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2.2 Partial Isometry operator and Polar Decomposition of a|  2.2.1 Partial isometry operator and its characterization
.2. Polar decomposition of an operator

Definition (1)

An operator U on a Hilbert space H is said to be an isometry operator
if
IUx|| = ||x||/for any x € H.

This is equivalent to,

< Ux, Uy >=< x,y > for any x ,y € H.|[by polarization identity]

v

An operator U on a Hilbert space H is said to be a unitary operator if
U is an isometry operator from H onto H.
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ometry operator and Polar >mposition of a 2.1 Partial isometry operator and its characterization

Polar decomposition of an operator

Theorem (1)

(i) An operator U on a Hilbert space H is an isometry operator iff

U*U =1

(ii) An operator U on a Hilbert space H is a unitary operator iff
U*U=U0U*=1

To prove (i)

Let U be an isometry operator on H

= [|Ux|| = ||x||, for all x € H.
Hence by polarization identity,
<Ux,Uy> = <xy>Vx,yeH

=< U'Ux,y > <x,y>,Vx, yeH
=U'U = 1
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1 Partial isometry operator and its characterization

2. Polar decomy ion of an operator

Conversely, assume that U*U =1
Hence

|Ux||? =< Ux, Ux >=< U*Ux, x >=< x,x >= |)x|?

= [[Ux[| = [[x]-

Hence an operator U on a Hilbert space H is an isometry operator iff
U*U =1

Unit-I



2.2 Partial Isometry operator and Polar Decomposition of a  2.2.1 Partial isometry operator and its characterization

.2. Polar decomposition of an operator

Let U be an Unitary operator on H.

= U is an isometry operator from H onto H.
= ||Ux|| = ||x||, vx € H.

From (i), U*U =1 (1)
Since U is onto, for any x € H, there exists y € H such that Uy = x.

ThereforeU*x = U"Uy = y and [U*x]| = [ly]l = [ Uyl| = [Ix|

Hence U* is an isometry on H.
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.2 Partial Isometry operator and Polar Decomposition of a| Partial isometry operator and its characterization

. Polar decomposition of an operator

Hence by (i),(U*)*U* =1
= UU* =1
From (1)and (2),

U'U=UU" =1

Conversely, if U*U = UU* =1, then U is isometry. (by (i))
For any x € H,

x = UU*x = U(U*x) € R(U)
= R(U)=H

Hence U is an isometry from H onto H.
Hence U is an unitary operator.
Hence the theorem. )
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cterization

Definition (2)

An operator U on a Hilbert space H is said to be a partial isometry
operator if there exists a closed subspace M such that

IUx|| = ||x|/for any x € M

and
Ux = 0 for any x € M+,

where M is said to be the initial space of U and N = R(U) is said to be
the final space of U.

The Projection onto the initial space is said to be the initial projection
and the final space is said to be the final projection of U, respectively.

Remark
(1) U is isometry iff U is partial isometry and M = H.
(2) U is unitary iff U is partial isometry and M = N = H.
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etry operator and Pola : f a cti racterization

Theorem (2)

Let U be a partial isometry operator on a Hilbert space with the initial
space M and the final space N. Then the following (i), (ii) and (iii) hold

(i) UPMm = U and U*U = Py
(ii) N is a closed subspace of H.

(iii) U* is a partial isometry with the inial space N and the final space
M, that is
U*Py = U* and UU* = Py

Proof

Let U be a partial isometry operator on a Hilbert space H with the
initial space M and the final space N.

| N\

= [|Ux[| = [|x[|,V x € M (1)
Ux=0,Vxe Mt (2)
and N = R(U) (3)
(1)=< Ux, Uy >=<x,y >, Vx,y€M (4)
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2.2 Partial Isometry operator and Polar Decomposit 1 Partial isometry operator and haracterization

To prove (i)

For any x € H, x = Pyx @ z, for some z € M+

Therefore Ux = UPyx @ Uz = UPyx[. z € M+ = Uz = (]
Hence for anyx € H, UPyx = Ux = UPy = U(5)
Now for any x, y € H
<U'Ux,y> = <Ux,Uy>
= < UPyx,UPpy > [from (5)]
< Pux, Pmy > [ Pux, Pyy € M and (4)]
<Pix,y >

= <Pux,y> [.- Py is projection]

= U*U =Py (6)
Hence (i) is proved.
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ization

To prove (ii)

To prove that N is a closed subspace of H.
Let x be a limit point of N = R(U).(i.e) x € N. Now,

N=R(U) = R(UPm)  [by(5)]

= UR(Pm)

= UM
Hence there exists a sequence {Uy, } C N such that Uy, — x, where
{yn} cM (7)
Hence ||yn - ym” = ”U(yn - ym)H = HUYH - Uym” — 0 as m,n — oo

= {yn} is a cauchy sequence in M C N.

Since H is complete, {y,} converges in H.

