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2.1.1 Norm of bounded linear operator

Definition ( Linear operator)

A mapping T from a Hilbert space H to H is said to be a linear
operator if T satisfies the following (i) and ( ii) :

(i) additive : T(x+y) = Tx + Ty for any x,y € H.

(ii) homogeneous: T(ax) = aTx for any x € H and any complex
number o.

Identity operator

The identity operator I is defined by Ix = x for all x € H.

Zero operator

The zero operator 0 is defined by 0x = 0 for all x € H.
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A linear operator T on a Hilbert space H is said to be bounded if there
exists ¢ > 0 such that

ITx|| < c|x|| for all x € H.

IT||is defined by
(1) ||IT)| =inf{c > 0: | Tx| < c||x||/for all x € H}.

[|I'T|| is said to be the operator norm of T.
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Definition (B(H))
B(H) is defined as the set of all bounded linear operators on a Hilbert
space H.

Needless to say, B(H) can be regarded as an extension of the set of all J

2 X 2 matrices.
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2 . 1 Bounded Linear Operators on a Hilbert Space

Theorem

For any bounded linear operator T,

IT]| = sup{[|Tx]| = [|x[| = 1}.

Proof

Put b = sup{|| Tx|| : ||x]| = 1}.
If T is bounded, then

|

[ITxl| < ITH Il = [T} for |Ix[| =1,

Therefore b < || T|| by the definition ( 1).
Conversely for any vector x € H,

e = v (i) | = e ()

Therefore | T|| < b.

[l = Dbllx]l-

Hence ||T| = b = sup{| x|  [Ix] = 1}.
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2.1.1 Norm of bounded linear operator

2 . 1 Bounded Linear Operators on a Hilbert Space

Theorem

For any bounded linear operator T, || T| = sup{||Tx|| : [|x|| < 1}

Proof
Since {x: [x|| = 1}  fx: x| < 1}

sup{||Tx]| : [Ix[| <1} = sup{[[Tx]| : [|Ix[| = 1} = [IT]l.

Conversely

sup{|[Tx] : x| <1} < {”H H” Il < 1}

sup{|| Tyl : [lyll = 1}
I'T|| Since [ T]| = sup{[|Tx]| - [[x] = 1}

Hence ||T|| = sup{||Tx]| : ||x|| < 1}.
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2 . 1 Bounded Linear Operators on a Hilbert Space

Theorem

For any bounded linear operator T, the following formula holds:

IT]| = sup{|(Tx, y)| - [[xI| = [yl = 1}-

By Schwarz’s inequality, |(Tx, y)| < [|Tx|||ly|l = [|Tx]|| for ||y| = 1.

Therefore, sup{|(Tx, y)| : [[x] = [ly]| = 1} < sup{[|Tx| - []x|| = 1}
Therefore, using the result ||T|| = sup{||Tx| : ||x]| = 1}, we get
sup{|(Tx, y)| - [Ix]| = lly[| = 1} <|IT].

N
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2 . 1 Bounded Linear Operators on a Hilbert Space

On the otherhand,
sup{|(Tx, y)| : [Ix] = llyl = 1} = sup{|(Tx, m)l x| = 1}

Tx | Tx||

Tl = ey = U
ITx|[ ™ [ITx]]

( Since ||

Therefore

sup{[(Tx, y)| « [ = llyll = 1} = sup{[|Tx]} - [Ix]| = 1} = |[T]|

Tx

Since
(Since (T, 17

)=

||T I

Hence
T[]l = sup{|(Tx, y)| : [Ix|| = lly|l = 1}.

Tx||* = | Tx|| and || T|| = sup{||Tx]| :

[l 5

=1}
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For any linear operator T on a Hilbert space H, the following
statements are mutually equivalent:
(i) T is bounded.

(ii) T is continuous on the whole space H.
(iii) T is continuous on some point xy on H.
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prove (i) = (

Assume that T is bounded.

Then || Tx|| < ||T||||x|| for all x € H.

Let xg € H.

Let {x,} be any sequence in H converging to xg.
Hence ||x, — Xo|| — 0.

Then || Txn — Txol| = [T(xn = x0)I| < [Tl[Ixn — o[l = 0.

That is, x, - x9 = Tx, — Tx¢. Hence T is continuous at xg.
Since x¢ in H is arbitrary,

T is continuous on the whole space H.

Hence (i) = (ii)
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To Prove (ii) = (iii)
Since T is continuous on the whole space H,

T is continuous on all points on H.
Hence T is continuous on some point x¢ on H.
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2.1.1 Norm of bounded linear operator
Adjoint operator

Assume that T is continuous on some point xg on H.
To prove that T is bounded.
On the contrary, assume that T is not bounded.
Then for each natural number n, there exists a nonzero vector x,, such
that
ITxall > nlixall

Xn

Put Yn = m
Then ||yu[ = &

n

Therefore xg + yn — Xo,
but |[T(xo +yn) = Txoll = | Tynll = 2 > fgef =1

n|xn | nfxafl
This shows that T is not continuous at xg which is contrary to (iii).
Hence T is bounded.

Hence (i) = (ii) = (iii) = (i)
Hence (i),(ii) and (iii) are equivalent.
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2 . 1 Bounded Linear Operators on a Hilbert Space

Let S and T be bounded linear operators on a Hilbert space H. Then
the following properties hold:

(1) [|aT|| < ||| T|| for any « € C.

