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Spectrum of an operator 2.4.1 Two kinds of classifi s of Spectrum

Spectral mapping theorem

Definition

An operator T on a Hilbert space H is said to be an invertible operator
if there exists an operator S such that ST=TS=I, where I is the
identity operator. We write S = T~! and T~! is called the inverse of T.
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Theorem

If T is an operator and c is a positive number such that | Tx|| > c||x]|
for every vector x € H, then R(T), the range of T is closed.

Let T be an operator and c is positive number such that
I Tx|| > c||x|| for every vector x € H (1)

To prove that the range of T, R(T) is closed.
Let yo be a limit point of R(T), then there exists sequence {x,} in H,

such that y, = Tx,, n=1,2... and y, — yo (2)
consider
lyn = Ymll = [TXq — Txml|
= [|T(xa — Xm)||
> c|xn — xXum||[by(1)]

1
= o =xmll < Zllyn = ywll = 0[by(2)]

.. {xn }is a cauchy sequence in H.
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Since H is a Hilbert space, there exists xg € H such that x,, — xq.
Consider
[yo = Txoll < [lyo — Txall + | Txn — Txo|

= [lyo = ¥ull + IT(xn = x0)
Yo = ¥ull + [ Tll[lxn = xoll = 0 as 0 — oo.

IN

(. yn = Yo & x5y = X0)

= yo = Txg

= yp € R(T)

Hence R(T) contains all its limit points.
Hence R(T) is closed.
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Theorem

An operator T on a Hilbert space H is invertible if and only if the
following (i)and(ii) hold

(i) There exists a positive number c such that

ITx|| > c||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) = H.

Proof
Assume that the operator T on H is invertible.
For any x € H, [|x|| = [ T~"Tx|| < ||T~{|||Tx|

= ||Tx|| =

ol
T4l
Hence (i) holds.

Lety € Hand x = T~ 1y
then y = Tx € R(T)
Hence H=R(T)

Hence (ii) holds.

.
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2.4 Spectrum of an operator 2 i i ions of Spectrum

Conversely assume that, the following (i)and (ii) holds

(i) There exists a positive number c such that

ITx|| > c||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) = H.

To prove that T is invertible

By (if), R(T) = H 1)
By (i) and the following theorem

7 If T is an operator and c is a positive number such that || Tx|| > c||x]|
for every vector x € H, then R(T), the range of T is closed.”

R(T) = R(T) 2)
From (1) and (2),

R(T)=H
Hence T is onto.
Let Tx; = Txy for x1, x0 € H
Then 0 = [ Tx; — Txgl| = [ T(x1 = x2)]| > cllxs — x| [by (0]
= |x1 —x2|| =0 = x; =xo. Hence T is one to one.
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2.4 Spectrum of an operator 2.4. o kinds of c! ons of Spectrum

Therefore , for every vector y € H, there exists a unique x € H such
that y = Tx

Define S: H — H as Sy = x.

Let y1,y2 € H and « be scalar. Then there exists x1,xs € H such that
Y1 = TX1 &YQ = TXQ then Syl = X1 and Syz = X9

SS(y1+v2) = S(Txy + Txo)
ST(x1 + x2)
X1 + Xo

= Sy1 + Sy

S(ay1) = S(aTxy)
S(T(ax1))

axy

= aSy1

Hence S is linear.
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Let y € H then there exists x € H such that Tx =y and Sy = x

syl = HT1X|| 2 cffx|| = c[ISyll [by (1)]

= ISyl < <llyll vy € H.

Hence S is bounded.

Hence S is an operator such that ||S|| < % and STx = Sy =x, Vx € H.
and TSy =Tx =y, Vy € H

Hence ST=TS=I

Hence S is the inverse of T.

i.e T is invertible.
Hence the theorem
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2.4 Spectrum of an operator 2.4.1 Two kinds of c tions of Spectrum
2.4.2

> Spectral ma ‘ m

If T > cl for some ¢ > 0, then T is invertible

Proof

Let T > cl for some ¢ > 0

By theorem,

”An operator T on a Hilbert space H is invertible if and only if the
following (i)and(ii) hold

(i) There exists a positive number ¢ such that

ITx|| > c||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) =H, "
it is enough to prove (i) and (ii) for T.