Let y, — y, Then Uy, — Uy (8)
From (7)and (8),

x=Uy e R(U)=N

Hence N contains all its limit pomts Hence N is a closed subspace H.
Dr N. Jayanthi / of Mathemati Unit-I




aracterization

To prove (iii)

Since N = R(U), for any x € N, there exists y € M such that Uy = x,
Since y € M, |[Uy|l = [ly|.
Hence ||x|| = ||Uyl| = [ly|| and

U'x = U'Uy=Puy [by(5)]
=y [yeM]
Hence ||[U*x|| = |ly]| = |||
Hence |U™x|| = [|x|,V x €N ©®

For any x € N* and y € H, Consider < U*x,y >=< x, Uy >=0
( because x € N* and Uy € R(U) =N )
= U*x = 0, for all x € N+ (10)

Now R(U*) = U'N = U*R(U) = U*UH = PyH = M

Hence R(U*) =M (11)
From (9), (10), (11), U* is a partial isometry with the initial space N and the
final space M.

Hence by (1), U"Pxy = U* and (U*)*U* = Pn.(i.e) UU" = Px
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2.2 Partial Isometry operator and Polar Decomposition of a  2.2.1 Partial isometry operator and its characterization

.2. Polar decomposition of an operator

heorem  (3)

Let U be an operator on a Hilbert space H. Then the following
statements are mutually equivalent.

(o) U is a partial isometry operator.

(«*) U* is a partial isometry operator.

(8) UU*U = U.
(6*) U*UU* = U*.

(v) U*U is a projection operator.
(v*) UU* is a projection.
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2.2 Partial Isometry operator and Polar Decomposition of a  2.2.1 Partial isometry operator and its characterization

decomposition of an operator

Proof
Assume (@) i.e U is a partial isometry operator.
By theorem, ” Let U be a partial isometry operator on a Hilbert space
H with the initial space M and the final space N. Then
(i) UPyq = U and U*U = Py
(ii) N is a closed subspace of H.
(iii) U* is a partial isometry with the intial space N and the final space
M, that is
U*Py = UrandUU* = Py
UPym = U and U*U = Py
= UU*U=UPy =U
Hence (a) = () (1)
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acterization

Assume () i.e U*U is a projection operator.

Put U*U = Py then for any x € H,

|Ux||? =< Ux, Ux >=< U*Ux, x >=< Pyx, x >= ||Pyx]|?
U] = [Py = [|x]|?, Vx €M

and ||Ux|| = ||Pmx|| = 0, ¥x € M+

ie Ux =0, Vx € M+

Hence ||Ux|| = ||x||, Vx € M and ¥x € M+

Hence U is a partial isometry on M.

Hence (v) = («) (3)
From (1), (2) and (3),
(a) = (8) = () = (a). (a)
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ization

Similarly if U* is a partial isometry operator,
by (o) = (8), U*(U*)*U* =TU*

ie U*UU* = U*

Hence (a*) = (8*) (4)
by (8) = (v), U*UU* =U* = UU* is a projection

Hence (8%) = (v7) ()

by (v) = («), UU* is a projection operator

= U* is a partial isometry operator.

Hence (7v*) = (a*) (6)
From (4), (5) and (6),

(a") = (67) = (v) = (a7). (b)
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acterization

Assume () UU*U =U

Taking adjoint on both sides

(UUu*u)* =U*

= U*UU* = U*

Hence (8) = (8*)

Similarly U*UU* = U*

= UU*U=U

Hence (5*) = (5)

Hence (8) < (8*) (c)
From (a), (b), (¢), it is clear that, («), (a*), (8), (8*), (7) and (v*) are
all equivalent.

v
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Polar decompositio an operator

2.2.2. Polar decomposition of an operator




2.2 Partial Isometry operator and Polar Decomposition of a isometry operator and its characterization

. Polar decomposition of an operator

Theorem (1)

Let M be a dense subspace of a normed space X. Let T be a linear
operator from M to a Banach space Y. If T is bounded, then there
uniquely exists T which is the extention of T from X to Y. i.e Tx = Tx
for all x € M and ||T|| = ||T||

Proof

Let M be a dense subspace of a normed space X.

Then = M = X

Hence for any x € X, there exists {x,} C M such that x, — x.

= [|[Txm — Txn|| < |IT||||Xm — Xn|| = Oas m,n — oo

= {Tx,} is a cauchy sequence in Y.

Since Y is a Banach space, Y is complete.

Hence {Tx,} converges in Y.

Hence there exists yo € Y such that Tx, — yo.

This limit point yq is determined independently from its choice of {x,}
converging to x. i.e yo depends only on x.
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2.2 Partial Isometry operator and Polar Decomposition of a|  2.2.1 Partial isometry operator and its characterization

2. Polar decomposition of an operator

Put Tx = yo.
This T defines an operator T from X to Y.
For any x € M C X, we can choose x, = x, Vn.
Then Tx = Tx.
Hence T is an extension of T.
Claim:To show that T is linear, T is bounded and ||T| = || T||
Let x1,%x9 € X and «, 8 scalars.
By definition of T,
T(x1) = y1, where x,, — x1 and Tx,, — y1
T(x2) = y2, where x,, — x2 and Tx,, — y2
Now Xp,,Xn, € M and T is linear on M.
T(axn, + Bxn,) = aTxy, + BTxn, = ayi + By
Hence

T(ax1 + Bx2) = ay1+ By
= oTx; + ATxo

Hence T is linear.
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By the continuity if norm,

ITxll = fim [[Txall < Jim [T <]l = T

Hence T is bounded and | T|| < ||T||

On the other hand,

Tl

(i.e)[|T|| < |T|

From (1)and (2), [T = |IT|

<
<

sup [[Txl/x € M, x| < 1
sup | Tx||/x € X, |Ix|| < 1

IT|

2)

Hence if T is bounded, there exists T which is the extension of T from

X to Y such that ||T| = ||T||

Dr N. Jayanthi /
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1 Partial isometry operator and its characterization

Polar decomposition of an operator

To prove that T is unique

Let T be a bounded linear operator and an extension of T from X to Y.
For any x € X, take {x,} C M such that x, — x

By the continuity of T,

A

Tx = lim Tx, = lim Tx, = Tx, (by definition of T)
n— oo n— oo

= Tx =Tx,Vx e X.