(i) 1S+ T|I < IS + |-

(i) [[ST < [IS|IIT]-

Proof
(i)Consider

T[] = sup{[|(aT)x]|/[jx]| = 1}.
= sup{|af||Tx|[/[}x]| = 1}
= lafsup{||Tx[|/[Ix]l = 1}
= |af|IT]

Hence [|aT|| = |a|||T||
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Consider

IS+ Tl = sup{[I(S + T)x]|/[x|| = 1}.

sup{||Sx + Tx||/[jx]| = 1}

sup{[ISx[| + T[] /[|x[| = 1}
sup{[|Sx||/llx|| = 1} + sup{[|Tx]|/[|x[| = 1}
ISI + 1Tl

IA A I

Hencel||S + T|| < [|S|| + || T|]

Unit



2 . 1 Bounded Linear Operators on a Hilbert Space

Consider

ISl sup{[|(ST)x]l/[lx[| = 1}.
sup{[IS(Tx)I/[Ix[ = 1}
Since S is bounded, ||Sx|| < ||S||||x]|, for all x inH.

Hence ||S(Tx)|| < |[IS|||ITx|| for all x € H.

Since T is bounded, || Tx|| < ||T||||x||, for all x inH.
Hence [|S(Tx)|| < |IS|||T|||Ix|| for all x € H.
Hence sup{[[S(Tx)[|/[|x[| =1} < [IS[IT]|
Hence [[ST]| < [[S|[|IT
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2.1.2 Adjoint operator

In what follows, an operator means a bounded linear operator on a
complex Hilbert space H without specified.

Let T be an operator. For each fixed y € H, consider a function f
defined by

f(x) = (Tx, y) on H.

According to Riesz’s representation theorem, there exists uniquely
u € H such that

f(x) = (Tx, y) = (x,u) for all x € H.

T*, the adjoint operator of T, is defined by

(Tx, y) = (x, u) = (x, T"y) for x,y € H.

Unit-I
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Let T be an operator on a Hilbert space H. Then T* is also an operator
on H, and the following properties hold:

(i) T = |l

(ii) (T) + To)* = T + T5.

(iii) (T)* =a@T* for any o € C.

(iv) (T*)* =T.

(v)(ST)" = T*S".
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2.1.1 Norm of bounded linear operator
int operator

Let y1,y2 € Hand o, g € C.
For any x € H,

(x, T*(ay1 + By2)) (Tx, ay1 + By2)

= (Tx,ay1) + (Tx, By2)

a(Tx,y1) + B(Tx, y2)

a(x, T*y1) + B(x, T*y2)

= (x,aT*y1) + (x, 6T"y2)
(x,aT*y1 + BTy3)

Hence T*(ay1 + By2) = ay1 + Bys.

Unit-I
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For y € H,

IT*y|* = (T*y, T*y) = (TT"y,y) < [TT*ylllyll < ITIIT*y]lyll
= [T = [Tyl
= sup{|[T*yll/llyll =1} < [IT]|

= T < |T]...(2)

Hence T* is bounded linear operator on H.
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2 . 1 Bounded Linear Operators on a Hilbert Space

If T is an operator, then T* is also an operator with || T*| < ||T||.
Hence T** is also an operator and ||(T*)*| < [|T*|. .-(2)
For any x,y € H,

(v, (T*)*x) = (T*y, x) = (x, T*y) = (Tx,y) = (v, Tx)
— (T =T...(3)
From(2) and (3), |T|| < [[T*||...(4)
From(1) and (4), [|(T*)[| = | T|

Hence (i) is proved.
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(x(T1+T2)) = (T1+T2)x,y)
(T1x + Tox,y)
= (Tix,y) + (T2x,y)
(x, T1y) + (x, T3y)
(x, T1y + T3y)
= (x,(TT +T3)y)

(Ty + T2)" = (T7 + T3)

Hence (ii) is proved.

Unit-I



1 Norm of bounded linear operator
oint operator
1 Bounded Linear Operators on a Hilbert alized polarization identity and its application
1l properties on projection ope or

5 Generalized Schwarz inequality and square root of pos

>
28

e e

6 From diagonalization of self-adjoint matrix to spectr.

For x,y € H, and o € C,

(x; (@T)*y) = ((aT)x,y) = (aTx,y) = o(Tx,y) = o(x, T"y) = (x, @T"y)

Hence (aT)* =aT*
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To prove (iv)
From (3), (T*)* = T. Hence (iv) is proved.

To prove (v)

For x,y € H,
(x, (ST)"y) = ((ST)x,y) = (5(Tx),y) = (Tx,S%y) = (x, T*S"y)

Therefore (ST)* = T*S*.

Hence (v) is proved. Hence the theorem.
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2 . 1 Bounded Linear Operators on a Hilbert Space

Corollary

Let T be an operator. Then

(i) |T*T|| = |TT*|| = ||T||*.

(ii) T*T = 0 if and only if T = 0.

To prove (i)
Since [T = [IT]l,

IT*Tf < IT*IT = I T ... (1)
Conversely,
ITx||* = (Tx, Tx) = (T*Tx, x) < ||T*Tx]||x]| < | T*T] |x]*
Therefore for x € H with ||x|| =1,
I Tx[|* < ||TT

— sup{|l'Tx x| =1
Dr N. Jayanthi A > »f Mathema . Unit-I




2 . 1 Bounded Linear Operators on a Hilbert Space

From (1) and (2), | T|2 = |T*T|...(3)

Replacing T by T* in (3), we get || T*]|? = ||(T*)*T*|..(4)
Since || T*|| = ||T||, we get || T||* = | TT*||...(5)

From (3) and (5), ||T*T|| = | TT*|| = || T||*.

To prove (ii)

Assume T*T = 0. Then

0 = ((T*T)x,x) = (T*(Tx), x) = (Tx, Tx) = [ Tx]%.
Hence Tx = 0 for all x € H and hence T = 0.
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application

Definition ( 1)

A bilinear functional f(x,y) on a complex vector space X is defined as
follows:

f(x,y) = gy(x) = hx(y)

is a complex valued function with respect to x and y such that gy(x) is
a linear functional on x and hy(y) is a conjugate linear functional on y,
that is, hy(ay) = @hy(y) for any o € C.

