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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Definition (1)
An operator U on a Hilbert space H is said to be an isometry operator
if

∥Ux∥ = ∥x∥for any x ∈ H.

This is equivalent to,

< Ux,Uy >=< x, y > for any x , y ∈ H.[by polarization identity]

Definition
An operator U on a Hilbert space H is said to be a unitary operator if
U is an isometry operator from H onto H.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem (1)
(i) An operator U on a Hilbert space H is an isometry operator iff

U∗U = I.
(ii) An operator U on a Hilbert space H is a unitary operator iff

U∗U = UU∗ = I.

Proof

To prove (i)
Let U be an isometry operator on H

⇒ ∥Ux∥ = ∥x∥, for all x ∈ H.

Hence by polarization identity,

< Ux,Uy > = < x, y >,∀x, y ∈ H
⇒< U∗Ux, y > = < x, y >,∀x, y ∈ H

⇒ U∗U = I
Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Conversely, assume that U∗U = I
Hence

∥Ux∥2 =< Ux,Ux >=< U∗Ux, x >=< x, x >= ∥x∥2

⇒ ∥Ux∥ = ∥x∥.

Hence an operator U on a Hilbert space H is an isometry operator iff
U∗U = I.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (ii)
Let U be an Unitary operator on H.

⇒ U is an isometry operator from H onto H.
⇒ ∥Ux∥ = ∥x∥,∀x ∈ H.

From (i), U∗U = I (1)
Since U is onto, for any x ∈ H, there exists y ∈ H such that Uy = x.

ThereforeU∗x = U∗Uy = y and ∥U∗x∥ = ∥y∥ = ∥Uy∥ = ∥x∥

Hence U∗ is an isometry on H.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Hence by (i),(U∗)∗U∗ = I
⇒ UU∗ = I (2)
From (1)and (2),

U∗U = UU∗ = I

Conversely, if U∗U = UU∗ = I, then U is isometry. (by (i))
For any x ∈ H,

x = UU∗x = U(U∗x) ∈ R(U)
⇒ R(U) = H

Hence U is an isometry from H onto H.
Hence U is an unitary operator.
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Definition (2)
An operator U on a Hilbert space H is said to be a partial isometry
operator if there exists a closed subspace M such that

∥Ux∥ = ∥x∥for any x ∈ M

and
Ux = 0 for any x ∈ M⊥,

where M is said to be the initial space of U and N = R(U) is said to be
the final space of U.
The Projection onto the initial space is said to be the initial projection
and the final space is said to be the final projection of U, respectively.

Remark
(1) U is isometry iff U is partial isometry and M = H.
(2) U is unitary iff U is partial isometry and M = N = H.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem (2)
Let U be a partial isometry operator on a Hilbert space with the initial
space M and the final space N. Then the following (i), (ii) and (iii) hold
(i) UPM = U and U∗U = PM

(ii) N is a closed subspace of H.

(iii) U∗ is a partial isometry with the inial space N and the final space
M, that is

U∗PN = U∗ and UU∗ = PN

Proof
Let U be a partial isometry operator on a Hilbert space H with the
initial space M and the final space N.
⇒ ∥Ux∥ = ∥x∥,∀ x ∈ M (1)
Ux = 0,∀ x ∈ M⊥ (2)
and N = R(U) (3)
(1)⇒< Ux,Uy >=< x, y >,∀ x, y ∈ M (4)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (i)
For any x ∈ H, x = PMx ⊕ z, for some z ∈ M⊥

Therefore Ux = UPMx ⊕ Uz = UPMx[∵ z ∈ M⊥ ⇒ Uz = 0]

Hence for anyx ∈ H,UPMx = Ux ⇒ UPM = U(5)

Now for any x, y ∈ H

< U∗Ux, y > = < Ux,Uy >

= < UPMx,UPMy > [from (5)]
= < PMx,PMy > [∵ PMx,PMy ∈ M and (4)]
= < P2

Mx, y >

= < PMx, y > [∵ PM is projection]

⇒ U∗U = PM (6)
Hence (i) is proved.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (ii)
To prove that N is a closed subspace of H.
Let x be a limit point of N = R(U).(i.e) x ∈ N. Now,

N = R(U) = R(UPM) [by(5)]
= UR(PM)

= UM

Hence there exists a sequence {Uyn} ⊆ N such that Uyn → x, where
{yn} ⊂ M (7)
Hence ∥yn − ym∥ = ∥U(yn − ym)∥ = ∥Uyn − Uym∥ → 0 as m,n → ∞
⇒ {yn} is a cauchy sequence in M ⊂ N.
Since H is complete, {yn} converges in H.
Let yn → y, Then Uyn → Uy (8)
From (7)and (8),

x = Uy ∈ R(U) = N

Hence N contains all its limit points. Hence N is a closed subspace H.
Hence (ii) is proved.Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (iii)
Since N = R(U), for any x ∈ N, there exists y ∈ M such that Uy = x,
Since y ∈ M, ∥Uy∥ = ∥y∥.
Hence ∥x∥ = ∥Uy∥ = ∥y∥ and

U∗x = U∗Uy = PMy [by(5)]
= y [∵ y ∈ M]

Hence ∥U∗x∥ = ∥y∥ = ∥x∥
Hence ∥U∗x∥ = ∥x∥, ∀ x ∈ N (9)
For any x ∈ N⊥ and y ∈ H, Consider < U∗x, y >=< x,Uy >= 0
( because x ∈ N⊥ and Uy ∈ R(U) = N )
⇒ U∗x = 0, for all x ∈ N⊥ (10)

Now R(U∗) = U∗N = U∗R(U) = U∗UH = PMH = M

Hence R(U∗) = M (11)
From (9), (10), (11), U∗ is a partial isometry with the initial space N and the
final space M.
Hence by (1), U∗PN = U∗ and (U∗)∗U∗ = PN.(i.e) UU∗ = PN
Hence (iii) is proved.
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem (3)
Let U be an operator on a Hilbert space H. Then the following
statements are mutually equivalent.
(α) U is a partial isometry operator.
(α∗) U∗ is a partial isometry operator.
(β) UU∗U = U.