=T=T.

Hence T is unique.

Hence the theorem.
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2.2 Partial Isometry operator and Polar Decomposit f a Partial isometry ator and its characterization

Polar decomn n of an operator

Theorem

2 Let S and T be bounded linear operators on a Hilbert space H. If
T*T = S*S, then there exists a partial isometry operator U such that
the initial space M = R(T) and the final space N = R(S) and S=UT.

Proof
Let T*T = S*S. Then for any x € H,

= |Tx||? =< Tx,Tx > = <T*Tx,x>
= < S'Sx,x >
= < Sx,Sx >
= [ISx]?
ie [|[Tx|? = ||Sx|?, vx € H (1)
Hence if Tx; = Txo, for x;1, xo € H then
|ISx1 — Sxa|| = || Tx1 — Txz|| =0 = Sx; = Sx»

i.e Tx; = Txo = Sx1 = Sx9, Vx1,%xo € H. (2)
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Define an operator V : R(T) — R(S) as

VTx = Sx
Then
V(TX1 +TX2) = V(T(Xl +X2)) B S(Xl +X2) B SX1 +SX2 = VTXl +VTX2

V(aTx) = V(T(ax)) = S(ax) = aSx = aVTx

Hence V is linear on R(T).

Then [[VTx[| = [|Sx|| = [[Tx]| by (1).

Therefore if y € R(T), then |[Vy|| = [|y]| (3)
Hence V is a bounded linear operator and N = R(S) is a Banach space.

Hence V can be extended to V from M = R(T) onto N.
ie fory e M, H{y,} CR(T)> yn — y and Vy, — Vy
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and [[Vy|l = limuos [[Vyall = limuseo [lyall = lIy]
Now, define U as

Ux = VPux, Vx € H.
Then for x € M = R(T),

[Ux]| = [[VPumx]| = [Vx]| = [Ix]

(. x € M,Pyx =x and [[Vy|| = [ly[| by (4) )
and for x € M+,

U] = [VPux|| = [Pax|| = 0

(. IVyll = llyll by (4) and - x € M+, Pyx = 0)
Hence

[Ux]| = |Ix[l, vxe M
and Ux = 0,¥xe Mt.




Isometry operator and Polar Decomposition of a | Partial isometry operator and its characterization

Polar decomposition of an operator

For any x € H, consider
UTx = VP Tx = VIx = VTx = Sx

Hence S=UT

Moreover VR(T) = R(S), V is an isometry and
R(U) = VM = R(S) = N.

Hence N is the final space of U.

Hence the theorem.

Unit-I



ometry operator and Pola comp f a rtial iso wnd its characterization
olar dec n operator

Theorem (3)

Let T be any operator on a Hilbert space H. Then there exists a partial
isometry operator U such that T = U|T|, where |T| = (T*T)'/? and M
and N, the initial and final space of U can be expressed as follows:

M = R(|T|) = R(T*) and N = R(T)

Moreover N(U) = N(|T|) and U*U|T| = |T|

Proof

Since |T|> = T*T, replacing T by|T| and S by T in the theorem,

"Let S and T be bounded linear operators on a Hilbert space H. If
T*T = S*S, then there exists a partial isometry operator U such that
the initial space M = R(T) and the final space N = R(S) and S = UT.”
We get, there exists a partial isometry operator U such that

M = R(|T|), N=R(|T|) and T = U|T|.
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Therefore,

[Ux]| =[x, vx € M =R(|T])
Ux = 0,vxeM!=R(I])"

Also N(U)* = R(|T[) = N(|T|)~
= N(U) = N(|T|)
Since U*T = U*U|T| = |T|,
T°U = (U'T)" = |T[" = [T

Hence R(|T|) = R(T*U) C R(T*)
On the other hand, since T* = (U|T|)* = |T|U*,

R(T") C R(|T])

Hence R(|T|) = R(T*)
Hence the theorem.
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Definition (1)
Let T be an operator on a Hilbert space H. When T = U|T| with
N(U) = N(|T|), T = U|T| is said to be the polar decomposition of T.

If the kernel condition N(U) = N(|T|) is not necessarily satisfied,
T = U|T)| is said to be a decomposition of T.

Theorem (4)

Let T = U|T| be the polar decomposition of an operator T on a Hilbert
space H. Then the following (i)and (ii) hold

(i) N(|T[) = N(T)
(ii) |T*|9 = U|T|9U* for any positive number q.
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To prove (i)

xeN(|T]) <= |[Tlx=0
—= |TPx=0
— T'Tx=0
= |TxI*=0
— Tx=0
— xeN(T)

Hence N(|T|) = N(T)
Hence (i) is proved.

