Operator Theory

Dr N. Jayanthi Associate Professor of Mathematics Govt. Arts College(Autonomous) Coimbatore-18

April 15, 2021

Chapter II FUNDAMENTAL PROPERTIES OF BOUNDED LINEAR OPERATORS

2.4.1 Two kinds of classifications of Spectrus

 $2.4~\mathrm{Spectrum}$ of an operator

2.4.1 Two kinds of classifications of Spectrum 2.4.2 Spectral mapping theorem

2.4.1 Two kinds of classifications of Spectrum

Definition

An operator T on a Hilbert space H is said to be an invertible operator if there exists an operator S such that ST=TS=I, where I is the identity operator. We write $S=T^{-1}$ and T^{-1} is called the inverse of T.

If T is an operator and c is a positive number such that $||Tx|| \ge c||x||$ for every vector $x \in H$, then R(T), the range of T is closed.

Proof

Let T be an operator and c is positive number such that

$$\|Tx\| \ge c\|x\|$$
 for every vector $x \in H$ (1)

To prove that the range of T, R(T) is closed.

Let y_0 be a limit point of R(T), then there exists sequence $\{x_n\}$ in H, such that $y_n = Tx_n$, $n = 1, 2 \dots$ and $y_n \to y_0$ (2) consider

$$\begin{split} \|y_{n} - y_{m}\| &= \|Tx_{n} - Tx_{m}\| \\ &= \|T(x_{n} - x_{m})\| \\ &\geq c\|x_{n} - x_{m}\|[by(1)] \\ \Rightarrow \|x_{n} - x_{m}\| &\leq \frac{1}{c}\|y_{n} - y_{m}\| \to 0[by(2)] \end{split}$$

 $\therefore \{x_n\}$ is a cauchy sequence in H.

Since H is a Hilbert space, there exists $x_0 \in H$ such that $x_n \to x_0$. Consider

$$\begin{split} \|y_0 - Tx_0\| & \leq \|y_0 - Tx_n\| + \|Tx_n - Tx_0\| \\ & = \|y_0 - y_n\| + \|T(x_n - x_0)\| \\ & \leq \|y_0 - y_n\| + \|T\|\|x_n - x_0\| \to 0 \text{ as } n \to \infty. \end{split}$$

$$(:: y_n \to y_0 \& x_n \to x_0)$$

$$\Rightarrow y_0 = Tx_0$$
$$\Rightarrow y_0 \in R(T)$$

Hence R(T) contains all its limit points.

Hence R(T) is closed.

An operator T on a Hilbert space H is invertible if and only if the following (i)and(ii) hold

(i) There exists a positive number c such that

$$||Tx|| \ge c||x||$$
 holds for any $x \in H$.

(ii) R(T), the range of T is dense in H, i.e $\overline{R(T)} = H$.

Proof

Assume that the operator T on H is invertible.

For any
$$x \in H$$
, $||x|| = ||T^{-1}Tx|| \le ||T^{-1}|| ||Tx||$

$$\Rightarrow \|T\mathbf{x}\| \ge \frac{1}{\|T^{-1}\|} \|\mathbf{x}\|$$

Hence (i) holds.

Let
$$y \in H$$
 and $x = T^{-1}y$

then
$$y = Tx \in R(T)$$

Hence
$$H=R(T)$$

Hence (ii) holds.

Conversely assume that, the following (i) and (ii) holds

(i) There exists a positive number c such that

$$||Tx|| \ge c||x||$$
 holds for any $x \in H$.

(ii) R(T), the range of T is dense in H, i.e R(T) = H.

To prove that T is invertible

By (ii),
$$\overline{R(T)} = H$$
 (1)

By (i) and the following theorem

" If T is an operator and c is a positive number such that $||Tx|| \ge c||x||$ for every vector $x \in H$, then R(T), the range of T is closed."

$$R(T) = R(T) \tag{2}$$

From (1) and (2),

$$R(T) = H$$

Hence T is onto.

Let
$$Tx_1 = Tx_2$$
 for $x_1, x_2 \in H$

Then
$$0 = \|Tx_1 - Tx_2\| = \|T(x_1 - x_2)\| \ge c\|x_1 - x_2\|$$
 [by (i)] $\Rightarrow \|x_1 - x_2\| = 0 \Rightarrow x_1 = x_2$. Hence T is one to one.