(β∗) U∗UU∗ = U∗.

(γ) U∗U is a projection operator.
(γ∗) UU∗ is a projection.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Proof
Assume (α) i.e U is a partial isometry operator.
By theorem, ” Let U be a partial isometry operator on a Hilbert space
H with the initial space M and the final space N. Then
(i) UPM = U and U∗U = PM

(ii) N is a closed subspace of H.
(iii) U∗ is a partial isometry with the intial space N and the final space

M, that is
U∗PN = U∗andUU∗ = PN

UPM = U and U∗U = PM
⇒ UU∗U = UPM = U
Hence (α) ⇒ (β) (1)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Assume (γ) i.e U∗U is a projection operator.
Put U∗U = PM then for any x ∈ H,
∥Ux∥2 =< Ux,Ux >=< U∗Ux, x >=< PMx, x >= ∥PMx∥2

∥Ux∥2 = ∥PMx∥2 = ∥x∥2, ∀x ∈ M
and ∥Ux∥ = ∥PMx∥ = 0, ∀x ∈ M⊥

i.e Ux = 0, ∀x ∈ M⊥

Hence ∥Ux∥ = ∥x∥, ∀x ∈ M and ∀x ∈ M⊥

Hence U is a partial isometry on M.
Hence (γ) ⇒ (α) (3)
From (1), (2) and (3),
(α) ⇒ (β) ⇒ (γ) ⇒ (α). (a)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Similarly if U∗ is a partial isometry operator,
by (α) ⇒ (β), U∗(U∗)∗U∗ = U∗

i.e U∗UU∗ = U∗

Hence (α∗) ⇒ (β∗) (4)
by (β) ⇒ (γ), U∗UU∗ = U∗ ⇒ UU∗ is a projection
Hence (β∗) ⇒ (γ∗) (5)
by (γ) ⇒ (α), UU∗ is a projection operator
⇒ U∗ is a partial isometry operator.
Hence (γ∗) ⇒ (α∗) (6)
From (4), (5) and (6),
(α∗) ⇒ (β∗) ⇒ (γ∗) ⇒ (α∗). (b)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Assume (β) UU∗U = U
Taking adjoint on both sides
(UU∗U)∗ = U∗

⇒ U∗UU∗ = U∗

Hence (β) ⇒ (β∗)
Similarly U∗UU∗ = U∗

⇒ (U∗UU∗)∗ = (U∗)∗

⇒ UU∗U = U
Hence (β∗) ⇒ (β)
Hence (β) ⇐⇒ (β∗) (c)
From (a), (b), (c), it is clear that, (α), (α∗), (β), (β∗), (γ) and (γ∗) are
all equivalent.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

2.2.2. Polar decomposition of an operator
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem (1)
Let M be a dense subspace of a normed space X. Let T be a linear
operator from M to a Banach space Y. If T is bounded, then there
uniquely exists T which is the extention of T from X to Y. i.e Tx = Tx
for all x ∈ M and ∥T∥ = ∥T∥

Proof
Let M be a dense subspace of a normed space X.
Then ⇒ M = X
Hence for any x ∈ X, there exists {xn} ⊂ M such that xn → x.
⇒ ∥Txm − Txn∥ ≤ ∥T∥∥xm − xn∥ → 0as m,n → ∞
⇒ {Txn} is a cauchy sequence in Y.
Since Y is a Banach space, Y is complete.
Hence {Txn} converges in Y.
Hence there exists y0 ∈ Y such that Txn → y0.
This limit point y0 is determined independently from its choice of {xn}
converging to x. i.e y0 depends only on x.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Put Tx = y0.
This T defines an operator T from X to Y.
For any x ∈ M ⊂ X, we can choose xn = x, ∀n.
Then Tx = Tx.
Hence T is an extension of T.
Claim:To show that T is linear, T is bounded and ∥T∥ = ∥T∥
Let x1, x2 ∈ X and α, β scalars.
By definition of T,
T(x1) = y1, where xn1 → x1 and Txn1 → y1
T(x2) = y2, where xn2 → x2 and Txn2 → y2
Now xn1 , xn2 ∈ M and T is linear on M.
∴ T(αxn1 + βxn2) = αTxn1 + βTxn2 → αy1 + βy2
Hence

T(αx1 + βx2) = αy1 + βy2

= αTx1 + βTx2

Hence T is linear.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

By the continuity if norm,

∥Tx∥ = lim
n→∞

∥Txn∥ ≤ lim
n→∞

∥T∥∥xn∥ = ∥T∥∥x∥

Hence T is bounded and ∥T∥ ≤ ∥T∥ (1)
On the other hand,

∥T∥ = sup ∥Tx∥/x ∈ M, ∥x∥ ≤ 1
≤ sup ∥Tx∥/x ∈ X, ∥x∥ ≤ 1
≤ ∥T∥

(i.e)∥T∥ ≤ ∥T∥ (2)
From (1)and (2), ∥T∥ = ∥T∥
Hence if T is bounded, there exists T which is the extension of T from
X to Y such that ∥T∥ = ∥T∥
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove that T is unique
Let T̂ be a bounded linear operator and an extension of T from X to Y.
For any x ∈ X, take {xn} ⊂ M such that xn → x
By the continuity of T̂,

T̂x = lim
n→∞

T̂xn = lim
n→∞

Txn = Tx, (by definition of T)

⇒ T̂x = Tx,∀x ∈ X.
⇒ T̂ = T.
Hence T is unique.
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem
2 Let S and T be bounded linear operators on a Hilbert space H. If
T∗T = S∗S, then there exists a partial isometry operator U such that
the initial space M = R(T) and the final space N = R(S) and S=UT.