Theorem (1)

If f(x,y) is a bilinear functional on a complex vector space X, then

f(ry) = 7 {icty, x+y)—fx—y,x-y)
1

Dr N. Jayanthi A e P or of Mathemat . Unit-I



Norm of bounded linear operator
Adjoint operator

2

2 . 1 Bounded Linear Operators on a Hilbert Space ized polarization identity and its application

properties on projection op or

i z inequality an re root of pos

If T is an operator on a Hilbert space H, then

(Tx,y) = {(T(x+y), x+y)—(Tx-y), x-y)}
+ i{(T(x +iy),x + 1iy) — (T(x — iy),x — iy)}

holds for any x,y € H.

Proof:
Define f on H x H as

f(x,y) = (Tx,y) for all x,y, € H.

Now for fixed y € H, define g, on H as

gy(x) = f(x, y) for all x € H.
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1 Bounded Linear Operators on a Hilbe

Then for x1, x2 € H,

gy(x1 + x2)

Also for a € C and x € H,

gy(ax)

Norm of bounded linear operator

. djoint operator
.3 Generalized pola

hwarz inequality and
ation of self-adjoint m

f(x1 +x2, y)

(T(x1 4+ x2), y)
(Tx1 + Tx2, y)
(Tx1, y) + (Tx2, y)
f(x1,y) + f(x2, y)
gy(x1) + gy(x2)

flax, y)
(T(ex),y)
(aTx, y)
a(Tx,y)
of(x, y)
ogy(x)
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Norm of bounded linear operator
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Now for fixed x € H, define hy on H as

hx(y) = f(x, y) for all y € H.

Then for x1, x2 € H,

h.(y1 +y2)

Also for o« € C and y € H,

hy(ay)

f(x, y1 +y2)

(Tx, y1 +y2)

(Tx, y1) + T(x, y2)
f(x, y1) + f(x, y2)
hy(y1) + hx(y2)

f(x, ay)
(Tx, ay)
= a(Tx,y)
af(x,y)

Unit-I




plication

2 . 1 Bounded Linear Operators on a Hilbert Space

Hence hy(y) is conjugate linear on y on H.

Therefore f(x,y) = (Tx, y) is a bilinear functional on a Hilbert space H.
Therefore from the result, ”If f(x, y) is a bilinear functinal on a
complex vector space X, then

1
f(X7Y) = Z{f(x+y’X+Y)7f(X7Y7X7Y)}
1
I iZ {f(x + iy, x +iy) — f(x — iy, x — iy)}
holds for any x,y € X.” we get

(Tx,y) = {(T(x+y), x+y)—(T(x—-y), x-y)}
+i{(T(x +iy),x + iy) — (T(x — iy),x — iy)}

holds for any x,y € H.
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Theorem (3)
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i) , (ii) and (iii) are mutually equivalent:
(i) T=0.
(ii) (Tx,x) =0 for all x € H.
(iii) (Tx,y) =0 for all x,y € H.
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Assume (ii) that (Tx,x) = 0 for all xinH.
Hence for all x,y € H,

(Tx,y) = {(T(x+y), x+y)—(Tx-y), x-y)}
+ {(T(x +iy),x +iy) — (T(x — iy),x — iy)}
= 0

Hence (ii) = (iii)

On the other hand, assume (Tx,y) = 0 for all x,y € H.
Taking y=x, we get (Tx,x) = 0 for all xinH.

Hence (iii) = (ii)

Unit-I
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Assume (i) that T = 0.

Then Tx = 0 for every xinH.

Hence (Tx,y) = 0 for every x, yinH.

Hence (i) = (iii)

Conversely assume that (Tx,y) = 0 for every x,y € H.
Then taking y = Tx, (Tx, Tx) = 0 for every x € H.
= ||Tx||? = 0 for every x € H.

—> Tx =0 for every x € H.

Hence T = 0 for every x € H.

Hence (iii) = (i) Therefore (i) = (iii) = (ii)
Hence (i) , (ii) and (iii) are mutually equivalent.
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2 . 1 Bounded Linear Operators on a Hilbert Space

i z inequality an re root of pos

The special types of operators are defined as follows:
self-adjoint operator : T* =T.
normal operator : T*T = TT*.
quasinormal operator : T(T*T) = (T*T)T.
projection operator : T? = T(idempotent) and T* = T.
unitary operator : T*T = TT* =1.
isometry operator : T*T = 1.
positive operator (denoted by T >0 ): (Tx,x) > 0 for all x € H.

hyponormal operator : T*T > TT*,
where A > B means A — B > 0 for self-adjoint operators A and B.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.5 \eralized Schwarz inequality an re root of pos

2.1.6 From di 1alization of self-adjoint matrix to spectra

orem (4)
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i) , (ii) , (iii) and (iv) hold:
(i) T is normal if and only if || Tx|| = || T*x|| for all x € H.
(ii)
(iii) T is unitary if and only if | Tx|| = |T*x|| = ||x|| for all x € H.
(iv) T is hyponormal if and only if || Tx|| > ||T*x|| for all x € H.

T is self-adjoint if and only if (Tx,x) is real for all x € H.
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corollary 5
1f T is an operator on a Hilbert space H over the complex scalars C,
then the following (i), (ii) and (iii) are equivalent:
(i) T is isometry.
(ii) || Tx|| = ||x|| for all x € H.
(iii) (Tx,Ty) = (x,y) for all x,y € H.