By Schwarz inequality,

< Tx,x >< || Tx||[|x]|, Vx € H.
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2.4 Spectrum of an operator 2.4. o ki i ions of Spectrum

STl < Tx,x >
< clx,x >
= c<X,X>
cl|x*

= |ITx| > cflxll, ¥x € E.

Hence (i) holds.
Let y be orthogonal to R(T).

=><y,Tx> = 0, VxeH
=< Ty, Tx> = 0, VxeH
=Ty = 0
S 0=<Ty,y> > <cy,y>=c|y|?
= |yll=0
= y=0
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2.4 Spectrum of an operator 2.4. ro kinds of ¢ s of Spectrum

Hence if y is orthogonal to R(T), then y =0
Hence R(T) is dense in H

i.e (ii) holds

Hence T is invertible.

Hence the theorem.
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2.4 Spectrum of an operator ions of Spectrum

si
theorem

Let T be an operator on a Hilbert space H.
@ o(T) of T is defined as

o(T) = {\ € C/T — Xis not invertible}

and o(T) is said to be the spectrum of T.
@ p(T) of T is defined as

p(T) = C—o(T)

and p(T) is said to be the resolvent of T.
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Definition

o(T) of T can be divided into the following three parts

(i)
P,(T) = {\ € C/there exists x # Osuch thatTx = Ax}

and P, (T) is said to be the point spectrum of T.
(i)
C,(T) = {\ € C/(T — \)"'is unbounded and R(T — \) = H}

and C,(T) is said to be the continuous spectrum of T.

(i)
R,(T) = {\ € C/(T — \) 'exists and R(T — \) C H}

and R, (T) is said to be the residual spectrum of T.
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2.4.1 Two kinds of ions of Spectrum
2.4 n

ectral may

2.4 Spectrum of an operator

2 Sy

(a)(T — X\) " 'does not exist <= \ € P,(T)
(bu) R(T—A):H = e

(b1) (T — X\)~'is bounded { -
(bi2) RIT—A) CH < |\ €
(b21) R(T = )\) =H <= )\

(b)(T — \) ™ 'exists
(b2) (T — X\)~'is unbounded —
(bzz) R(T = )\) g H <= )\

Unit-III
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Spectrum of an operator 2.4.1 Two kinds o ifi s of Spectrum

Spectral mapping theorem

Proposition 1

o(T) = P,(T) UCyx(T) UR,(T) where P, (T), C,(T), Ry(T) are
mutually disjoint parts of o(T)
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

A,(T)={)€e

C/there exists a sequence of unit vectors{x, such that ||x,| =

1 and ||Txy — Axyp|| — 0} and A, (T) is said to be the approximation
point spectrum of T.

M(T) = {\ € C/R(T — ) C H}

and [(T) is said to be the compression spectrum of T.

| \

Proposition 2

o(T) = A,(T) UT(T) holds, where A,(T) and I'(T) are not necessarily
disjoint parts of o(T)
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

By the theorem,
” An operator T on a Hilbert space H is invertible if and only if the
following (i)and(ii) hold

(i) There exists a positive number ¢ such that

ITx|| > cl||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) = H. ”

T — X is invertible <= (i) There exists a positive number ¢ such that
[I(T — A)x|| > cl|x||holds for any x € H.
and (ii) R(T — A), the range of T — A is dense in H, i.e R(T — \) = H.

T — )\ is not invertible <= either (i)or(ii) is not satisfied.
Hence o(T) = A,(T) UT(T).
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2.4 Spectrum of an operator 2.4.1 Two kinds o
2.4.2

> Spectral ma

Theorem
If T is an operator such that ||[I — T|| < 1, then T is invertible.

Proof

Let T be an operator such that ||[I — T|| <1
Let |I—T|| =1— «, where 0 < a < 1 then

ITx|| =[x —(x=Tx]
> Il = (T = T)x]|
> Xl = (1 = o)l
= aofx|
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2.4 Spectrum of an operator 2.4.1 Two kinds o ations of Spectrum
2.4.2

2 Spectral ma

Therefore ||Tx|| > ax||, Vx € H (1)
Let y € H and 0 = inf{||ly — x||/x € R(T)}

If T > 0, then there exists a vector x € R(T), such that

(1—a)lly —x[l < ¢

Since x, T(y —x) € R(T), x+ T(y — x) € R(T)

0 <y —{x+T(y—x)}

= lI6—x) =Tl -l
IT=T)(y =x) =1 -a)lly —x[| <94

IN

Which is a contradiction.