[< |T?x, x >=< |T|x, |T|x >= ||| T|x]

p—

[ | Tx|]* =< Tx, Tx >=< T*Tx,x >]

Dr N. Jayanthi /
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To prove (ii)

For any positive operator S and for any positive number q,
N(5) = N(S)(1)
Therefore, since |T| is a positive operator,

N(|T[*) = N(|TI)

, AL AL
i.e ROT)" = R(T)
Also U*U is the initial projection on M = R(|T|)
i.e UU|T| = |T

Hence

= R(|T[) = R(|T])

U*UIT|* = (U*U|T))|T|*"" = |T||T]*" = |T|

i.e U*U|T|e = |T|a
Using (3),

[T*|* = TT* = (U|T|)(U|T|)* = U|T||T|U* = U|T|U*U|T|U*
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Polar decomp n of an operator

Therefore
fo(IT*?) = £ (U|T|U*)? = UL, (|T*)U*

for any polynomial f,(t). (6)
Take f,(t) — t}/2

Then by (6), |T*| = U|T|U*

( since the square root S!/2 of a positive operator S is approximated
uniformly by polynomials of S. )

By induction,

n

|T*|% = U|T|= U* holds for any natural number m and n
Let o~ —q,

then |T*|4 = U|T|9U* for any positive number g
Hence (ii) is proved.
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Theorem

Let T = U|T| be the polar decomposition of an operator T on a Hilbert
space H. ThenT* = U*|T*| is also the polar decomposition of an
operator T*

Since T = U|T| is the polar decomposition of T,
N(U) = N(|T|) holds (1)
Now,

™ = (U[T])”

= [T|U*  [|T]" =|T]
= U*UIT|U* [ U*UIT| = |T]
= UMT*| [|T"|=U|T|U"]

Hence T* = U*|T*|
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Hence to prove that T* = U*|T*| is tha polar decomposition of T*, it is
sufficient to prove that N(U*) = N(|T*|).

Now x € N(U")

[N

Hence N(U*) = N(|T*|)
Hence T* = U*|T*| is the polar decomposition of T*.

Hence the theorem

U'x=0
[U*x||> =0
UU*x =0
IT|U*x =0
T'x=0
IT*|x =0
x & N(IT*))

[ [U*||? =< U*x, U*x >=< UU
[ N(U) = N(|T)]

Dr N. Jayanthi /
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Decomposition of an ope ’ S
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2.3.1 Invariant subspace and reducing subspace




and sufficient condition f
»mpositionof nonnorml ope
ary and sufficient conditions for
2.3.5 Hereditary property on the polar decompo

2.3 Polar Decomposition of an operato ts Application

An operator T on a Hilbert space H can be decomposed into T = UP,
where U is a partial isometry and P = |T| = (T*T)"/? with

N(U) = N(P), N(X) denote the kernel of an operator X, the kernel
condition N(U) = N(P) uniquely determines U and P of the polar
decomposition T = UP.
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pace and reducing subspace

and sufficient condition for T{ Ty = T
o a P s . . . 0lz > ositionof no T yperator
2.3 Polar Decomposition of an operato s App 0 wopesilionel memsenll eperiien

and sufficient conditions for

s property on the polar decomposition of

Definition (1)

If an operator T commutes S and S*, then T is said to doubly
commutes with S.
ie TS =8ST, TS* =S*T.

Definition (2)
Let T be an operator on a Hilbert space H.

(i) A closed subspace M of a Hilbert space H is said to be invariant
under T if TM C M.
i.e Tx € M whenever x € M

(ii) A closed subspace M of a Hilbert space H is said to reduce T if
TM Cc M and TM*+ € M*. i.e M and M~ are both invariant under

Unit-I



and sufficient condition fe
ympositionof nonnorml ope
ary and sufficient conditions for

2.3 Polar Decomposition of an operato ts Application

s property on the polar decompo

Theorem (1)
Let T be an operator on Hilbert space H and M be a closed subspace of
H. Then the following conditions are mutually equivalent:
(i) TM Cc M
(i) T*M+t c M+
(iii) TP = PTP, where P is the projection onto M.

Let T be an operator on Hilbert space H, M be a closed subspace of H
and P be the projection onto M.
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ce and reducing subspace
and sufficient condition for T{ Ty = Ty T

,mpositionof nonnorml o

2.3 Polar Decomposition of an operator and its Application =
an ient conditi

y property on the polar

To prove that (i)= (iii)

Assume TM C M to prove that TP = PTP

If x € H, then Px ¢ M

= TPx e M [~ TM C M]

Hence PTPx = TPx [ P is projection on M]
Hence PTP=TP

Hence (i)=-(iii) (1)
Conversely, assume that PTP = TP

Let y e M

.- P is Projection of H onto M, 3x e H> Px=y
then Ty = TPx = PTPx = P(TPx) € M.
ieyeM=TyeM

Hence TM Cc M

Hence (iii)=(i) (2)
From (1)and (2),
(i) < (iii) (3)
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and sufficient condition fe
ympositionof nonnorml ope
v and sufficient conditions for

s property on the polar decompo:

2.3 Polar Decomposition of an operator and its Appli

To prove that (ii) < (iii).
by (3), (i) <= (il
ieTMCM <= TP =PTP.
Hence

"M+t cMt «— T*I1-P)=(I-P)T*(I-P)

