . , fn} of linearly independent vectors, and make
a system {e1, e2, . . . , en} of orthonormal vectors by Schmidt
orthonormal procedure.

Let P1 = (e1, e2, . . . , en) =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
... . . . ...

pn1 pn2 . . . pnn


Then P1 is a unitary matrix.
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and

P∗
1AP1 =


p11 p21 . . . pn1
p12 p22 . . . pn2

...
... . . . ...

p1n p2n . . . pnn




λ1p11 ∗ . . . ∗
λ1p21 ∗ . . . ∗

...
... . . . ...

λ1pn1 ∗ . . . ∗



=


λ1 ∗ . . . ∗
0 ∗ . . . ∗
...

... . . . ...
0 ∗ . . . ∗


As P∗

1AP1 is self-adjoint, the right hand side turns out to be

P∗
1AP1 =


λ1 0 . . . 0
0
... B
0


where B is also self-adjoint with the dimension n − 1.
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By the hypothesis of induction, we can write B = QMQ∗, where Q is a
unitary matrix and M is a diagonal one.

Put P2 =


1 0 . . . 0
0
... Q
0


P2 is also unitary since Q is unitary, and we have

A = P1


λ1 0 . . . 0
0
... B
0

P∗
1 = P1


λ1 0 . . . 0
0
... QMQ∗

0

P∗
1
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=⇒ A = P1


1 0 . . . 0
0
... Q
0




λ1 0 . . . 0
0
... M
0




1 0 . . . 0
0
... Q∗

0

P∗
1

=⇒ A = P1P2


λ1 0 . . . 0
0
... M
0

 (P1P2)
∗,
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Since P1 and P2 are unitary matrices, P1P2 is also a unitary matrix.
Since M is a diagonal matrix,

Λ =


λ1 0 . . . 0
0
... M
0

 .

Hence there exists a suitable matrix U such that A = UΛU∗, where Λ is
a diagonal matrix.
So the proof is complete for a self-adjoint matrix A with dimension n.
Hence the theorem
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Remark 1
By the above theorem, if A is a self-adjoint matrix, then A can be
decomposed into,

A = U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 · · · 0 λn

U∗ . . . (1)

where U = (u1, u2, . . . , un) is a Unitary Matrix and uj is the normalized
eigenvector which corresponds to the eigenvalue λj of A for j = 1, 2, . . . , n.
(1) can be represented as follows:

A = λ1U


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 · · · 0 0

U∗ + λ2U


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 · · · 0 0

U∗

+ · · ·+ λnU


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 · · · 0 1

U∗

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.1 Norm of bounded linear operator
2.1.2 Adjoint operator
2.1.3 Generalized polarization identity and its application
2.1.4 Several properties on projection operator
2.1.5 Generalized Schwarz inequality and square root of positive operator
2.1.6 From diagonalization of self-adjoint matrix to spectral representation of self-adjoint operator

Put P1 = U


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 · · · 0 0

U∗, P2 = U


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 · · · 0 0

U∗

. . . . . . and Pn = U


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 · · · 0 1

U∗.

Then P1,P2, . . . ,Pn are projections and

A = λ1P1 + λ2P2 + · · ·+ λnPn =
n∑

j=1
λjPj.
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If we put E1 = U


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 · · · 0 0

U∗,

E2 = U


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 · · · 0 0

U∗,

. . .

En = U


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 · · · 0 1

U∗,

then E1,E2, . . . ,En are projections and

A = λ1E1 + λ2(E2 − E1) + · · ·+ λn(En − En−1) =
n∑

j=1
λj∆Ej,

where ∆Ej = Ej − Ej−1 and E0 = 0.
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Hence if A ia self-adjoint operator on a Hilbert space H, then A can be
expressed as follows:

A =

∫
λdEλ

where {Eλ/λ ∈ R} is a family of projections such that

Eλ ≤ Eµif λ ≤ µ

Eλ+0 = Eλ,

E−∞ = 0
E∞ = I
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