Therefore , for every vector $y \in H$, there exists a unique $x \in H$ such that y = Tx

Define $S: H \to H$ as Sy = x.

Let $y_1, y_2 \in H$ and α be scalar. Then there exists $x_1, x_2 \in H$ such that $y_1 = Tx_1 \& y_2 = Tx_2$ then $Sy_1 = x_1$ and $Sy_2 = x_2$

$$\therefore S(y_1 + y_2) = S(Tx_1 + Tx_2)$$

= $ST(x_1 + x_2)$
= $x_1 + x_2$
= $Sy_1 + Sy_2$

$$S(\alpha y_1) = S(\alpha Tx_1)$$

$$= S(T(\alpha x_1))$$

$$= \alpha x_1$$

$$= \alpha Sy_1$$

Hence S is linear.

Let $y \in H$ then there exists $x \in H$ such that Tx = y and Sy = x

$$\| \mathbf{y} \| = \| \mathbf{T} \mathbf{x} \| \ge c \| \mathbf{x} \| = c \| \mathbf{S} \mathbf{y} \|$$
 [by (1)]

$$\Rightarrow$$
 $\|Sy\| \le \frac{1}{c} \|y\|, \forall y \in H.$

Hence S is bounded.

Hence S is an operator such that $||S|| \le \frac{1}{c}$ and STx = Sy = x, $\forall x \in H$.

and
$$TSy = Tx = y, \ \forall y \in H$$

Hence ST=TS=I

Hence S is the inverse of T.

i.e T is invertible.

Hence the theorem

Corollary

If $T \ge cI$ for some c > 0, then T is invertible

Proof

Let T > cI for some c > 0

By theorem,

"An operator T on a Hilbert space H is invertible if and only if the following (i)and(ii) hold

(i) There exists a positive number c such that

$$||Tx|| \ge c||x||$$
 holds for any $x \in H$.

- (ii) R(T), the range of T is dense in H, i.e $\overline{R(T)} = H$, " it is enough to prove (i) and (ii) for T. By Schwarz inequality,
- $< Tx, x > \le ||Tx|| ||x||, \forall x \in H.$

Hence (i) holds.

Let y be orthogonal to R(T).

$$\Rightarrow < y, Tx > = 0, \forall x \in H$$

$$\Rightarrow < Ty, Tx > = 0, \forall x \in H$$

$$\Rightarrow Ty = 0$$

$$\therefore 0 = < Ty, y > \geq < cy, y > = c||y||^2$$

$$\Rightarrow ||y|| = 0$$

$$\Rightarrow y = 0$$

Hence if y is orthogonal to R(T), then y=0Hence R(T) is dense in H i.e (ii) holds Hence T is invertible. Hence the theorem.

Definition

Let T be an operator on a Hilbert space H.

 \circ $\sigma(T)$ of T is defined as

$$\sigma(T) = \{\lambda \in C/T - \lambda \text{ is not invertible}\}\$$

and $\sigma(T)$ is said to be the spectrum of T.

$$\rho(T) = C - \sigma(T)$$

and $\rho(T)$ is said to be the resolvent of T.

Definition

 $\sigma(T)$ of T can be divided into the following three parts

(i) $P_{\sigma}(T) = \{\lambda \in C/\text{there exists } x \neq 0 \text{such that} Tx = \lambda x\}$ and $P_{\sigma}(T)$ is said to be the point spectrum of T.

(ii)

$$C_{\sigma}(T) = \{\lambda \in C/(T-\lambda)^{-1} \text{ is unbounded and } \overline{R(T-\lambda)} = H\}$$

and $C_{\sigma}(T)$ is said to be the continuous spectrum of T.