Proof
Let T∗T = S∗S. Then for any x ∈ H,

⇒ ∥Tx∥2 =< Tx,Tx > = < T∗Tx, x >

= < S∗Sx, x >

= < Sx,Sx >

= ∥Sx∥2

i.e ∥Tx∥2 = ∥Sx∥2, ∀x ∈ H (1)
Hence if Tx1 = Tx2, for x1, x2 ∈ H then
∥Sx1 − Sx2∥ = ∥Tx1 − Tx2∥ = 0 ⇒ Sx1 = Sx2
i.e Tx1 = Tx2 ⇒ Sx1 = Sx2, ∀x1, x2 ∈ H. (2)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Define an operator V : R(T) → R(S) as

VTx = Sx

Then

V(Tx1+Tx2) = V(T(x1+x2)) = S(x1+x2) = Sx1+Sx2 = VTx1+VTx2

V(αTx) = V(T(αx)) = S(αx) = αSx = αVTx

Hence V is linear on R(T).
Then ∥VTx∥ = ∥Sx∥ = ∥Tx∥ by (1).
Therefore if y ∈ R(T), then ∥Vy∥ = ∥y∥ (3)
Hence V is a bounded linear operator and N = R(S) is a Banach space.
Hence V can be extended to V from M = R(T) onto N.
i.e for y ∈ M,∃{yn} ⊂ R(T) ∋ yn → y and Vyn → Vy
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

and ∥Vy∥ = limn→∞ ∥Vyn∥ = limn→∞ ∥yn∥ = ∥y∥ (4)
Now, define U as

Ux = VPMx,∀x ∈ H.

Then for x ∈ M = R(T),

∥Ux∥ = ∥VPMx∥ = ∥Vx∥ = ∥x∥

(∵ x ∈ M,PMx = x and ∥Vy∥ = ∥y∥ by (4) )
and for x ∈ M⊥,

∥Ux∥ = ∥VPMx∥ = ∥PMx∥ = 0

( ∵ ∥Vy∥ = ∥y∥ by (4) and ∵ x ∈ M⊥,PMx = 0)
Hence

∥Ux∥ = ∥x∥, ∀x ∈ M
and Ux = 0,∀x ∈ M⊥.

Hence U is a partial isometry with the initial space M.
Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

For any x ∈ H, consider

UTx = VPMTx = VTx = VTx = Sx

Hence S=UT
Moreover VR(T) = R(S), V is an isometry and
R(U) = VM = R(S) = N.
Hence N is the final space of U.
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem (3)
Let T be any operator on a Hilbert space H. Then there exists a partial
isometry operator U such that T = U|T|, where |T| = (T∗T)1/2 and M
and N, the initial and final space of U can be expressed as follows:
M = R(|T|) = R(T∗) and N = R(T)
Moreover N(U) = N(|T|) and U∗U|T| = |T|

Proof
Since |T|2 = T∗T, replacing T by|T| and S by T in the theorem,
”Let S and T be bounded linear operators on a Hilbert space H. If
T∗T = S∗S, then there exists a partial isometry operator U such that
the initial space M = R(T) and the final space N = R(S) and S = UT.”
We get, there exists a partial isometry operator U such that
M = R(|T|), N = R(|T|) and T = U|T|.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Therefore,

∥Ux∥ = ∥x∥,∀x ∈ M = R(|T|)

Ux = 0,∀x ∈ M⊥ = R(|T|)
⊥

Also N(U)⊥ = R(|T|) = N(|T|)⊥
⇒ N(U) = N(|T|)
Since U∗T = U∗U|T| = |T|,

T∗U = (U∗T)∗ = |T|∗ = |T|

Hence R(|T|) = R(T∗U) ⊂ R(T∗)
On the other hand, since T∗ = (U|T|)∗ = |T|U∗,

R(T∗) ⊂ R(|T|)

Hence R(|T|) = R(T∗)
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Definition (1)
Let T be an operator on a Hilbert space H. When T = U|T| with
N(U) = N(|T|),T = U|T| is said to be the polar decomposition of T.
If the kernel condition N(U) = N(|T|) is not necessarily satisfied,
T = U|T| is said to be a decomposition of T.