< T*-T*P=T"'-PT*-T'P+PTP
~— PT*=PT'P

— (PT*)* = (PT*P)*

< TP =PTP

Hence (ii) < (iii) (4)
From (3) and (4), (i) <= (ii) <= (iii). Hence the theorem.
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»mpositionof nonnorml ope
ary and sufficient conditions for
2.3.5 Hereditary property on the polar decompo

2.3 Polar Decomposition of an operato ts Application

eorem (2)
Let T be an operator on Hilbert space H and M be a closed subspace of
H. Then the following conditions are mutually equivalent:
(i) M reduces T

(ii) M* reduces T

(iii) M reduces T*
)
)

(iv) M is invaraiant under T and T*
(v) TP = PT, where P is the projection onto M.
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2.3 Polar Decomposition of an operator and its Appli

1 Invariant subspace and reducing subspace
ifficient condition for Ty Ty = T

itionof nonnorml ope
ifficient conditions

Proof

Let T be an operator on Hilbert space H , M be a closed subspace of H
and P be the projection onto M.

To prove that (i)=-(ii)
By definition,

M reduces T < TM c M and TM+ ¢ M+ «<— M- reduces T.
Hence M reduces T iff M+ reduces T

Hence (i) < (ii) (1)

v

To prove that (i) <= (iii)

By the result,

T™CM «— T*M' c M,

we have

TM c M and TM*+ ¢ M+ «<— T*Mt c M* and T*M c M.
= M reduces T <= M reduces T*

Hence (i) < (iii)
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ubspace and reducing subspace
wnd sufficient condition for T Ty = T
decompositionof nonnorml operator
I A necessary and sufficient conditions for T1 Tqg 9
5 Hereditary property on the polar decomposition of an

2.3 Polar Decomposition of an operator pplication

Mreduces T <= TMcM & TM* c M+
~— TMCM& T*Mt c M+
(- TM' c Mt «— T*M* c Mt)
<= Mis invariant under T and T*

Hence (i) < (iv)

Unit-I



pace and reducing subspace
and sufficient condition for T; Ty = T
>mpositionof nonnorml operator
and sufficient conditions for

s property on the polar decomposition of

2.3 Polar Decomposition of an operato

Mis invariant under T and T*
TMCM&TMcCM

TP = PTP & T*P = PT*P|[by previous theorem|]
TP = PTP & (T*P)* = (PT*P)*

TP = PTP & PT = PTP

PT = TP

[

Hence (iv) <= (v)

Hence the theorem.
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3 Polar Decomposition of an operator and its Application

2.3.2 A necessary and sufficient condition for
T1Ty = ToT1& T T5 =T5T,.
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2.3 Polar Decomposition of an operato ts Application

Theorem (1)

If T = UP is the polar decomposition of an operator T, then U and P
commutes with A and A*, where A denotes any operator which
commutes with T and T*.

Let T = UP be the polar decomposition of an operator T.

Then N(U) = N(P), where P = |T| = (T*T)'/? (1)
Let A commutes with T and T*
i.e AT = TA and AT* = T*A (2)
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Consider

T, = THTA) = THAT)
(T*A)T
(AT*)T
S

= P2A = AP?

= PA =AP (3)
= (PA)* = (AP)*

= A*P = PA* (4)
Hence P commutes with A and A*.

Unit-I



2.3 Polar Decomposition of an operator and its Application

Substituting T=UP in(2), i.e AT —

TA =0, we get

AUP - UPA =0
= AUP — UAP =0[.- PA = AP]
= (AU-UA)P=0
= AU — UA annihilates R(P)

If x € N(P) = N(U), then Px = 0 and Ux = 0.

Px=0 =
=
=
=

Ux=0 =

= (AU-UA)x =0, Vx € N(P)
= AU — UA annihilates N(P)also.

APx =0

PAx=0

Ax € N(P) = N(U)
U(Ax) =0

A(Ux) =0

Hence AU—UA =0 on H=R(P) & N(P)

Hence AU = UA

Dr N. Jayanthi A
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Similarly substituting T* = PU* in (2)
iein AT* — T*A =0, we get

APU* —PU*A =0

= PAU*—PU*A =0
= P(AU*—U*A)=0
= [P(AU* — U*A)]* =0
= (UA*—A*U)P =0

= UA* — A*U annihilates R(P)
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s property on the polar decompo:

If x € N(P) = N(U), then Px =0 and Ux =0

Px=0 = A"Px=0
= PA'™x=0 [ PA* = A*P]
= A*x e N(P)=N(U)
= UA*x=0

Ux=0 = A'Ux=0

= (UA* — A*U)x =0, Vx € N(P)

= UA* — A*U annihilates N(P)

Hence UA* — A*U =0 on H = R(P) & N(P)
Hence UA* = A*U

Hence the theorem.
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heorem (2)

Let Ty = U;P; and Ty = U3P5 be the polar decomposition of T; and
Ty respectively. Then the following conditions are equivalent.