(iii)
$$R_{\sigma}(T) = \{\lambda \in C/(T-\lambda)^{-1} \text{ exists and } \overline{R(T-\lambda)} \subseteq H\}$$
 and $R_{\sigma}(T)$ is said to be the residual spectrum of T.

$$\begin{cases} (a)(T-\lambda)^{-1} \text{does not exist} \iff \lambda \in P_{\sigma}(T) \\ (b)(T-\lambda)^{-1} \text{exists} \end{cases} \begin{cases} (b_1) \ (T-\lambda)^{-1} \text{is bounded} \begin{cases} (b_{11}) \ \overline{R(T-\lambda)} = H \iff \lambda \in (b_{12}) \ \overline{R(T-\lambda)} \subseteq H \iff \lambda \in (b_{21}) \ \overline{R(T-\lambda)} = H \iff \lambda \in (b_{22}) \ \overline{R(T-\lambda)} \subseteq H \iff \lambda \end{cases}$$

Proposition 1

 $\sigma(T) = P_{\sigma}(T) \cup C_{\sigma}(T) \cup R_{\sigma}(T)$ where $P_{\sigma}(T)$, $C_{\sigma}(T)$, $R_{\sigma}(T)$ are mutually disjoint parts of $\sigma(T)$

Definition

$$A_{\sigma}(T) = \{\lambda \in$$

C/there exists a sequence of unit vectors $\{x_n\}$ such that $||x_n|| = 1$ and $||Tx_n - \lambda x_n|| \to 0\}$ and $A_{\sigma}(T)$ is said to be the approximation point spectrum of T.

$$\Gamma(T) = \{\lambda \in C/\overline{R(T-\lambda)} \subsetneq H\}$$

and $\Gamma(T)$ is said to be the compression spectrum of T.

Proposition 2

 $\sigma(T) = A_{\sigma}(T) \cup \Gamma(T)$ holds, where $A_{\sigma}(T)$ and $\Gamma(T)$ are not necessarily disjoint parts of $\sigma(T)$

By the theorem,

- " An operator T on a Hilbert space H is invertible if and only if the following (i)and(ii) hold
- (i) There exists a positive number c such that

$$||Tx|| \ge c||x||$$
 holds for any $x \in H$.

(ii) R(T), the range of T is dense in H, i.e $\overline{R(T)} = H$.

 $T - \lambda$ is invertible \iff (i) There exists a positive number c such that

$$\|(T - \lambda)x\| \ge c\|x\|$$
 holds for any $x \in H$.

and (ii) $R(T - \lambda)$, the range of $T - \lambda$ is dense in H, i.e $\overline{R(T - \lambda)} = H$. $T - \lambda$ is not invertible \iff either (i)or(ii) is not satisfied. Hence $\sigma(T) = A_{\sigma}(T) \cup \Gamma(T)$.

If T is an operator such that ||I - T|| < 1, then T is invertible.

Proof

Let T be an operator such that $\|I - T\| < 1$

Let $\|\mathbf{I} - \mathbf{T}\| = 1 - \alpha$, where $0 < \alpha < 1$ then

$$||Tx|| = ||x - (x - Tx)||$$

$$\geq ||x|| - ||(I - T)x||$$

$$\geq ||x|| - (1 - \alpha)||x||$$

$$= \alpha ||x||$$

Therefore
$$\|Tx\| \ge \alpha \|x\|$$
, $\forall x \in H$ (1)
Let $y \in H$ and $\delta = \inf\{\|y - x\|/x \in R(T)\}$
If $T > 0$, then there exists a vector $x \in R(T)$, such that $(1 - \alpha)\|y - x\| < \delta$
Since x , $T(y - x) \in R(T)$, $x + T(y - x) \in R(T)$

$$\leq \|(I - T)(y - x)\| = (1 - \alpha)\|y - x\| < \delta$$

 $\delta < \|\mathbf{v} - \{\mathbf{x} + \mathbf{T}(\mathbf{v} - \mathbf{x})\}$

 $= \|(y-x) - T(y-x)\|$

Which is a contradiction.

Hence
$$\delta = 0$$

 $\inf\{|y - \underline{x}||/\underline{x} \in R(T)\} = 0$
 $\Rightarrow y \in R(T) = H$ (2)

Hence by theorem,

An operator T on a Hilbert space H is invertible if and only if the following (i)and(ii) hold

(i) There exists a positive number c such that

$$||Tx|| \ge c||x||$$
 holds for any $x \in H$.

(ii) R(T), the range of T is dense in H, i.e $\overline{R(T)} = H$. "T is invertible.

If T is an operator, then $\sigma(T)$ is a compact subset of the complex plane if $\lambda \in \sigma(T)$, then $|\lambda| \leq ||T||$.

Proof

 $\sigma(T) = \{\lambda \in C/T - \lambda \text{ is not invertible}\}\$

Claim: $\sigma(T)$ is compact subset of C.