Theorem (4)
Let T = U|T| be the polar decomposition of an operator T on a Hilbert
space H. Then the following (i)and (ii) hold
(i) N(|T|) = N(T)

(ii) |T∗|q = U|T|qU∗ for any positive number q.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (i)

x ∈ N(|T|) ⇐⇒ |T|x = 0
⇐⇒ |T|2x = 0 [∵< |T|2x, x >=< |T|x, |T|x >= ∥|T|x∥]
⇐⇒ T∗Tx = 0
⇐⇒ ∥Tx∥2 = 0 [∵ ∥Tx∥2 =< Tx,Tx >=< T∗Tx, x >]

⇐⇒ Tx = 0
⇐⇒ x ∈ N(T)

Hence N(|T|) = N(T)
Hence (i) is proved.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

To prove (ii)
For any positive operator S and for any positive number q,

N(Sq) = N(S)(1)

Therefore, since |T| is a positive operator,

N(|T|q) = N(|T|)

i.e R(|T|q)
⊥
= R(|T|)

⊥
=⇒ R(|T|q) = R(|T|) (2)

Also U∗U is the initial projection on M = R(|T|)
i.e U∗U|T| = |T| (3)
Hence

U∗U|T|q = (U∗U|T|)|T|q−1 = |T||T|q−1 = |T|q

i.e U∗U|T|q = |T|q (4)
Using (3),

|T∗|2 = TT∗ = (U|T|)(U|T|)∗ = U|T||T|U∗ = U|T|U∗U|T|U∗ = (U|T|U∗)2

i.e |T∗|2 = (U|T|U∗)2 (5)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Therefore
fn(|T∗|2) = fn(U|T|U∗)2 = Ufn(|T|2)U∗

for any polynomial fn(t). (6)
Take fn(t) → t1/2

Then by (6), |T∗| = U|T|U∗

( since the square root S1/2 of a positive operator S is approximated
uniformly by polynomials of S. )
By induction,
|T∗| n

m = U|T| n
m U∗ holds for any natural number m and n

Let n
m → q,

then |T∗|q = U|T|qU∗ for any positive number q
Hence (ii) is proved.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Theorem
Let T = U|T| be the polar decomposition of an operator T on a Hilbert
space H. ThenT∗ = U∗|T∗| is also the polar decomposition of an
operator T∗

Proof
Since T = U|T| is the polar decomposition of T,
N(U) = N(|T|) holds (1)
Now,

T∗ = (U|T|)∗

= |T|∗U∗

= |T|U∗ [∵ |T|∗ = |T|]
= U∗U|T|U∗ [∵ U∗U|T| = |T|]
= U∗|T∗| [∵ |T∗| = U|T|U∗]

Hence T∗ = U∗|T∗|
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.2.1 Partial isometry operator and its characterization
2.2.2. Polar decomposition of an operator

Hence to prove that T∗ = U∗|T∗| is tha polar decomposition of T∗, it is
sufficient to prove that N(U∗) = N(|T∗|).

Now x ∈ N(U∗) ⇐⇒ U∗x = 0
⇐⇒ ∥U∗x∥2 = 0
⇐⇒ UU∗x = 0 [∵ ∥U∗∥2 =< U∗x,U∗x >=< UU∗x, x >]

⇐⇒ |T|U∗x = 0 [∵ N(U) = N(|T|)]
⇐⇒ T∗x = 0 [∵ T∗ = |T|U∗]

⇐⇒ |T∗|x = 0
⇐⇒ x ∈ N(|T∗|)

Hence N(U∗) = N(|T∗|)
Hence T∗ = U∗|T∗| is the polar decomposition of T∗.
Hence the theorem
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

2.3 Polar Decomposition of an operator and its Application
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

2.3.1 Invariant subspace and reducing subspace
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

An operator T on a Hilbert space H can be decomposed into T = UP,
where U is a partial isometry and P = |T| = (T∗T)1/2 with
N(U) = N(P), N(X) denote the kernel of an operator X, the kernel
condition N(U) = N(P) uniquely determines U and P of the polar
decomposition T = UP.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Definition (1)
If an operator T commutes S and S∗, then T is said to doubly
commutes with S.
i.e TS = ST, TS∗ = S∗T.

Definition (2)
Let T be an operator on a Hilbert space H.

(i) A closed subspace M of a Hilbert space H is said to be invariant
under T if TM ⊂ M.
i.e Tx ∈ M whenever x ∈ M

(ii) A closed subspace M of a Hilbert space H is said to reduce T if
TM ⊂ M and TM⊥ ⊂ M⊥. i.e M and M⊥ are both invariant under
T.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (1)
Let T be an operator on Hilbert space H and M be a closed subspace of
H. Then the following conditions are mutually equivalent:
(i) TM ⊂ M
(ii) T∗M⊥ ⊂ M⊥

(iii) TP = PTP, where P is the projection onto M.

Proof
Let T be an operator on Hilbert space H, M be a closed subspace of H
and P be the projection onto M.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

To prove that (i)⇒ (iii)
Assume TM ⊂ M to prove that TP = PTP
If x ∈ H, then Px ∈ M
⇒ TPx ∈ M [∵ TM ⊂ M]
Hence PTPx = TPx [∵ P is projection on M]
Hence PTP=TP
Hence (i)⇒(iii) (1)
Conversely, assume that PTP = TP
Let y ∈ M
∵ P is Projection of H onto M, ∃ x ∈ H ∋ Px = y
then Ty = TPx = PTPx = P(TPx) ∈ M.
i.e y ∈ M ⇒ Ty ∈ M
Hence TM ⊂ M
Hence (iii)⇒(i) (2)
From (1)and (2),
(i) ⇐⇒ (iii) (3)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

To prove that (ii) ⇐⇒ (iii).
by (3), (i) ⇐⇒ (iii)
i.e TM ⊂ M ⇐⇒ TP = PTP.
Hence

T∗M⊥ ⊂ M⊥ ⇐⇒ T∗(I − P) = (I − P)T∗(I − P)
⇐⇒ T∗ − T∗P = T∗ − PT∗ − T∗P + PT∗P
⇐⇒ PT∗ = PT∗P
⇐⇒ (PT∗)∗ = (PT∗P)∗

⇐⇒ TP = PTP

Hence (ii) ⇐⇒ (iii) (4)
From (3) and (4), (i) ⇐⇒ (ii) ⇐⇒ (iii). Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (2)
Let T be an operator on Hilbert space H and M be a closed subspace of
H. Then the following conditions are mutually equivalent:
(i) M reduces T
(ii) M⊥ reduces T
(iii) M reduces T∗

(iv) M is invaraiant under T and T∗

(v) TP = PT, where P is the projection onto M.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Proof
Let T be an operator on Hilbert space H , M be a closed subspace of H
and P be the projection onto M.