Hence § =0
inf{ly — x|l/x € R(T)} =0
= yeR(T)=H (2)
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2.4 Spectrum of an operator 2.4. ro kinds of ¢ s of Spectrum

heorem

Hence by theorem,
An operator T on a Hilbert space H is invertible if and only if the
following (i)and(ii) hold

(i) There exists a positive number ¢ such that

ITx|| > cl||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) =H. ”

T is invertible.
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2.4 Spectrum of an operator 2.4.1 Two kinds o ations of Spectrum
2.4.2 Spectral ma

If T is an operator, then o(T) is a compact subset of the complex plane
if A € o(T), then |\| < ||T|.

Proof

o(T) = {A € C/T — Xis not invertible}

Claim: o(T) is compact subset of C.

To prove this, it is sufficient to prove that o(T) is closed subset of C
(or) p(T) = C — o(T) is an open subset of C.

Let Ao € p(T) = C —o(T)

= Ao ¢ o(T)

= T — )¢ is invertible. Then

[T=(T =) (T =N = |
= |
= |
= |

T — X)) HT — Xo) = (T — Xo) " H(T =
T — X0) " H{(T — o) — (T = M)}l

T — o)~ '(A = o)l

T — Xo) {I[(A = Xo)|

—_— o~ —~ o~
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ions of Spectrum

2.4 Spectrum of an operator

1
.. whenever |\ — Ag| < T = 7)1
T (T =) (T =N <1
= (T — Xo)~}(T — ) is invertible.
(T — )\) is also invertible whenever |\ — o] is sufficiently small
Hence p(T) is an open subset of C.
Hence o(T) is closed subset of C
Hence o(T) is compact.

Unit-III
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2.4 Spectrum of an operator 2.4.1 Two kinds o ations of Spectrum
2.4.2

2 Spectral m

To prove that |A| < ||T||, for A € o(T)
Let A € o(T)

T . T
16 3] > 7)), then [[(3)] < e T (1= T) <1
T
=1- 5 is invertible.

1
= X()\ — T) is invertible.
= T — )\ is invertible.
A ¢ o(T)
which is a contradiction
Hence if A € o(T), then |A|| < ||T||
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

If T is an operator, then A, (T) is a compact subset of the complex
plane.

Proof

Let Ao ¢ A (T)

Then there exists a positive number € such that || Tx — Aox]|| > e, for all
unit vector x

o If x is a unit vector and if |A — Ag| < €/2, then

ITx — Al [[Tx — Aox + Aox — Ax]|
ITx — Xox + (Ao — A)x||
['Tx = Aox[| — [[(Ao — A)x||
[Tx = Aox|| = [Ao — Al[Ix]
= T = Agxll — o — A

> e—¢€/2=¢/2

Y
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ons of Spectrum

theorem

= || Tx — Ax|| > €/2, whenever |\ — \o| < €/2

i.e A ¢ A,(T), whenever |\ — Ao| < €/2

Hence complement of A,(T) is open.

Hence A, (T) is closed subset of the complex plane.
Hence A,(T) is compact.

Unit-III



2.4 Spectrum of an operator 2.4. ro kinds of classi ons of Spectrum

theorem

Theorem

If T is a self adjoint operator on a Hilbert space H, then all the eigen
values of T are real number.

Proof

Let T be a self-adjoint operator on a Hilbert space H.
Let A be an eigen value of T, then Tx = Ax, for some x € H with x # 0
Consider

| N\

ASXX> = <AXX>

< Tx,x >
= <x,T"x >
= <x,Tx>
= <X Ax>
= X<X,X>

P

>

i.e A is real. Hence all the eigenvalues of T are real numbers.
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2.4 Spectrum of an operator 2.4.1 Two kinds of c cations of Spectrum
2.4

2 Spectral mapping

Theorem

If T is a self-adjoint operator on a Hilbert space H. Then T + il has a
bounded inverse operator

Let T be a self-adjoint operator on a Hilbert space H.
Claim 1: To prove that ||(T +iI)x|| > ||x||, Vx € H.
Consider

I(T + D)

< (T +iDx, (T + il)x >

= < Tx+ilx, Tx+ilx >

= <Tx,Tx>+ <ix, Tx >+ < Tx,ix > + < ix,ix >

= <Tx,Tx>+i<x,Tx>—-i<Tx,x>+i(—i) < x,x >
= ||ITx|]® +i{< x, Tx > — < Tx,x >} + ||x||”

= ||ITx|® +if< T*x,x > — < Tx,x >} + ||x]|?