Unit-I
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2 . 1 Bounded Linear Operators on a Hilbert Space

Theorem (6 Cartesian form)

If T is an operator, there exist self-adjoint operators A and B such that
T = A +iB. Necessarily A = (T + T*) and B = (T — T*),
respectively.

Proof

Define A and B as A = (T + T*) and B = (T — T*).

Then A* = (3(T+T*)*=4(T*+T)=A

and B* = (4(T — T*))* = 4. (T* - T) = (T - T*) = B.

Hence A and B are both self-adjoint and
A+iB=3(T+T*)+ig(T-T*)=T.

Conversely suppose that T = C + iD, where C and D are self-adjoint.
Then T + T = C+iD + C —iD = 2C and
T—Tx=C+iD — C+iD = 2iD.

Thus C = (T + T*) = A andD = (T — T*) = B.

Hence the result.
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2.1.4 Several properties on projection operator

A Hilbert space H can be decomposed into H = M + M+,
By the theorem, "Let M be a closed subspace of a Hilbert space H. Any
vector x in H can be uniquely represented as follows:

x =y +z where y € M and z € Mt ”

for any x € H, x =y + z, where y € M and z € M*.
Define P:H —>Has Px=y

This transformation P defines a linear operator from H onto M.
This P is said to be an orthogonal projection of H onto M and it is
denoted by Py.

Unit-I
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Definition

R(T), the range of T, is defined by R(T) = {Tx : x € H}, and N(T),
the kernel of T, is defined by N(T) = {x € H: Tx = 0}

Theorem (1)
If Py is a projection onto a closed subspace M of a Hilbert space H,
then Py is an operator such that Py; = Py and P12v[ = Py. Conversely
if P is an operator such that P* = P and P? = P, then M = R(P) is a
closed subspace and P = Py, i.e., P is a projection onto M.

\
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Proof

Let Py be a projection onto a closed subspace M of a Hilbert space H.
To prove that Py is an operator such that Py, = Py and Pi,[ = Py

e: Py is linear

Let x1,x9 € Hand o, 8 € C.

Since H =M @ M+,

x1 =y1 ®z1 and xo = yo @ 7o, where y1,y2 € M and z1,25 € M=,
Then PMXl =Y, PMX2 =Yy2 Consider

Pu(axi + Bx2) = Pum(a(yr ®z1) + B(y2 © 22))
= Pum((ay1 © az1) + (By2 @ Bz2))
Pr((ay1 + By2) @ (az1 + B22))
= (ay1 + By2) = aPux; + SPuxz
( Since (ay; + By2) € M and (az; + Bzz) € M+

Hence Py is an linear operator.
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Let x € H. Then x = y + 2z, where y € M and z € M*.
Now by definition, Pyx = y.

Therefore, [Pyex|2 = [ly[[2'< [lv[12 + 1212 = ]
Hence [|[Pux|| < [|x]|

Hence Py is bounded.

Therefore Py is a bounded linear operator.
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Let x1,x2 € H. Then x3 =y1 ©7; and x3 = y2 @ z2, where y1,y2 € M
and 71,29 € MJ'.
Also Pyxy = y1, Puxe =y

(y1,x2)
(y1,y2 + 22)
(v1,¥2) + (y1, 22)
(y1,y2) +0
= (y1,y2) + (21, y2)
(
(x1
(

(Pyx1, x2) =

v1+21,¥2)
, Pumxo)

PMX1 , X2>

Unit-I
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If x € H, then Pyx € M C H.
Therefore, Py (Pyx) = Pux
= P%Ax = Pux.

Hence Py is an operator such that Py, = Py and P12v1 = P J

Unit



2.1.1 Norm of bounded linear operator
Adjoint operator
arization identity and its application
n projection operator
rz inequality and sq

ation of self-adjoint matrix to spectr

Conversely, assume that P is an operator such that P = P* = P2.

Let M = R(P).

To prove: M = R(P) is a closed subspace and P = Py, i.e., Pis a
projection onto M.

Let x be a limit point of M = R(P).

Hence there exists a sequence {Px;,} of points in M = R(P) such that

Px, — x.

— PZx, — Px.( Since Pis continuous. )
= Px, — Px. (Since P? = P.)

Hence Px = x.

Therefore x € R(P) = M.

Hence M = R(P) contains all its limit points.
Hence M is closed.

Unit-I
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Consider

(I-P)x,Px) = (x—Px,Px)

= (x,Px)— (Px,Px)

= (x,Px)— (x,P"Px)

= (x,Px) — (x,P%)

= (x,Px) — (x,Px)
0

Therefore (I — P)(x) L Px.

Hence x = Px @ (I — P)x, where Px € M and (I — P)x € M.
Therefore Pyx = Px for all x € M.

Hence P = Py is a projection onto M. Hence the theorem.

Unit-I
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If an operator P is a projection, then
(i) [Ixl12 = [IPx]2 + (1 = P)x]|2.

(i1) (Px,x) = [Px||? < [|x].

(iii) I>P > 0.

Unit
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Proof

Let P be a projection operator.

— P =P*=P2%

To prove (i)

P + [|(T - P)x|* (Px, Px) + (I - P)x, (I - P)x)

(Px, Px) + (x,x) — (x,Px) — (Px,x) + (Px, Px
(P?x,x) + ||Ix||* — (Px,x) — (Px,x) + (P%x, %)
(Px,x) + ||Ix[|? — 2(Px, x) + (Px, x)

= |=/?

Hence (i) is proved.

4
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6 From c ; wtion of self-adjoint matrix to spectr

(Px,x) = (P*x,x) = (P*Px,x)

(Px, Px)

| Px|?