(A) Ty doubly commutes with Ty

(B) Each of Uj, U; and Py commutes with each of Us, Us and Ps
(C) The following five equation are satisfied:

C-1) P,P, = PP,

C-2) U;Py = PoU;

C-3) P1Uz = UpPy
C-4) UyUs = UsUy
C

(
(
(
(
(C-5) UjU2 = U, Uy

Unit-I
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2.3 Polar Decomposition of an operator and its Application

Let Ty = UyP; and Ty = UyP5 be the polar decompositions of T and
Ty respectively.
Assume (A) Ty doubly commutes with Ts.
Taking A =T and T = T5 in Theorem 1, we get
Uy and Py commutes T; and T3
Now taking A = Uy and T = T; in the same theorem we get,
U; and P; commutes with U and U3
Hence U1U2 = U2U1, UlU* = U;Ul, P1U2 = U2P1, P1U§ = U;Pl
(1)
Similarly taking A = P5 and T = T; in the same theorem we get,
U; and Py commutes with Py " P5 = Py]
Hence U1P2 = P2U1, P1P2 = PQPl (2)
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Taking adjoint in (1)
U;U; = UiUS, U,Us = UjU,

Us;P, = P, U3, UsP1 =P1U;, (3)
Taking adjoint in (2)
PyUT = UiPs, P1Py = PoPy (4)

From (1), (2), (3) and (4), it is clear that each of Uf, U; and Py
commutes with each of U3, Uy and P»

Hence (A)=(B)

Again from (1), (2), (3) and (4), it is clear that

PP, = P,P,
UiP, = P,U;
P,U, = U,P,
UiU;, = U,Uy
UiU, = U,U%
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2.3 Polar Decomposition of an operator and its Application

To prove that (C)=(A)
Now Assume (C-1)through (C-5)

Consider T1Ty = U;P1UsPy
U, UsP; Pyffrom (C-3)]
UU;PoPq [from (C-4) and (C-1)]
= UyPyU;Py[from (C-2)]

ToT,
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Consider T;T; = U;P;P,U;

= U;PyP1Uj[from (C-1)]
PyU; P, US[from (C-2)]
PoU; (UsPy)*
PyU; (P1Uz)*[from (C-3)]
— P,U,ULP,
P,ULU,P;
(U2P2)*(U1P1)
= T3T,

Hence (C)=(A)
Hence (A)=(B)=(C)=(A)
Hence the theorem.
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Corollary 3

Let Ty = UyP; and Ty = UsP5 be the polar decomposition of Ty and
Ty respectively.

If T1 doubly commutes with TQ, then T1T2 = (UlUg)(Png) is the
polar decomposition of T Ty, i.e (P1Py) = |T1Ts| and U;Us is the
partial isometry of T1Ty with N(U;Us) = N(P1P5).

Let Ty doubly commutes with Ts.
Then by the theorem 2,

T.Ty = (UPy)(UzP2)
= U;(P1Uy)P,
= Uy (UzPq)Pa[by (C-3)]
= (UiU2)(P1P2)
i.e TlTQ = (UlUg)(Png) (1)

Dr N. Jayanthi A e P of Mathema . Unit-I



2.3 Polar Deco

Consider

(U1Uz)(U1U2)"(U1U2) = (U1Uz)(U3U7)(U1Uz)
= (U1U2)(U7U3)(U1Uz)[by (C-4) U1Uz = Ul =
= Ui(U2U7)(U3U01)Us
= Uy(U7U.)(U1U3) Uz [by (C-5)]
= U, U(UsU;)ULU,
= UUj(U1Uz)U5Uz[by (C-4)]
= (U,U;U1)(U2U5U5)
= U;U,

(.- Uy and Usare partial isometries U UjU{ = 1

Hence U, U, is a partial isometry.

Dr N. Jayanthi A ate P > ovt. Unit-I
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Consider [T Ty> = (T1To)*(T1T2)
= TT;T.T,
= TiTsT,T,
TiT,T5T,
- B
(P1P3)?
P,P,.

= |T1T2|

Unit
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2.3 Polar Decomposition of an operator and its Application e =
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Now to prove that N(U;Uz) = N(P1P5)
x € N(U1Us) <= UUyx=0
<= Usx e N(U;) =N(Py)
<~ P1Usx=0
<— UyPix=0
< Pix e N(Uz) =N(P2)
<— PyP1x=0
<~ P1Pyx=0
< x € N(P:Py)
Hence N(U;Uy) = N(P1P2)
Hence the theorem that if T; doubly commutes with T5, then
T1Ty = (U;Uz)(P1P2) is the polar decomposition of T;Ts.
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Corollary 4(Polar decomposition)

Every operator T can be expressed in the form U|T| where U is a
partial isometry with N(U) = N(|T|). This kernal condition uniquely
determines U, U and |T| commute with V*, V and |A| of the polar
decomposition A = V|A| of any operator A commuting with T and T*.

By the theorem,

"Let T be any operator on a Hilbert space H. Then there exists a
partial isometry operator U such that T = U|T|, where |T| = (T*T)!/?
and M and N, the initial and final space of U can be expressed as
follows: L

M = R(|T|) = R(T*) and N = R(T)

Moreover N(U) = N(|T|) and U*U|T| = |T|”

Unit-I



subspace and reducing su

y and sufficient condition
ympositionof nonnorml operator
ary and sufficient conditions for
5 Hereditary property on the polar decompo

2.3 Polar Decomposition of an operato ts Application

Every operator T can be expressed in the form U|T| where U is a
partial isometry with N(U) = N(|T|) and kernal condition uniquely
determines U.

Put To = T and Ty = A, in Theorem 1, then we get,

U and |T| commute with V*, V and |A| of the polar decomposition
A = V|A]| of any operator A commuting with T and T*.