To prove this, it is sufficient to prove that $\sigma(T)$ is closed subset of C (or) $\rho(T) = C - \sigma(T)$ is an open subset of C.

Let
$$\lambda_0 \in \rho(T) = C - \sigma(T)$$

$$\Rightarrow \lambda_0 \notin \sigma(T)$$

 $\Rightarrow T - \lambda_0$ is invertible. Then

$$||I - (T - \lambda_0)^{-1}(T - \lambda)|| = ||(T - \lambda_0)^{-1}(T - \lambda_0) - (T - \lambda_0)^{-1}(T - \lambda)||$$

$$= ||(T - \lambda_0)^{-1}\{(T - \lambda_0) - (T - \lambda)\}||$$

$$= ||(T - \lambda_0)^{-1}(\lambda - \lambda_0)||$$

$$= ||(T - \lambda_0)^{-1}||(\lambda - \lambda_0)||$$

∴ whenever
$$|\lambda - \lambda_0| < \frac{1}{\|(T - \lambda_0)^{-1}\|}$$
, $\|I - (T - \lambda_0)^{-1}(T - \lambda)\| < 1$ $\Rightarrow (T - \lambda_0)^{-1}(T - \lambda)$ is invertible. $(T - \lambda)$ is also invertible whenever $|\lambda - \lambda_0|$ is sufficiently small Hence $\rho(T)$ is an open subset of C. Hence $\sigma(T)$ is closed subset of C. Hence $\sigma(T)$ is compact.

To prove that $|\lambda| \leq ||T||$, for $\lambda \in \sigma(T)$

Let $\lambda \in \sigma(T)$

If
$$|\lambda| > \|T\|$$
, then $\|\left(\frac{T}{\lambda}\right)\| < i.e \|I - \left(I - \frac{T}{\lambda}\right)\| < 1$

$$\Rightarrow$$
 I $-\frac{T}{\lambda}$ is invertible.

$$\Rightarrow \frac{1}{\lambda}(\lambda - T)$$
 is invertible.

$$\Rightarrow \hat{T} - \lambda$$
 is invertible.

$$\lambda \notin \sigma(T)$$

which is a contradiction

Hence if
$$\lambda \in \sigma(T)$$
, then $|\lambda| \leq ||T||$

If T is an operator, then $A_{\sigma}(T)$ is a compact subset of the complex plane.

Proof

Let $\lambda_0 \notin A_{\sigma}(T)$

Then there exists a positive number ϵ such that $\|Tx - \lambda_0 x\| \ge \epsilon$, for all unit vector x

 \therefore If x is a unit vector and if $|\lambda - \lambda_0| < \epsilon/2$, then

$$||Tx - \lambda|| = ||Tx - \lambda_0 x + \lambda_0 x - \lambda x||$$

$$= ||Tx - \lambda_0 x + (\lambda_0 - \lambda)x||$$

$$\geq ||Tx - \lambda_0 x|| - ||(\lambda_0 - \lambda)x||$$

$$= ||Tx - \lambda_0 x|| - |\lambda_0 - \lambda|||x||$$

$$= ||Tx - \lambda_0 x|| - |\lambda_0 - \lambda|$$

$$\geq \epsilon - \epsilon/2 = \epsilon/2$$

$$\Rightarrow \|Tx - \lambda x\| \ge \epsilon/2, \text{ whenever } |\lambda - \lambda_0| < \epsilon/2$$
 i.e $\lambda \notin A_{\sigma}(T)$, whenever $|\lambda - \lambda_0| < \epsilon/2$
Hence complement of $A_{\sigma}(T)$ is open.
Hence $A_{\sigma}(T)$ is closed subset of the complex plane.
Hence $A_{\sigma}(T)$ is compact.

If T is a self adjoint operator on a Hilbert space H, then all the eigen values of T are real number.

Proof

Let T be a self-adjoint operator on a Hilbert space H.