= | Tx|? +i{< Tx,x > — < Tx,x >} + ||x||?

= T + el

>

Hence [|(T + il)x|| > [|x||, Vx € H.
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2.4 Spectrum of an operator 2.4.1 Two kinds of classifications of Spectrum
2.4

2 Spectral mapping theorem

Claim 2: To prove that R(T +il) = H
Let y € H such that y LR(T + iI)

= <y, (T+il)x >=0,Vx € H.
= < (T+il)*y,x>=0,Vx € H.
= < (T-i)y,x>=0,Vx € H.
= (Ty—-iy)=0

= Ty—-iy=0

= Ty=iy

which is a contradiction, since T is on a self-adjoint operator, all its
eigenvalues must be real. Hence y = 0
Hence R(T + il) = H.
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2.4 Spectrum of an operator 2. inds o i ions of Spectrum

Spectral mappir theorem

By claim 1 and claim 2 and by theorem, ” An operator T on a Hilbert
space H is invertible if and only if the following (i)and(ii) hold

(i) There exists a positive number ¢ such that

ITx|| > c||x|/holds for any x € H.

(ii) R(T), the range of T is dense in H, i.e R(T) = H.”
T + il is invertible.
Hence T + il has a bounded inverse.
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2.4 Spectrum of an operator 2.4.1 Two kinds o
F T
2.4.2 Spectral ma

If T is any operator on a Hilbert space, then the following (i)and (ii)
hold

(i) H=R(T) ®N(T")
(i) H=R(T*) & N(T)

Since R(T) is a closed subspace of H, H = R(T) ® R(T)l
If y € N(T*), then < Tx,y >=<x, T*y >=<x,0>=0

=>R() N(T~)
R(T) = N(T*)
=R(T) & N(T~)

Simllarl H = R(T*) @ N(T)
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2.4 Spectrum of an operator 2.4.1 Two kinds o
2.4.2

2 Spectral ma

If A € I(T), then X € P,(T*)

Proof
Let A el

= R(T — A\) € H. [by the definition of [(T)]
SJH=R(T-X)@&N(T-X\)*)

.. there exists non zero vector x € N(T — A\)*

= (T-N)*x=0
= (T* - N)x=0
= T*x = Ax

= X € P, (T

S If A e(T), then A € P, (T*)
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2.4 Spectrum of an operator 2.4.1 Two kinds o ions of Spectrum

2.4.2 Spectral ma

If A € Ry(T), then X € P, (T*)

Proof

Let A € R,(T)

= (T — \)~! exists and R(T —\) ¢ H
Since R(T — \) C H, A € [(T)

Hence by theorem,

"If A € [(T), then X € P,(T*)”

A € P,(T*)

o if A € Ry (T), then X € P,(T*)
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

If an operator T is normal, then o(T) = A,(T) holds.

Proof

Since A,(T) C o(T) is always true, it is enough to prove that,
o(T) € A,(T) for normal operator T.

Let T be a normal operator and A € o(T)

If XA ¢ As(T), then there exist € > 0 such that

[Tx — Ax|| > €, Vx € H with [|x]| =1

= [Ty = Ayll > ellyll, Yy € H (1)
= (T = A)yll = (T = A)yll = ellyl| Vy € H[." T is normall (2)
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2.4 Spectrum of an operator 2.4.1 Two kinds of

ectral mappir eorem

Claim: R(T —\)=H
Let y LR(T — A)

<(T—=XNx,y>=0, VxeH
<x(T-XN)*y>=0, Vxe€H
(T-N)y=0,
(T*=XN)y=0

Ty = Ay

L
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Substituting in(2)

Iyl <0

= lIvll =0

=y=0

Hence R(T — \) =H (3)
From (1) and (3), (T — \) satisfies the two conditions (i) there exist a
constant € > 0 such that ||(T — N)y|| > €|ly|, Vy € H

(i) R(T-N)=H

Hence (T — ) is invertible

= A ¢ o(T),

Which is a contradiction.