Px||* + [|(L - P)x|”

<l

IAN I

Hence (Px,x) = ||Px|? < ||x||%.

Unit
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For any x € H,
((T=P)x,%) = (x,%) — (Px,x) = [Ix|* - [|Px|* > 0.

Hence I — P > 0. Therefore I > P.
Also (Px,x) = ||Px||? > 0 and hence P > 0.
Therefore I > P > 0.

Unit-I



1.1 Norm of t
Adjoint

2 . 1 Bounded Linear Operators on a Hilbert Space

z inequalit uare root of pos
1alization of self-adjoint matrix to spectra

heorem  (3)

Let M; and My be two closed subspaces, and let P; and Ps be two
projections onto M; and Ms, respectively. Then the following (i) and
(ii) hold:
(1) M; L My & PPy, =0« PPy =0.
(ii) M; €My & PPy, =Py < PyPi =P, <P <Py& HP1X|| <
|P2x|| for all x € H.

Unit-I
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Let M1 L Mos.
Since P3 is a projection on Ma, for any x € H, Pox € Ma.

= Pyx € M ( Since M; L Mz, My C My.)

= P1(P2x) = 0 (Since P; is projection onto M)
= P1P2x =0, for all x € H.

= PP2=0.

Hence M1 1. My = P1Ps = 0...(1)

Now PP =0 & (Png)* =0"& (P;PT) =0" < PyP; =0.
Hence P1Py =0 < P2P; = 0. ..(2)

Now if P2P1 = O7

then for any xi € Ml, Poxi = PQ(Ple) = PsP1x1 = 0.

= x; €M;.

Therefore M; C Mé‘ and hence M; 1 Ms.

Hence P2P1 =0 = M1 iR Mg 3

of Mathem Unit-I
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To prove

Assume that My C Ms. Then for any x € H,

Pi1x € M; € Ms.( Since Py is projection onto Mj.)
= Py(P1x) = (P1x)( Since Ps is projection onto Ms.)
— PyPix=P;x, for all x € H.

— PyP, =P,

Hence My C My — P3P = P1(4)

Now PPy =P; & (PyPy)* =P?
& PiPr =P
& PPy=P
54

PP, =Py....(5)

Unit-I

Hence PoP; = P4




Let PPy = P;. Then for any x € H,

(P1x, x) = [|P1x]|* = [|P1P2x||* < [[Pox||* = (P2xx).

= (P;x, x) < (P2xx) and hence Py < Ps.

Therefore P1Py =P; = P; < P5...(6)

Let P1 S PQ. Then

(P1x, x)

= |Px|?
= ||P1x|]
Hence P; < Py

(P2xx), for all x € H.

|Pox||? for all x € H.

|IPox|| for all x € H.

IP1x|| < ||P2x]| for all x € H....(7)

Dr N. Jayanthi /
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= Ao W 6

Suppose that ||P1x|| < ||P2x]| for all x € H.
Then for any x; € My, using the result,
” If P is a projection, then ||x||? = ||Px||? + ||(I — P)x||?,” we get

IPoxq [|® + (I — Po)xa||* = [[x1|* = [|Pxa|* < [[Paxa .

= 1= Pa)xsi[|* =
— (I—Pz)xl = 0.
= —Pox1 =0
- x1 = Poxy € Ms.

— M; C Ms.

Hence ||P1x|| < ||[P2x|| for all x e H. = M; C M,....(8)

From (4), (5),(6) (7 )and (8), we get

Dr N. Jay: ultlu .



orm of bounded linear operator
Adjoint operator

1 Bounded Linear Operators on a Hilk . Space >neralized polarization identity and its application

.4 Several properties on projection operator

5 Generalized Schwarz inequality and square root of pos

wtion of self-adjoint matrix to spectr.

From (4),(5),(6),(7)and (8), we get

M; €My & PPy, =P; & PP =P &P <Py & HPlXH < ||P2X||
for all x € H.

Hence the theorem.

Unit
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Let Py and Py be two projections onto My and M , respectively. Then
(i) P =P;P5 is a projection iff P;Py = P5P;5.
(ii) If PPy = PoPq, then P = PP is a projection onto M; N Ms.

To prove (i)

Assume that P = P1P5 is a Projection. Then
P* = P.

— (Plpg)* = P1P2

— P;PT = PPy

— P2P1 = P1P2

Unit-I
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onversely,assume that P1 P, = PoP;.
Then P* = (P1P2)* = P;PT = P2P1 = P1P2 =12,
Also

P2 = (P,P3)(P1P5) P;(PyP;)P,
P (P1P2)P;
(P1P1)(P2P2)
PP}

PP

P

Hence P* = P and P2 = P.
Hence P = PP is a projection.
Hence P = P Ps is a projection iff P;Py = PoP;. Hence (i) is proved.

Unit-I
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Assume that P;Py; = P3P,
Then by (i), P = P1P3 is a projection.
Let x € M; N Ms.

x € M; and x € My

x = P1x and x = Pox

x = P1x=Pyx

x = P1(P2x) = P1Pax

x € R(P1P2)

M; N My C R(P1Ps).... (1)

FErruy

Unit-I
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Conversely,
R(P,P3) C R(P;) = M;.

and R(P1P2) = R(P2P;) C R(P3) = Ms.
Hence R(Plpg) - M1 n Mg (2)
From (1) and (2), we get R(P1P3) = M; N My . Hence P =P,P3 is a

projection onto M; N Ms.
Hence (ii) is proved.

Unit-I
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Theorem (5)

Let P; and Ps be two projections onto M; and M, , respectively such
that P1P2 = P2P1.

Then M; + My is a closed subspace and P; + Py — P1P5 is the
projection onto M; + M.