To prove that (i)⇒(ii)
By definition,
M reduces T ⇐⇒ TM ⊂ M and TM⊥ ⊂ M⊥ ⇐⇒ M⊥ reduces T.
Hence M reduces T iff M⊥ reduces T
Hence (i) ⇐⇒ (ii) (1)

To prove that (i) ⇐⇒ (iii)
By the result,
TM ⊂ M ⇐⇒ T∗M⊥ ⊂ M⊥,
we have
TM ⊂ M and TM⊥ ⊂ M⊥ ⇐⇒ T∗M⊥ ⊂ M⊥ and T∗M ⊂ M.
⇒ M reduces T ⇐⇒ M reduces T∗

Hence (i) ⇐⇒ (iii)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

To prove that (i) ⇐⇒ (iv)

M reduces T ⇐⇒ TM ⊂ M & TM⊥ ⊂ M⊥

⇐⇒ TM ⊂ M & T∗M⊥ ⊂ M⊥

(∵ TM⊥ ⊂ M⊥ ⇐⇒ T∗M⊥ ⊂ M⊥)

⇐⇒ Mis invariant under T and T∗

Hence (i) ⇐⇒ (iv)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

To prove that (iv) ⇐⇒ (v)

Mis invariant under T and T∗

⇐⇒ TM ⊂ M & T∗M ⊂ M
⇐⇒ TP = PTP & T∗P = PT∗P[by previous theorem]

⇐⇒ TP = PTP & (T∗P)∗ = (PT∗P)∗

⇐⇒ TP = PTP & PT = PTP
⇐⇒ PT = TP

Hence (iv) ⇐⇒ (v)

Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

2.3.2 A necessary and sufficient condition for
T1T2 = T2T1& T1T∗

2 = T∗
2T1.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (1)
If T = UP is the polar decomposition of an operator T, then U and P
commutes with A and A∗, where A denotes any operator which
commutes with T and T∗.

Proof
Let T = UP be the polar decomposition of an operator T.
Then N(U) = N(P), where P = |T| = (T∗T)1/2 (1)
Let A commutes with T and T∗

i.e AT = TA and AT∗ = T∗A (2)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Consider

(T∗T)A = T∗(TA) = T∗(AT)

= (T∗A)T
= (AT∗)T
= A(T∗T)

⇒ P2A = AP2

⇒ PA = AP (3)
⇒ (PA)∗ = (AP)∗
⇒ A∗P = PA∗ (4)
Hence P commutes with A and A∗.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Substituting T=UP in(2), i.e AT − TA = 0, we get

AUP − UPA = 0
⇒ AUP − UAP = 0[∵ PA = AP]

⇒ (AU − UA)P = 0
⇒ AU − UA annihilates R(P)

If x ∈ N(P) = N(U), then Px = 0 and Ux = 0.

Px = 0 ⇒ APx = 0
⇒ PAx = 0
⇒ Ax ∈ N(P) = N(U)

⇒ U(Ax) = 0
Ux = 0 ⇒ A(Ux) = 0

⇒ (AU − UA)x = 0, ∀x ∈ N(P)
⇒ AU − UA annihilates N(P)also.
Hence AU − UA = 0 on H = R(P)⊕ N(P)

Hence AU = UA (5)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Similarly substituting T∗ = PU∗ in (2)
i.e in AT∗ − T∗A = 0, we get

APU∗ − PU∗A = 0
⇒ PAU∗ − PU∗A = 0
⇒ P(AU∗ − U∗A) = 0
⇒ [P(AU∗ − U∗A)]∗ = 0
⇒ (UA∗ − A∗U)P = 0

⇒ UA∗ − A∗U annihilates R(P)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

If x ∈ N(P) = N(U), then Px = 0 and Ux = 0

Px = 0 ⇒ A∗Px = 0
⇒ PA∗x = 0 [∵ PA∗ = A∗P]
⇒ A∗x ∈ N(P) = N(U)

⇒ UA∗x = 0
Ux = 0 ⇒ A∗Ux = 0

⇒ (UA∗ − A∗U)x = 0, ∀x ∈ N(P)
⇒ UA∗ − A∗U annihilates N(P)
Hence UA∗ − A∗U = 0 on H = R(P)⊕ N(P)
Hence UA∗ = A∗U
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (2)
Let T1 = U1P1 and T2 = U2P2 be the polar decomposition of T1 and
T2 respectively. Then the following conditions are equivalent.
(A) T1 doubly commutes with T2

(B) Each of U∗
1, U1 and P1 commutes with each of U∗

2, U2 and P2

(C) The following five equation are satisfied:
(C-1) P1P2 = P2P1
(C-2) U1P2 = P2U1
(C-3) P1U2 = U2P1
(C-4) U1U2 = U2U1
(C-5) U∗

1U2 = U2U∗
1

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Proof
Let T1 = U1P1 and T2 = U2P2 be the polar decompositions of T1 and
T2 respectively.
Assume (A) T1 doubly commutes with T2.
Taking A = T1 and T = T2 in Theorem 1, we get