Hence A € A,(T)

Hence we have proved that, o(T) C A,(T)

Hence if T is normal, o(T) = A,(T)
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

Theorem

If an operator T is normal, then R, (T) =

Proof

Let T be a normal operator and A € R, (T) then A € P,(T*) [By result,
If A € Ry (T), then X € Py (T*)]

= 3 non zero y € H such that T*y = \y

= Ty = Ay [." T is normal, | T*y — Ay|| = || Ty — Ay||]

= X e P,(T),

Which is a contradiction, since R,(T) NP, (T) = 0.

Hence R, (T) =0
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2.4 Spectrum of an operator 2.4.1 Two kinds o ations of Spectrum
2.4.2

2 Spectral ma

If an operator T is self-adjoint, then o(T)is a subset of the real line.

Let T be a self-adjoint operator B
Let A € 0(T) and A is not a real number then A # A
*. for all non-zero vector x,

0 < A= M=/
= A=A <xx>
A= N)x,x > |
(Tx — Ax) — (Tx — Ax),x > |
= |<(T-Nx,x>—-<(T=-AN)'x,x>|[..T=T"]
= [ <(T-A)xx>—<x(T—-A)x>|
< < (T=Nxx >+ <x,(T=A)x> |
< T = Al + T = A)x
— 2)/Tx — x|
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ons of Spectrum

theorem

oo | Tx — Ax||||x]] > 0, V nonzero x € H = X\ ¢ A,(T)

=\ ¢ o(T), [ for self adjoint operator, o(T) = A,(T)]
Which is a contradiction.

Hence o(T) of a normal operator is a subset of the real line
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2.4 Spectrum of an operator 2.4. ro kinds of ¢ s of Spectrum

heorem

Let T be a normal operator, Tx = Ax and Ty = py, where A # u. Then
<x,y>=0

Let T be a normal operator, Tx = Ax and Ty = uy, where A # p. Then
<x,y>=0
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2.4 Spectrum of an operator

s of Spectrum

Theorem

The following two conditions on an operator T are equivalent:
(i) T has an approximate point spectrum g such that |u| = ||T||
(i) sup{| <Tx,x > [/|)x]| =1} = |IT||

Proof
To prove that (i)=-(ii)
Assume that T has an approximate point spectrum p such that

| A\

|l = Tl
= 3 a sequence{x, } of unit vectors such that || Tx, — pux,|| — 0 and
|l = [Tl
then
| < Txp,xn > —p| = | < Txp,Xp > —p < Xp,Xn > |

= |(< Txn — pXn), Xn > |
< || Txtn — pxta [l %nll

= |ITxn — pxn|| > 0asn — oo
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2.4 Spectrum of an operator 2.4. ro ki i ions of Spectrum

< Txp,xp >— g as n — oo

| < Txp,xn > | — |p| as n — oo

Since ||T|| > sup{| < Tx,x > |/||x|| = 1}
> | < Ton, %0 > | = || = 1T

= sup{| < Tx,x > |/|Ix]| = 1} = |IT]|.
Hence (i)= (ii)
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2.4 Spectrum of an operator 2.4. o ki i ions of Spectrum

To prove that (ii)=-(i)

Assume that sup{| < Tx,x > |/|x|| = 1} = || T||

3 a sequence of vectors {x,} such that ||x,| =1 and
| < Txp,xn > | = |||

Assume that < Txy,x, >— p 3 |u| =T

Claim: u € A,(T)

Consider

| Txn — anH2 = < Txy — pxy, Txy — px, >
= || Txu|> =7 < Txn,xn > — < Xp, Txp > +uli < Xpdxy
= ||ITxul? =7 < TxXp, X > —p < Txp, X > +|pf?
= ulPl = pl? = |ul? + |u* =0

o€ AL(T)

Hence T has an approximate point spectrum g such that |u| = ||T||

Hence (ii)=(i)
Hence (i) and (ii) are equivalent.
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2.4 Spectrum of an operator 2.4.1 Two kinds o
2.4.2

2 Spectral ma

For any operator A and B, 0(AB) — {0} = 0(BA) — {0} holds. i.e the
nonzero elements of 0(AB) and o(BA) are the same.

Proof

Let A and B be any two operators .