Proof

Let P; and P, be two projections onto M; and My such that
PPy = PyP;.

Let P = P+ Py—PqPs.
Then P* = P*+Pj— PiP;.
P1 + P2 —PoPy
Py + Py — P Ps.
= P

Unit-I
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Also P2 = PP = (P, + Py — P1P5)(Py + Py — P1Py)
= P24P,P, —P2P, +P,P, + P _P,P,P,
— P1PyP; — P1P3 + (P1P3)?

Since P, Py and PPy are projections,

P2 = Py,
P2 = P,
(P1P2)®> = PPy,
PoP1Py = P1P2Py = PPy,
and P;PsP; = P1P1Py; =PPs5.

Unit-I
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Hence P2 = P, +P;Py — PPy +PyP; + Py — PP,
— PP, — PP, + PP,
= P, +P,—PP,=P
Hence P* = P and P? = P.

Hence P = P; + Py, — P1P5 is a projection.
Since My and My are closed, M; + M, is a closed subspace of H.

To show that P is the projection onto M; + Ms.

Since P1 and P, are projections onto M; and My respectively,

R(P1) = My,
R(P2) = Mo,
Pix; = xy for x; € M; and Paxy = x9 for xo € Ms.

Unit-I
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Therefore PX1 = (P1 + PQ — P1P2)X1
P1X1 + P2X1 — P1P2X1
= Pixi +Pox; — PoPixg

= x1 + Poxy — Poxy
= Xji.

Similarly Px, = xs.

Therefore x1 + x5 = Px; + Pxs = P(x1 + x3) € R(P).

= M; + My C R(P).

Conversely,

Since P = P1 aF P2 - P1P2 = P1 aF P2 — P2P1 = Pl + PQ(I — Pl)
R(P) € R(P1) + R(P2(I — P1)) = R(P1) + R(P2) = M; + M.
Hence R(P) = M; + My

Hence P is the projection onto M; + Ms. Hence the theorem.

Unit-I
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Theorem (6)
Let P; and P5 be two projections onto M; and Ms , respectively. Then
(i) P =Py + P5 is a projection iff My L My.
(ii) If P = Py + P5 is a projection, then P is the projection onto
M; & M,.

.

To prove (i)
Let P; and Py be two projections onto M; and My , respectively.
If P = P; + P5 is a projection, then

P2 = P
= (P1 —|—P2)2 = P1 —+ P2
= P +PyP1 +P1Po+P3 = P +Py

PoP1 + PPy = 0...(1)

Unit-I
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— P,(PyP; + P,P,)P,
— P3P,P, + P,P,P3 =
— P,P,P, +P,P,P,

— 2P,P,P,

= P,P1P, =

— P,P,PP,
= (P1P2)*(P1P2) =
— (P1P,)?

— PP, =

= M; L

oS O ©O O O o ©o o o

&
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Conversely, let M; L Ms. Then

PP, = =0=PyP;
Therefore P2 = (P + P5)?
= P; +P.Py +PoP + Py
= P1+Py=P
Also P* = (P1 + P2)*
= P1+P;
Py +Py=P

Hence P is a projection. Hence(i) is proved.
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Let P = Py + P5 is a projection, then by (i) M; L Ma.
Therefore to prove that P is a projection onto My & Mo,
it is enough to prove that M = R(P) = M; + M.

Let y € M = R(P)

= y Px, for some x € H.
(P1 + P2)x = P1x+ Pax € My + Mo,
= y M; ® Ms. (Since My L Ms.)

€
Hence M C M; & Ms....(1)

:}y
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Conversely, for any x = x; & xo € M; & Mo,

Px = Pix® Pyx
= Pi(x1 +x2) + Pa(x1 + x2)
= Pix; +Pixa + Paxy + Poxo
Pix; + Paxa

X1 +X2

= X

= x € R(P)C M. ..(2)

Hence M; & My C M.

(1) and (2) = M =M; + M.

Hence P = P; + P is the projection onto M; + M.
Hence (ii) is proved. Hence the theorem.

Unit-I
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2.1.5 Generalized Schwarz mequahtv and square 1oot of

positive operator

Definition (1)

A sequence {Tn} of operators on a Hilbert space H is said to be
uniformly operator convergent if there exists an operator T such that

Ty — T|| — 0 as n — oo,

and denoted briefly by T, = T(u).

A sequence {Tn} of operators on a Hilbert space H is said to be
strongly operator convergent if there exists an operator T such that

[Thx — Tx|| — 0 for all x € H as n — oo,

Unit-I
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Definition (1)

A sequence {Tn} of operators on a Hilbert space H is said to be weakly
operator convergent if there exists an operator T such that

(Thx, y) — (Tx, y) = 0 for all x,y € H as n — oo,
and denoted briefly by T,, = T(w).

v
Remark

T, = T(u)impliesT,, = T(s),

and
T, = T(s)impliesT,, = T(w).
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Definition (2)
Let A be an operator on a Hilbert space H and denote (A) by

(A) ={B: AB = BA, whereB is an operator on H}.

(i) (A™) D (A) for any natural number n.
(ii) (p(A)) 2 (A) holds for any polynomial p(t) on t.
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Definition (3)

A sequence {A,} of self-adjoint operators is said to be bounded
monotone increasing if there exists an operator A such that

Aj<Ay < <A, < <AL

A sequence {A,} of self-adjoint operators is said to be bounded
monotone decreasing if there exists an operator A such that

A>Ar> - >A > > A

Unit-I
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Theorem (1(Generalized Schwarz inequality

If A is a positive operator on a Hilbert space H, then

(Ax, ¥)I” < (Ax,x)(Ay,y) for any x,y € H.

Proof

Put [x,y] = (Ax, y), for all x, y € H.