U2 and P2 commutes T1 and T∗
1

Now taking A = U2 and T = T1 in the same theorem we get,
U1 and P1 commutes with U2 and U∗

2
Hence U1U2 = U2U1, U1U∗

2 = U∗
2U1, P1U2 = U2P1, P1U∗

2 = U∗
2P1

(1)
Similarly taking A = P2 and T = T1 in the same theorem we get,

U1 and P1 commutes with P2 [∵ P∗
2 = P2]

Hence U1P2 = P2U1, P1P2 = P2P1 (2)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Taking adjoint in (1)
U∗

2U∗
1 = U∗

1U∗
2, U2U∗

1 = U∗
1U2

U∗
2P1 = P1U∗

2, U2P1 = P1U2 (3)
Taking adjoint in (2)
P2U∗

1 = U∗
1P2, P1P2 = P2P1 (4)

From (1), (2), (3) and (4), it is clear that each of U∗
1, U1 and P1

commutes with each of U∗
2, U2 and P2

Hence (A)⇒(B)
Again from (1), (2), (3) and (4), it is clear that

P1P2 = P2P1

U1P2 = P2U1

P1U2 = U2P1

U1U2 = U2U1

U∗
1U2 = U2U∗

1

Hence (B)⇒(C),
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

To prove that (C)⇒(A)
Now Assume (C-1)through (C-5)

Consider T1T2 = U1P1U2P2

= U1U2P1P2[from (C-3)]
= U2U1P2P1[from (C-4) and (C-1)]
= U2P2U1P1[from (C-2)]
= T2T1
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Consider T1T∗
2 = U1P1P2U∗

2

= U1P2P1U∗
2[from (C-1)]

= P2U1P1U∗
2[from (C-2)]

= P2U1(U2P1)
∗

= P2U1(P1U2)
∗[from (C-3)]

= P2U1U∗
2P1

= P2U∗
2U1P1

= (U2P2)
∗(U1P1)

= T∗
2T1

Hence (C)⇒(A)
Hence (A)⇒(B)⇒(C)⇒(A)
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 3
Let T1 = U1P1 and T2 = U2P2 be the polar decomposition of T1 and
T2 respectively.
If T1 doubly commutes with T2, then T1T2 = (U1U2)(P1P2) is the
polar decomposition of T1T2, i.e (P1P2) = |T1T2| and U1U2 is the
partial isometry of T1T2 with N(U1U2) = N(P1P2).

Proof
Let T1 doubly commutes with T2.
Then by the theorem 2,

T1T2 = (U1P1)(U2P2)

= U1(P1U2)P2

= U1(U2P1)P2[by (C-3)]
= (U1U2)(P1P2)

i.e T1T2 = (U1U2)(P1P2) (1)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Consider

(U1U2)(U1U2)
∗(U1U2) = (U1U2)(U∗

2U∗
1)(U1U2)

= (U1U2)(U∗
1U∗

2)(U1U2)[by (C-4) U1U2 = U2U1 ⇒ U∗
2U∗

1 = U∗
1U∗

2]

= U1(U2U∗
1)(U∗

2U1)U2

= U1(U∗
1U2)(U1U∗

2)U2[by (C-5)]
= U1U∗

1(U2U1)U∗
2U2

= U1U∗
1(U1U2)U∗

2U2[by (C-4)]
= (U1U∗

1U1)(U2U∗
2U2)

= U1U2

(∵ U1 and U2are partial isometries U1U∗
1U1 = U1, U2U∗

2U2 = U2)

Hence U1U2 is a partial isometry.

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Consider |T1T2|2 = (T1T2)
∗(T1T2)

= T∗
2T∗

1T2T1

= T∗
1T∗

2T1T2

= T∗
1T1T∗

2T2

= P2
1P2

2

= (P1P2)
2

⇒ |T1T2| = P1P2.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Now to prove that N(U1U2) = N(P1P2)

x ∈ N(U1U2) ⇐⇒ U1U2x = 0
⇐⇒ U2x ∈ N(U1) = N(P1)

⇐⇒ P1U2x = 0
⇐⇒ U2P1x = 0
⇐⇒ P1x ∈ N(U2) = N(P2)

⇐⇒ P2P1x = 0
⇐⇒ P1P2x = 0
⇐⇒ x ∈ N(P1P2)

Hence N(U1U2) = N(P1P2)
Hence the theorem that if T1 doubly commutes with T2, then
T1T2 = (U1U2)(P1P2) is the polar decomposition of T1T2.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 4(Polar decomposition)
Every operator T can be expressed in the form U|T| where U is a
partial isometry with N(U) = N(|T|). This kernal condition uniquely
determines U, U and |T| commute with V∗, V and |A| of the polar
decomposition A = V|A| of any operator A commuting with T and T∗.

Proof
By the theorem,
”Let T be any operator on a Hilbert space H. Then there exists a
partial isometry operator U such that T = U|T|, where |T| = (T∗T)1/2

and M and N, the initial and final space of U can be expressed as
follows:
M = R(|T|) = R(T∗) and N = R(T)
Moreover N(U) = N(|T|) and U∗U|T| = |T|”
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Every operator T can be expressed in the form U|T| where U is a
partial isometry with N(U) = N(|T|) and kernal condition uniquely
determines U.
Put T2 = T and T1 = A, in Theorem 1, then we get,
U and |T| commute with V∗, V and |A| of the polar decomposition
A = V|A| of any operator A commuting with T and T∗.
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 5
Let T = UP be the polar decomposition of an operator T. Then T is
normal iff U commutes with P and U is unitary on N(T)⊥.