To prove that o(AB) — {0} = 0(BA) — {0}
To prove this , we have to show that if X\ # 0, then AB — X is invertible
<= BA — ) is invertble.

Without loss of generality, it is sufficient to show that, if I — AB is
invertible, then BA — I is invertible. Let I — AB be invertible and C be
its inverse, then

I-AB)C=C(I-AB)=1

=C—-ABC=C-CAB=1

= ABC=CAB=C-1 (1)

| \

v
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2.4 Spectrum of an operator 2.4.1 Two kinds of cations of Spectrum

2.4.2 Spectral m

Consider

(I+BCA)(I-BA) = I-BA+BCA—BCABA

= I-BA+BCA-B(C—-ID)A
I- BA +BCA — BCA + BA
I

Similarly (I - BA)(I+BCA) =1
ie I—BA)(I+BCA)=(I+BCA)(I-BA)=1
Hence (I — BA) is invertible and (I — BA)~! =T+ BCA
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2.4.2 Spectral mapping theorem




2.4 Spectrum of an operator

Theorem (Spectral mapping theorem)

Let o(T) be the spectrum of an operator T and p(t) be any polynomial
of a complex number t. Then o(p(T)) = p(c(T))

Proof:

Let o(T) be the spectrum of an operator T and p(t) be any polynomial
of a complex number t.

Let Ao € o(T)

= T — Aol is not invertible.

Since there exists g(A) such that

p(A) = p(Ao) = (A — Ao)g(N),

p(T) — p(Aol) = (T — AoI)g(T)

= p(T) — p(Ao)I is not invertible. [ T — Aol is not invertible]

= p(Xo) € o(p(T))

= p(a(T)) C o(p(T)) (1)

| N\
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2.4 Spectrum of an operator

onversely,

Let Ao € o(p(T))

= p(T) — Mol is not invertible.

Let A1, A2, ... Ay, be such that p()\;) = X, for A=1,2,...n

= p(A) — Ao = a(A = A1)(A = A2) ... (A = A\p), for some scalar «
= p(T) —Xo = OL(T = )\1)(T = )\2) 600 (T = )\n),

If each of T — A1 is invertible, then p(T) — Aol is also invertible.
Hence there exists k 5 T — A\l is not invertible. i.e Ax € o(T)
= p(Ak) € p(o(T))

= N € p(O’(T))

= o(p(T)) < p(o(T)) 2)

From (1) and (2), p(o(T)) = o(p(T))
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2.4 Spectrum of an operator

Let T be defined as T = <2 1)

6 1

2— A 1
|T—)\I|:‘ 6 1)\’:0
= 2-AN)1-X)-6=0
=2—A—2\+ X —6
=X -31—-4=0
=A=-4HN+1)=0
= T + I and T — 4I not invertible
= —1, 4 € 0(T)
= o(T) = {4,-1} (1)

=5 1) (1)
- (1 )
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2.4 Spectrum of an operator

s o Jlo-x 3|
IT% = M= 18 T—A
= (10— A)(T—-A)—54=0
=T70—TA—10A+ X2 —-54=0
=X -172+16=0
= A-1)(\—-16)=6
=A=1, 16
= T2 — T and T? — 161 are not invertible
= o(T2) = {1, 16}

Since o(T) = {4, -1}, {o(T)}? = {16, 1}
Hence o(T?) = {o(T)}?

0
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2.4 Spectrum of an operator 2 Two kinds of classifications of Spec

A P ST sy

Theorem

Let o(T) be the spectrum of an invertible operator T. Then

o(T™) = {o(T)} "

Proof

Let o(T) be the spectrum of an invertible operator T.
Since T is invertible, 0 # o(T).

| N\

Now,
T =AM = At = et
= ittt
A—T)A Tt

= X\ — T is invertible iff (T~ — A~1) is invertible.
Hence \ ¢ (T) — MNlgo(T™h
Hence (T~ 1) = {o(T)} !

Dr N. Jayanthi As; e Pro r of Mathematic Unit-III



2.4 Spectrum of an operator

Theorem

Let o(T) be the spectrum of an operator T. Then

o(T*) = {o(T)}* = {\/ A € o(T)}

Proof:

Let o(T) be the spectrum of an invertible operator T.
If X ¢ o(T), then T — AL is invertible.
= T* — A\*L is also invertible.
= N\ ¢ o(T*)
= o(T") C {o(T)}* (1)
Replacing T by T* in (1)

(T**) (a(T7))"

o(T) C (o(T"))?