Then for all x, yz € H,

(1)[x, x] = (Ax, x) > 0, for all x € H.

(2)[y, x] = (Ay, x) = (x, Ay) = (A*x, y) = (Ax, y) = [x, ]
(3)[X+Y» z) = (A(x+y), z) = (Ax+Ay, z) = (Ax, 2)+(Ay, 2z) = [x, 2] +[y, 2]
(4)[Ax, y] = (A(Ax), y) = (AAx, y) = Alx, ¥) = Alx, ¥]

Hence [ ] satisfies the conditions of inner product except that

x,x]=0 = x=0,

since [x, x] =0 = (Ax,x) =0 = A =0 but not x =0.

Dr N. Jayanthi A f Mathemse Unit-I
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| Several properties on projection operator

.5 Generalized Schwarz inequal a

6 From c : wtion of self-adjoint n

Let y 20 and A € C.

0< x+X[* = [x+ Ay, x+Ay]
= [xx]+ [ Av] + [Ay, x] + [Ay, Ayl
%/ + Alx, ] + Aly, x] + AX]|y||*

Unit
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Taking A\ = byl e get

HyHQ’

o < et (B e (B gy (o) (LBR

1o o 2

= IxI*-
llyll> lIyII* Iy 12
_ ||X||2 . I[x, Y]|2
llyll>
|[x, ¥1I?
< x|

11

=
=[x y1I* < IxIPlyll®
=

Ix, y1I* < [x, <[y, ¥]
= |(Ax, y)]* < (Ax, x)(Ay, y)

Hence the inequality.

Dr N. Jayanthi A ate P >f MathematicsGovt. Unit-I
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Theorem (2)

If a sequence {An} of self- adjoint operators is bounded monotone
increasing, then there exists a self-adjoint operator A such that
A, = A(s), that is, A, strongly converges to A.

Assume that {A,} is a sequence of self-adjoint bounded monotone
increasing operators.

To prove that A, = A(s).

It is sufficient to prove the result in the case

0<A; <A< <L

Since H is complete, every cauchy sequence in H converges in H.
Hence it is sufficient to prove that {A,x} is a cauchy sequence.
ie ||[Anx — Apx| — 0 as m,n — oo, for all x € H.
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Assume n > m. Using Generalized Schwarz inequality, we get

[Anx — Amx[|! = ((An— Am)x, (An — An)x))’
Am)X7 X) ((An - Am)(A - Am)xa (
A, - Am)X7 X) ((An - Am) (A Am) )
Am) )
(A

IAIA

;%) (A — Am)x]|*... (1

(
Therefore |A,x — Apx||? < (A — An)x, x) = (Anx, X) —
Since A, <A, <1,
{(Anx, x)} and {(Amx, x)} are monotone increasing sequences and
their bound is (x, x
Hence (A;x, x) — (X, X) as n — oo, for all x € H,
and (Apx, x) — (x, x) as m — oo, for all x € H.
Hence ||A,x — Apx||?2 — 0 as n,m — oo, for all x € H.
ie [[Apx — Apx|| — 0 as n,m — oo, for all x € H.
Hence there exists an operator A on H such that A, = A(s).
Hence the theorem.

mX, X).

m

Dr N. Jayanthi A ate P > athematicsGovt. Unit-I
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For any positive operator A, there exists the unique positive operator S
1
such that S2 = A and (S) D (A) (denoted by S = A2) .

Assume that 0 < A <1.
Let Sk be defined as follows:

Fork=1,2,...

So = 0
1
andSk+1 = Sk = i(A - Sﬁ) SN (1)

Since S, is a polynomial of A,
Sy is a self-adjoint operator such that (S,) 2 (A).
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»n projection op

arz inequali and s

Therefore I — S,
Assume that Sy

IAN
— —
|

DO =
>
vV
o

Consider I — Sk

T— (St 5(A~57)

1 1
IS~ 5A+58

1
= 5[21—2Sk—A+sﬁ]

= S-S0+ (- A (2)

> 0
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To prove Siy1 > Sk for k=0

Consider S1 —Sp = %(A -S8) = %A >0
Therefore S1 > So
Assume that Sx > Sk_1 for some positive integer k.
Consider Sk+1 — Sk = (I — Sk) — (I — Sk+1)
1 1
= ST Sea) + (- A~ L[~ 8° + (1 - A)]
1
= SlI- Si—1)? — (I - Sx)]
1
= 5l =8k=1) + (T =S~ Sk-1) = (T = Si)]
1
= Sl =8k=1) + (I = SK)][(Sk — Sk-1)]
> 0.
Hence by induction,
Sk+1 Z Skfork:O,l,Z... (4)

Dr N. Jayanthi A f Mathemse Unit-I
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From (3) and (4),
0=Sp<51<S<---<I ...(5)

Hence {Sk} is a sequence of self-adjoint bounded monotone increasing
operators. Hence by the theorem,

"If a sequence {An} of self- adjoint operators is bounded monotone
increasing, then there exists a self-adjoint operator A such that

A, = A(s), that is, A, strongly converges to A.”

{Sk} has a limit S.

Therefore as k — oo, in (1)

iein Sky1 = Sk + 2(A — SE), we get

s = S+%(A—SQ)

= S$> = A ...(6)
Since each S, > 0, S>0. ...(7)
Since each (Sx) 2 (A), (S) 2 (A). ...(8)

of Mathemati



2 . 1 Bounded Linear Operators on a Hilbert Space d po on identity anc oplication

ve that S is unique

Assume that there exists two positive operators S; and Ss such that
S2 =A,S2=A and (S;) 2 (A) and (S2) 2 (A).
Con51der S A = S552 = S3S; = ASs. ..(9)
— Sy € (A) C (Sl)
— 8182 = SQSl.
Therefore
(S1+S2)(S1 —S2) =S% +S281 —S1S82 — 52 =52 -S2=A—-A=0.
..(10)
Since S; > 0 and Sy > 0 (by (9)), there exists two positive operators Ry
and Ry such that
R? = Slanng = SQ.