Let λ be an eigen value of T, then $Tx = \lambda x$, for some $x \in H$ with $x \neq 0$ Consider

$$\begin{array}{rcl} \lambda < \mathbf{x}, \mathbf{x} > & = & < \lambda \mathbf{x}, \mathbf{x} > \\ & = & < T\mathbf{x}, \mathbf{x} > \\ & = & < \mathbf{x}, T^*\mathbf{x} > \\ & = & < \mathbf{x}, T\mathbf{x} > \\ & = & < \mathbf{x}, \lambda \mathbf{x} > \\ & = & \overline{\lambda} < \mathbf{x}, \mathbf{x} > \\ \lambda & = & \overline{\lambda} \end{array}$$

i.e λ is real. Hence all the eigenvalues of T are real numbers.

If T is a self-adjoint operator on a Hilbert space H. Then T+iI has a bounded inverse operator

Let T be a self-adjoint operator on a Hilbert space H. Claim 1: To prove that $\|(T+iI)x\| \ge \|x\|, \ \forall x \in H$. Consider

$$\begin{split} &\|(T+iI)x\|^2 &= & < (T+iI)x, (T+iI)x> \\ &= & < Tx+iIx, Tx+iIx> \\ &= & < Tx, Tx>+ < ix, Tx>+ < Tx, ix> + < ix, ix> \\ &= & < Tx, Tx>+i < x, Tx>-i < Tx, x>+i(-i) < x, x> \\ &= & \|Tx\|^2+i\{ < x, Tx>- < Tx, x> \}+\|x\|^2 \\ &= & \|Tx\|^2+i\{ < T^*x, x>- < Tx, x> \}+\|x\|^2 \\ &= & \|Tx\|^2+i\{ < T^*x, x>- < Tx, x> \}+\|x\|^2 \\ &= & \|Tx\|^2+i\{ < Tx, x>- < Tx, x> \}+\|x\|^2 \\ &= & \|Tx\|^2+\|x\|^2 \\ &= & \|x\|^2 \end{split}$$

Hence $\|(T + iI)x\| \ge \|x\|$, $\forall x \in H$.

Proof

Claim 2: To prove that $\overline{R(T+iI)} = H$ Let $y \in H$ such that $y \perp R(T+iI)$

$$\Rightarrow \langle y, (T+iI)x \rangle = 0, \forall x \in H.$$

$$\Rightarrow \langle (T+iI)^*y, x \rangle = 0, \forall x \in H.$$

$$\Rightarrow \langle (T-iI)y, x \rangle = 0, \forall x \in H.$$

$$\Rightarrow (Ty-iy) = 0$$

$$\Rightarrow Ty-iy = 0$$

$$\Rightarrow Ty = iy$$

which is a contradiction, since T is on a self-adjoint operator, all its eigenvalues must be real. Hence y=0 Hence $\overline{R(T+iI)}=H$.

By claim 1 and claim 2 and by theorem, "An operator T on a Hilbert space H is invertible if and only if the following (i)and(ii) hold

(i) There exists a positive number c such that

$$\|Tx\| \geq c\|x\| \text{holds for any } x \in H.$$

(ii) R(T), the range of T is dense in H, i.e $\overline{R(T)} = H$."

T + iI is invertible.

Hence T + iI has a bounded inverse.

If T is any operator on a Hilbert space, then the following (i)and (ii) hold

- (i) $H = \overline{R(T)} \oplus N(T^*)$
- (ii) $H = \overline{R(T^*)} \oplus N(T)$

Proof

Since $\overline{R(T)}$ is a closed subspace of H, $H = \overline{R(T)} \oplus \overline{R(T)}^{\perp}$ If $y \in N(T^*)$, then $< Tx, y > = < x, T^*y > = < x, 0 > = 0$ $\Rightarrow R(T) \perp N(T^*)$ & $\overline{R(T)}^{\perp} = N(T^*)$ $\therefore H = \overline{R(T)} \oplus \underline{N(T^*)}$ Similarly $H = \overline{R(T^*)} \oplus N(T)$

If $\lambda \in \Gamma(T)$, then $\overline{\lambda} \in P_{\sigma}(T^*)$

Proof

Let $\lambda \in \Gamma$

$$\Rightarrow \overline{R(T-\lambda)} \subseteq H$$
. [by the definition of $\Gamma(T)$]

$$\therefore \mathbf{H} = \mathbf{R}(\mathbf{T} - \lambda) \oplus \mathbf{N}((\mathbf{T} - \lambda)^*)$$