= {U(T)}* Co(T7) (2)
From (1)and (2),

o(T*) = {o(T)}*

| \
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Numerical

2.5.1 Numerical range is convex set




2.5.1 Numerical range is convex set

2.5 Numerical Re

The numerical range of W(T) of an operator T on a Hilbert space H is
defined by

W(T) = {< Tx, x> /|x]| = 1}

Theorem (Toeplitz-Hausdorff theorem)

The numerical range W(T) of an operator T is a convex set in the
complex plane
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

proof

Let T be an operator on a Hilbert space H.

Let £ =< Tx,x >, n =< Ty,y >€ W(T)

where x and y are unit vectors in H.

To prove that W(T) is a convex, it is sufficient to prove that every
point of the line segment joining £ and 7 is in W(T)

If £ = n, then the result is true.

If € # 7, then there exist complex numbers a and g such that
af+pB=1land an+ =0

Then it is sufficient to prove that the unit interval

[0,1] c W(aT + B) = aW(T) + 8

If a < Tx,x > 4+ = t, then

a<Tx,x>+8 = t(af+8)+(1—t)(an+p)
até + pt+an+ S — atn — St
= atE+(1—-t)n)+p

.. Without loss of generality, we can assume that £ =1 and n =0
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

Since T can be written as T = A + iB,
where A and B are self adjoint operators and < Tx,x >= 1 and
< Ty,y >= 0 are real, we get

<(A+iB)x,x >=1and < (A+iB)y,y >=0

=>< Ax,x>=1, <Bx,x>=0, < Ay,y >=0, < By,y >=0

If x is replaced by Ax, where |\| = 1, then
< T(Ax), =x >= A\ < Tx,x >=< Tx,x >

Hence < Tx,x > remains the same, but < Bx,y > becomes A < Bx,y >
Hence without loss of generality, we may assume that < Bx,y > is
purely imaginary.

Put h(t) = tx + (1 — t)y, where t € [0, 1].

If x and y were linearly dependent, then since they are unit vectors,

y = ux, where |u| =1

then < Ty,y >=< T(ux), px >= pnp < Tx,x >=< Tx,x >

= 1 — & =n =0, which is a contradiction.

Hence x and y are linearly independent.
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

Therefore h(t) # 0.

< Bh(t),h(t) > = <B(tx+ (1 —1t)y),tx+ (1 —t)y >
= <tBx+(1—-t)By,tx+ (1 —t)y >
= t2 <Bx,x > +t(1 —t) < Bx,y > +(1 — t)t < By, x> A
= t(1-t){<Bx,y >+ <y,Bx >}
= t(1 -t){<Bx,y > +< Bx,y >}
= t(1 —t)2Re < Bx,y >=0 ['< Bx,y > is purely imagir
Hence

< Th(t), h(t) >=< Ah(t), h(t) > +i < Bh(t),h(t) >=< Ah(t), h(t) >
Hence < Th(t), h(t) > is real for all t.
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

Hence the function,

/. h(t) k()
f() = <T||h(t)’ ||h(t)||> € W(T)

and f(t) is real-valued and continues on the closed interval [0, 1].
Hence ([0, 1]) is connected.

Since
0 = (20 0.

[R(0)I|” [(0)]]
= <Ty,y>
= =0 and
B h(1)  h(1)
f(1) = <T||h(1)||’||h(1)||>
= <Tx,x>
= £=1
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

0,1 € £([0,1])

= [0,1]  £([0, 1]) [." £([0, 1])is connected]

Hence [0,1] € W(T) [.- £([0, 1]) € W(T)]

Hence W(T) is a convex set in the complex plane.
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2.5.1 Numerical range is convex set

2.5 Numerical Range of an operator

Theorem

(i) If T is a two- by-two matrix with distinct eigenvalues o and 8 and
corresponding normalized eigenvectors x and y, then W(T) is a
closed elliptied disc with foci at @ and j; if y = | < x,y > | and
0 = /1 —~2, then the minor axis and the major axis can be
expressed respectively as follows

Yo =Bl —5I

Ia Al
R
(ii) If T has only one eigenvalue «, then W(T) is the disc with center

the minor axis =

and the major axis =

1
a and radius §||T —af|
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