Hence the theorem.
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t subspace and reducing su

and sufficient condition
ympositionof nonnorml operator
ary and sufficient conditions for
2.3.5 Hereditary property on the polar decompo

Let T = UP be the polar decomposition of an operator T. Then T is
normal iff U commutes with P and U is unitary on N(T)*.

In the theorem 2,

Put T =Ty, Ty =T, then conditions of (A) is equivalent to the
normality of A and condition (B) is equivalent to that U commutes
with P and U*U = UU*.

Therefore U is unitary on the initial space of U = N(T)*.

Unit-I



t subspace and reducing s
ary and suffi

Polar decompositionof nonnorml ope
ary and sufficient conditions for

cient condition

2.3 Polar Decomposition of an operato

s property on the polar decompo:

Theorem (6)

Let T be a normal operator. Then there exists a unitary operator U
such that T = UP = PU and both U and P commutes with V*, V and
|A| of the polar decomposition A = V|A| of any operator A commutes
with T and T*

Let T = UyP = PU; be the polar decomposition of a normal operator
T

Let A = V|A| be the polar decomposition of A.

By the result

"Let T = UP be the polar decomposition of an operator T then T is
normal iff U commutes with P and U is unitary on N(T)>L.

UiU; = U, U3 (1)
and the initial space M of U; coinsides with the final space N.
ieUMCN=M

Hence M reduces Uy
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2.3 Polar Decomposition of an operator and its Application

Hence U1PM = PMU1 = PMU1P (2)
where Py = UjU; denotes the projection of H onto M. Put
U=U;Py+1-Py

Consider U'U = (PyU7 +1—Pm)(UiPm+1—Py)
= PuUjUPm + UiPy — PuU Py + Py U +1— Py
= PumPvPym+UiPv—UiPu+PuUT +1-2Py—U
= 2Pm+1-2Py
I

Similarly, U*U = (U1 Py + I — Pum)(PMmU; +1—Py) =1
Hence U is unitary
Since PP = U*UP = P ( because U*U|T| = |T| ) and P = P* = PPy,

PyP =P = P* = PPy

— P

%
1 P

Unit-I
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2.3 Polar Decomposition of an operator and its Appli

UP = (UiPu+I-Py)P
= U;PuP + 1P — PyP
= U;P+P-P
= U,P

T

Therefore T = UP.

Similarly T = PU; = PU

Hence T = UP = PU

Also by theorem 2,

P commutes with V*, V and |A].

By the same theorem,

U; commutes with V*, V and |A|

. Py = UjU; commutes with V*, V and |A]

i.e PM‘A| = |A|PM, PMV = VPM and PM\/»< = V*PM
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VU = V(U;Py+1-Py)
= VU,Py+V - VPy
= U;VPy+V—VPy
= U;PyV+V—-PyV
= (UPy+1-Py)V
= UV

Similarly V*U = UV* and |A|U = UJ|A|
Hence the theorem.
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2.3 Polar Decomposition of an operato ts Application

Every normal operator T can be written in the form UP, where P is
positive and U may be taken to unitary such that U and P commute
with each other and with all operators commuting with T and T*.

(By Theorem 6)
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Theorem (F-P(Fuglede-Putnam))

Let A and B be normal operator. If AX = XB holds for some operator
X, then A*X = XB*.

Since (i) €'® is a unitary operator for any self adjoint S and
(ii) AX = XB = A"X = XB" for any natural number n,

eMAX = XeB for any complex number (1)
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2.3 Polar Decomposition of an operator and its Application

Define f(\) = A" Xe *B" for \ € C.

f(\) = ei,\A*eiZ\AXe—iZ\Be—i,\B* Using (1)

= MATHAA) X —IABTHAB) 1y the normality of A and B (2)

Since (AA* + XAA)* = XA + AA* and (—1(AB + AB*))* = —1(AB* + AB),
AA* + XA and —1(AB* + AB) are self-adjoint operators, and

by (i), e{AA+HAA) and e {AB"+AB) are hoth unitary operators.

Hence by (2) f(\) is analytic and bounded for all complex number .

v
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s property on the polar decompo:

Hence by Liouville’s theorem, f()\) is constant. i.e

f(\) = £(0) = °Xe = X
Hence ¢4 Xe™B" = X, for any .
— oMY _ XeiAB
Differentiating both sides w.r.to A
iA*eM X = XiB* B
= A*PA X = XB*e"B", forall A € C.

Put A =0= A*X = XB*
Hence the required result.
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Corolla

Let T1 = U;P; be the polar decomposition of an operator T; and let
T5 be a normal operator and Ty = UsP5 be the decomposition of To
such that Ps is positive, Us is unitary, Us and Py commute with V*, V
and |A| of the polar decomposition A = V|A| of any operator A
commuting with Ty and T5. then the following conditions are
equivalent.

(A) Ty commutes with Ts
(B) Each of Uj, U; and Py commutes with each of Us, Us and Ps
(C) U; and Py commutes with Uy and Py
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2.3 Polar Decomposition of an operato

Since Ty is normal, ToT3 = T5Ty (1)
Assume (A) i.e T; commutes with Ty , T1 Ty = ToT; (2)
(OI‘) T2T1 = TlTQ (3)
.. Taking A = B = T in Fuglede-Putam inequality T5T; = T;T3

i.e T, TS = TAT, (4)
= ToT% = TiT, (5)
Hence from (2)and (5), the normal operator Ty commutes with T; and
T

Hence Uy and Py commutes with Uy, U; and P,

Hence (B) is shown.