Consider

IR1y[1? + [ Rayll? (R1y, R1y) + (Ray, Ray)
(R3y,y) + (R3y,y)

= (SIY7 Y) (SQY7 Y)
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2 . 1 Bounded Linear Operators on a Hilbert Space

Put y = (S1 — S2)x, for any x € H, then

[Ruyl® + [Rayl* = ((S1+S2)(S1 —S2)x, (S1 — S2)x)
(07 (Sl - SQ)X)
0, for any x € H.

= |Ruwyll = Oand |Ray| =0
— Ryjy = 0Oand Ryy=0
= Ryjy = 0Oand Ryy=0
— S;y=R)?y = 0Oand Spy=R2y=0

Therefore ||(S1 — S2)x[|? = ((S1 — S2)x(S1 — S2)x)
((S1 — S2)(S1 — S2)x,x)
= ((51—S2)y,x)
(0, x) =0, for all x € H.

— Si = Sy
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Adjoint operator

>neralized polarization identity and its application

»n projecti
ot of pos

o spectra

Since A > 0, there exits a unique operator S such that S > 0, S2 = A
and (S) 2 (A).

Since A commutes with B,
Be (A) C(S).

=—> S commutes with B. ie., SB = BS.
Since B > 0, (Bx, x) > 0 for all x € H.
Therefore for any x € H

(ABx, x) = (S?Bx, x) = (SBx, Sx) = (BSx, Sx) > 0.

— AB > 0.
Hence the result.
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2 . 1 Bounded Linear Operators on a Hilbert Space

2.1.6 From diagonalization of self-adjoint matrix to
spectral representation of self-adjoint operator

Theorem

For any self-adjoint matrix A, there exists a suitable unitary matrix U
such that A = UAU*, where A is a diagonal matrix.

Proof

The proof is by induction on the dimension n of matrix A.

(i) When n = 1, the result is obvious.

(ii) Assume that the result holds for n — L. i.e., for a self-adjoint matrix
B of dimension n — 1, there exists a suitable unitary matrix Q such that

B = QMQ*...(1)

where M is a diagonal matrix.
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Let A be a self-adjoint matrix of dimension n.
Choose an eigenvalue A\; of A.
Let e; be the normalized eigenvector

P11
P21
€1 =
Pn1
corresponding to Aj.
Take a system {ej,fa,...,f,} of linearly independent vectors, and make

a system {ej, e, ..., e,} of orthonormal vectors by Schmidt

orthonormal procedure.

P11 P12

P21 P22
Let Py = (e1,e2,...,6e,) =

Pn1 Pn2

Unit-I
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1 Bounded Linear Operators on a Hilbe e ° ne zed polarization identity and its application

proper »n projection op
uality and e »f pos
joi pectra

and

Pit D21 --- Dut A1p11 *

Pi2 D22 ... DPn2 A1p21  *
PIAP, =

Pin DP2n --- DPm APn1 ¥ ... %

0 * ... %

As P7AP; is self-adjoint, the right hand side turns out to be

r of MathematicsG Unit-I
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2.1

1

By the hypothesis of induction, we can write B = QMQ*, where Q is a
unitary matrix and M is a diagonal one.

1 0 ... 0

0
Put P2 =

: Q
0
P> is also unitary since Q is unitary, and we have

A0 .00 A0 0
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— A=P,

= A=P,Py . (P1P2)*7




2.1.1 Norm of bounded linear operator
Adjoint operator
arization identity and its application

or
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ion of self-

Since P; and Ps are unitary matrices, P1P5 is also a unitary matrix.
Since M is a diagonal matrix,

Hence there exists a suitable matrix U such that A = UAU*, where A is
a diagonal matrix.

So the proof is complete for a self-adjoint matrix A with dimension n.
Hence the theorem
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2.1.1 Norm of bounded linear operator
Adjoint operator

arization identity and its

on a Hilbe
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By the above theorem, if A is a self-adjoint matrix, then A can be

decomposed into,

A0

0 A
A=T

0

where U = (u,ug, ..

0
0
(1)

0 A

.,Uy) is a Unitary Matrix and uj is the normalized

eigenvector which corresponds to the eigenvalue A\; of A for j =1,2,...,n.
(1) can be represented as follows:

1
0

0 0 0 0 0
0 0 0 1 0
U XU .| U
0 0 0 0 0
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Put Py =U . . . . U*, P, =0 . . . . | U”

..... and P, =U . . ) . U*.
0o --- 0 1

Then P, P, ..., Py are projections and

A = )\1P1 + )\2P2 + -+ )\nPn = Z)‘JPJ

j=1
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2 . 1 Bounded Linear Operators on a Hilbert

»n projection operator

If we put E; = U . . . . U,

—
=
@)

E.=U| . . . .U

0O --- 0 1
then Eq, Eo, ..., E, are projections and

A=ME; + (B2 —E1) + - + Ma(Ba — Enc1) = ) NAE;,
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2 . 1 Bounded Linear Operators on a Hilbert rization identity and its application
»n projection operator

rz inequality and s e root of pos

n of

Hence if A ia self-adjoint operator on a Hilbert space H, then A can be
expressed as follows:
A= / ME

where {E)/X € R} is a family of projections such that

E)\ S E“ifAS,U,

E>\+O = E>\7
E.w = 0
Eew = 1
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Thank You }
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