Proof
In the theorem 2,
Put T = T1, T2 = T, then conditions of (A) is equivalent to the
normality of A and condition (B) is equivalent to that U commutes
with P and U∗U = UU∗.
Therefore U is unitary on the initial space of U = N(T)⊥.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (6)
Let T be a normal operator. Then there exists a unitary operator U
such that T = UP = PU and both U and P commutes with V∗, V and
|A| of the polar decomposition A = V|A| of any operator A commutes
with T and T∗

Proof
Let T = U1P = PU1 be the polar decomposition of a normal operator
T.
Let A = V|A| be the polar decomposition of A.
By the result
”Let T = UP be the polar decomposition of an operator T then T is
normal iff U commutes with P and U is unitary on N(T)⊥.
U∗

1U1 = U1U∗
1 (1)

and the initial space M of U1 coinsides with the final space N.
i.e U1M ⊂ N = M
Hence M reduces U1
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Hence U1PM = PMU1 = PMU1P (2)
where PM = U∗

1U1 denotes the projection of H onto M. Put
U = U1PM + I − PM

Consider U∗U = (PMU∗
1 + I − PM)(U1PM + I − PM)

= PMU∗
1U1PM + U1PM − PMU1PM + PMU∗

1 + I − PM − PMU∗
1PM − PM + P2

M

= PMPMPM + U1PM − U1PM + PMU∗
1 + I − 2PM − U∗

1PM + PM.

= 2PM + I − 2PM

= I

Similarly, U∗U = (U1PM + I − PM)(PMU∗
1 + I − PM) = I

Hence U is unitary
Since PMP = U∗UP = P ( because U∗U|T| = |T| ) and P = P∗ = PPM,

PMP = P = P∗ = PPM
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

UP = (U1PM + I − PM)P
= U1PMP + IP − PMP
= U1P + P − P
= U1P
= T

Therefore T = UP.
Similarly T = PU1 = PU
Hence T = UP = PU
Also by theorem 2,
P commutes with V∗, V and |A|.
By the same theorem,
U1 commutes with V∗, V and |A|
∴ PM = U∗

1U1 commutes with V∗, V and |A|
i.e PM|A| = |A|PM, PMV = VPM and PMV∗ = V∗PM.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

VU = V(U1PM + I − PM)

= VU1PM + V − VPM

= U1VPM + V − VPM

= U1PMV + V − PMV
= (U1PM + I − PM)V
= UV

Similarly V∗U = UV∗ and |A|U = U|A|
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (7)
Every normal operator T can be written in the form UP, where P is
positive and U may be taken to unitary such that U and P commute
with each other and with all operators commuting with T and T∗.

Proof
(By Theorem 6)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (F-P(Fuglede-Putnam))
Let A and B be normal operator. If AX = XB holds for some operator
X, then A∗X = XB∗.

Proof
Since (i) eiS is a unitary operator for any self adjoint S and
(ii) AX = XB ⇒ AnX = XBn for any natural number n,

eiλ̄AX = Xeiλ̄B for any complex number λ.(1)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Define f(λ) = eiλA∗Xe−iλB∗
, for λ ∈ C.

Then

f(λ) = eiλA∗
eiλ̄AXe−iλ̄Be−iλB∗

Using (1)
= ei(λA∗+λ̄A)Xe−i(λB∗+λ̄B) by the normality of A and B (2)

Since (λA∗ + λ̄A)∗ = λ̄A+ λA∗ and (−1(λ̄B+ λB∗))∗ = −1(λB∗ + λ̄B),
λA∗ + λ̄A and −1(λB∗ + λ̄B) are self-adjoint operators, and
by (i), ei(λA∗+λ̄A) and e−i(λB∗+λ̄B) are both unitary operators.
Hence by (2) f(λ) is analytic and bounded for all complex number λ.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Hence by Liouville’s theorem, f(λ) is constant. i.e

f(λ) = f(0) = e0Xe0 = X

Hence eiλA∗
Xe−iλB∗

= X, for any λ.

⇒ eiλA∗
X = XeiλB∗

Differentiating both sides w.r.to λ

iA∗eiλA∗
X = XiB∗eiλB∗

⇒ A∗eiλA∗
X = XB∗eiλB∗

, for all λ ∈ C.

Put λ = 0 ⇒ A∗X = XB∗

Hence the required result.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 8
Let T1 = U1P1 be the polar decomposition of an operator T1 and let
T2 be a normal operator and T2 = U2P2 be the decomposition of T2
such that P2 is positive, U2 is unitary, U2 and P2 commute with V∗, V
and |A| of the polar decomposition A = V|A| of any operator A
commuting with T2 and T∗

2. then the following conditions are
equivalent.
(A) T1 commutes with T2

(B) Each of U∗
1, U1 and P1 commutes with each of U∗

2, U2 and P2

(C) U1 and P1 commutes with U2 and P2
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Proof
Since T2 is normal, T2T∗

2 = T∗
2T2 (1)

Assume (A) i.e T1 commutes with T2 , T1T2 = T2T1 (2)
(or) T2T1 = T1T2 (3)
∴ Taking A = B = T2 in Fuglede-Putam inequality T∗

2T1 = T1T∗
2

i.e T1T∗
2 = T∗

2T1 (4)
⇒ T2T∗

1 = T∗
1T2 (5)

Hence from (2)and (5), the normal operator T2 commutes with T1 and
T∗

1
Hence U2 and P2 commutes with U∗

1, U1 and P1
Hence (B) is shown.
Hence (A)⇒(B)
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