Hence (A)=(B)
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2.3 Polar Decomposition of an operator and its Appli

s property on the polar decompo:

(C) trivially follows from (B)

Hence (B)=(C)

Now assume (C) i.e U; and P; commutes with Uy and Po
then

T1Te = U;P1UoP,
U,UsP,1 Py
UaU 1 PoPy
UsPoU,1 Py
= TyT;

Hence T commutes with Ty
Hence (C)=(A)
Hence the theorem.
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2.3.3 Polar decompositionof nonnorml operator




Theorem (1)

Suppose that N(T) € N(T*) and let T = UP be the polar
decomposition of T. Then there exists an isometry U; such that

T = U;P and both U; and P commute with V*, V and |A| of the polar
decomposition A = V|A| of any operator A commuting with T and T*.
In case N(T) = N(T*), Uy can be chosen to be unitary.

Assume that N(T) € N(T*) and T = UP be the polar decomposition of
T

N(T) ¢ N(T*) implies N(T)* > N(T*)* = R(T)

Since T = UP is the polar decomposition of T, U is a partial isometry
on the initial space M = R(T) and N(U) = N(T)

S UMCMand Ux=0, Vxe Mt

= UMt C M+

Hence M reduces T.
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2.3 Polar Decomposition of an operato ts Application

Let T be a quasinormal operator. Then there exists an isometry U
such that T = UP = PU and U and P commute with U*, V and |A| of
the polar decomposition A = U|A| of any operator A commuting with
T and T*.
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Let T = U|T| be the polar decomposition of an operator T. Then
T = U|T| is quasi normal iff U|T| = |T|U.




subspace and reducing subspace
iry and sufficient condition for T{ T

. . . . . . r decompositionof nonno operator
3 Polar Decomposition of an operator and its Application r decompositionof nonnorml operator

4 A necessary and sufficient conditions for T{ Ty = Ty

5 Hereditary property on the polar decomposition of an

2.3.4 A necessary and sufficient conditions for T1Ty = T5T3 and
TiTy = ToT5
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1eorem (1)

LetTy = UrPy be the polar decomposition of Ty for k = 1,2 and 3.
Then the following conditions are equivalent:

(A) T1T2 = T2T3 and TTTQ = T2T§
(B) (B — 1)P3P; = P,P3,
(B — 2)UsPy = P,Us,
(B — 3)P1Uy = UyPs3,
(B 4)U1U2 = U2U3 and
(B—5)UiU; = U, U3
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Let Ty = U;P; and T3 = U3P3 be the decomposition described in
Theorem 6 in 2.3.2 of normal operators T; andT3 and letTy = UsPs be
the polar decomposition of an operator Ts. tiondiThen the following
conditions are equivalent:

(A0 Ty T = TR
(B) (B-1), (B-2), (B-3),(B-4) and (B-5)in Theorem 1 hold.
(C) (B-1), (B-2), (B-3) and (B-4)in Theorem 1 hold.
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4 A necessar, d § 1t conditions
5 Here

Let Ty and Ts be operators on Hilbert spaces H; and Hs, respectively.
If Ty is unitarily equivalent to T9 and T; has an algebraic definite (or
semi definite) property X with {p,}, then so has Ty

Unit-I



2.3 Polar Decomposition of an operator and its Application

LetTy = UxPy be the polar decomposition of Ty for k = 1,2 and 3.
and let T1T2 = T2T3 and rI‘TTW< = TQT;, Then

2) reauces Uq, 2 an 1 2) reduces Us, 3 all 3
1) R(T d U, Uy and Ty N(T d Uz, P3and T
(2) UllR(Tz)(res Pl\R(T2)7 Tl\R(TQ)) is unitarily equivalent to

U3|N(T2)L (res Pg‘ml, Tglmi)

(3) When T; has a dense range, and if Us(res. P3 and T3) has an
algebraic definite property ¥ with polynomials {p,, } then so has
U1 (res P1 and Tl)

(4) When Ty, is injective, and if Uy (res. P; and T;) has an algebraic

definite property ¥ with polynomials {p,, } then so has Us(res P3
and Tg)
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2.3.5 Hereditary property on the polar decomposition of an operator
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Let T = U|T| be the polar decomposition of an operator T. Then
T2=0iff U2 =0
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2.3 Polar Decomposition of an operato ts Application

heorem (2)

Let T = U|T| be the polar decomosition of an operator T. Then
(1) If T is binormal, then so is U.
(2) If T is quasinormal, then so is U;
U = isometry @ 0 on N(T)L @ N(T)
(3) If T is normal, then so is U; U = unitary @ 0 on N(T)* & N(T)
(4) If T is self-adjoinit, then so is Us;
U = symmetry @ 0 on N(T)*+ @ N(T)

(5) If T is positive, then so is U; U=projection.
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2.3 Polar Decomposition of an operato ts Application

Remark 1(Berberian)

Let A and B be normal operators and X be an operator on a
Hilbertspace. Then the following (i) and (ii) hold and follows from each
other

(i) If AX = XA, then A*X = XA*

(ii) If AX = XB, then A*X = XB*
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