(C) trivially follows from (B)
Hence (B)⇒(C)
Now assume (C) i.e U1 and P1 commutes with U2 and P2
then

T1T2 = U1P1U2P2

= U1U2P1P2

= U2U1P2P1

= U2P2U1P1

= T2T1

Hence T1 commutes with T2
Hence (C)⇒(A)
Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

2.3.3 Polar decompositionof nonnorml operator

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (1)
Suppose that N(T) ⊂ N(T∗) and let T = UP be the polar
decomposition of T. Then there exists an isometry U1 such that
T = U1P and both U1 and P commute with V∗, V and |A| of the polar
decomposition A = V|A| of any operator A commuting with T and T∗.
In case N(T) = N(T∗), U1 can be chosen to be unitary.

Proof:
Assume that N(T) ⊂ N(T∗) and T = UP be the polar decomposition of
T.
N(T) ⊂ N(T∗) implies N(T)⊥ ⊃ N(T∗)⊥ = R(T)
Since T = UP is the polar decomposition of T, U is a partial isometry
on the initial space M = R(T) and N(U) = N(T)
∴ UM ⊆ M and Ux = 0, ∀ x ∈ M⊥

⇒ UM⊥ ⊆ M⊥

Hence M reduces T.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 2
Let T be a quasinormal operator. Then there exists an isometry U
such that T = UP = PU and U and P commute with U∗, V and |A| of
the polar decomposition A = U|A| of any operator A commuting with
T and T∗.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (3)
Let T = U|T| be the polar decomposition of an operator T. Then
T = U|T| is quasi normal iff U|T| = |T|U.
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2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and
T∗

1T2 = T2T∗
3
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (1)
LetTk = UkPk be the polar decomposition of Tk for k = 1, 2 and 3.
Then the following conditions are equivalent:
(A) T1T2 = T2T3 and T∗

1T2 = T2T∗
3

(B) (B − 1)P3P2 = P2P3,
(B − 2)U3P2 = P2U3,
(B − 3)P1U2 = U2P3,
(B − 4)U1U2 = U2U3 and
(B − 5)U∗

1U2 = U2U∗
3
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2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 2
Let T1 = U1P1 and T3 = U3P3 be the decomposition described in
Theorem 6 in 2.3.2 of normal operators T1 andT3 and letT2 = U2P2 be
the polar decomposition of an operator T2. tiondiThen the following
conditions are equivalent:
(A) T1T2 = T2T3

(B) (B-1), (B-2), (B-3),(B-4) and (B-5)in Theorem 1 hold.
(C) (B-1), (B-2), (B-3) and (B-4)in Theorem 1 hold.
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2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Lemma 1
Let T1 and T2 be operators on Hilbert spaces H1 and H2, respectively.
If T1 is unitarily equivalent to T2 and T1 has an algebraic definite (or
semi definite) property Σ with {pα}, then so has T2
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2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Corollary 3
LetTk = UkPk be the polar decomposition of Tk for k = 1, 2 and 3.
and let T1T2 = T2T3 and T∗

1T∗
2 = T2T∗

3 Then
(1) R(T2) reduces U1, U2 and T1 N(T2) reduces U3, P3 and T3

(2) U1|R(T2)
(res P1|R(T2)

, T1|R(T2)
) is unitarily equivalent to

U3|N(T2)⊥ (res P3|N(T2)
⊥ , T3|N(T2)

⊥)

(3) When T2 has a dense range, and if U3(res. P3 and T3) has an
algebraic definite property Σ with polynomials {pα, } then so has
U1(res P1 and T1)

(4) When T2 is injective, and if U1(res. P1 and T1) has an algebraic
definite property Σ with polynomials {pα, } then so has U3(res P3
and T3)
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2.3.5 Hereditary property on the polar decomposition of an operator

2.3.5 Hereditary property on the polar decomposition of an operator

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (1)
Let T = U|T| be the polar decomposition of an operator T. Then
T2 = 0 iff U2 = 0
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2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Theorem (2)
Let T = U|T| be the polar decomosition of an operator T. Then
(1) If T is binormal, then so is U.
(2) If T is quasinormal, then so is U;

U = isometry ⊕ 0 on N(T)⊥ ⊕ N(T)

(3) If T is normal, then so is U; U = unitary ⊕ 0 on N(T)⊥ ⊕ N(T)

(4) If T is self-adjoinit, then so is U;
U = symmetry ⊕ 0 on N(T)⊥ ⊕ N(T)

(5) If T is positive, then so is U; U=projection.

Dr N. Jayanthi Associate Professor of MathematicsGovt. Arts College(Autonomous)Coimbatore-18Unit-I



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2.2 Partial Isometry operator and Polar Decomposition of an operator
2.3 Polar Decomposition of an operator and its Application

2.3.1 Invariant subspace and reducing subspace
2.3.2 A necessary and sufficient condition for T1T2 = T2T1& T1T∗

2 = T∗
2 T1.

2.3.3 Polar decompositionof nonnorml operator
2.3.4 A necessary and sufficient conditions for T1T2 = T2T3 and T∗

1 T2 = T2T∗
3

2.3.5 Hereditary property on the polar decomposition of an operator

Remark 1(Berberian)
Let A and B be normal operators and X be an operator on a
Hilbertspace. Then the following (i) and (ii) hold and follows from each
other
(i) If AX = XA, then A∗X = XA∗

(ii) If AX = XB, then A∗X = XB∗
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Thank You
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