 \therefore there exists non zero vector $\mathbf{x} \in \mathbf{N}(\mathbf{T} - \lambda)^*$

$$\Rightarrow (T - \lambda)^* x = 0$$

$$\Rightarrow (T^* - \overline{\lambda}) x = 0$$

$$\Rightarrow T^* x = \overline{\lambda} x$$

$$\Rightarrow \overline{\lambda} \in P_{\sigma}(T^*)$$

 \therefore If $\lambda \in \Gamma(T)$, then $\overline{\lambda} \in P_{\sigma}(T^*)$

Corollary

If $\lambda \in R_{\sigma}(T)$, then $\overline{\lambda} \in P_{\sigma}(T^*)$

Proof

Let
$$\lambda \in R_{\sigma}(T)$$

 $\Rightarrow (T - \lambda)^{-1}$ exists and $\overline{R(T - \lambda)} \subsetneq H$
Since $\overline{R(T - \lambda)} \subsetneq H$, $\lambda \in \Gamma(T)$
Hence by theorem,
"If $\lambda \in \Gamma(T)$, then $\overline{\lambda} \in P_{\sigma}(T^*)$ "
 $\lambda \in P_{\sigma}(T^*)$
 \therefore if $\lambda \in R_{\sigma}(T)$, then $\overline{\lambda} \in P_{\sigma}(T^*)$

If an operator T is normal, then $\sigma(T) = A_{\sigma}(T)$ holds.

Proof

Since $A_{\sigma}(T) \subset \sigma(T)$ is always true, it is enough to prove that, $\sigma(T) \subset A_{\sigma}(T)$ for normal operator T.

Let T be a normal operator and $\lambda \in \sigma(T)$

If $\lambda \notin A_{\sigma}(T)$, then there exist $\epsilon > 0$ such that

$$\|Tx - \lambda x\| \ge \epsilon, \ \forall x \in H \text{ with } \|x\| = 1$$

$$\Rightarrow \|Ty - \lambda y\| \ge \epsilon \|y\|, \ \forall \ y \in H$$
 (1)

$$\Rightarrow \|(T - \lambda)^* y\| = \|(T - \lambda)y\| \ge \epsilon \|y\| \ \forall y \in H \ [\because T \text{ is normal}]$$
 (2)

Proof

Claim:
$$\overline{R(T-\lambda)} = H$$

Let $y \perp R(T-\lambda)$
 $\Rightarrow \langle (T-\lambda)x, y \rangle = 0, \ \forall x \in H$
 $\Rightarrow \langle x, (T-\lambda)^*y \rangle = 0, \ \forall x \in H$
 $\Rightarrow (T-\lambda)^*y = 0,$
 $\Rightarrow (T^* - \overline{\lambda})y = 0$
 $\Rightarrow T^*y = \overline{\lambda}y$

Substituting in(2)

$$\|\mathbf{y}\| \le 0$$

$$\Rightarrow \|\mathbf{y}\| = 0$$

$$\Rightarrow y = 0$$

Hence
$$\overline{R(T-\lambda)} = H$$

(3)

From (1) and (3), $(T - \lambda)$ satisfies the two conditions (i) there exist a constant $\epsilon > 0$ such that $\|(T - \lambda)y\| \ge \epsilon \|y\|, \ \forall \ y \in H$

$$(ii)R(T - \lambda) = H$$

Hence $(T - \lambda)$ is invertible

$$\Rightarrow \lambda \notin \sigma(T)$$
,

Which is a contradiction.

Hence
$$\lambda \in A_{\sigma}(T)$$

Hence we have proved that, $\sigma(T) \subset A_{\sigma}(T)$

Hence if T is normal, $\sigma(T) = A_{\sigma}(T)$

If an operator T is normal, then $R_{\sigma}(T) = \emptyset$

Proof

Let T be a normal operator and $\lambda \in R_{\sigma}(T)$ then $\overline{\lambda} \in P_{\sigma}(T^*)$ [By result,

If $\lambda \in R_{\sigma}(T)$, then $\lambda \in P_{\sigma}(T^*)$

 $\Rightarrow \exists$ non zero $y \in H$ such that $T^*y = \lambda y$

 \Rightarrow Ty = λ y [: T is normal, $||T^*y - \overline{\lambda}y|| = ||Ty - \lambda y||]$

 $\Rightarrow \lambda \in P_{\sigma}(T),$

Which is a contradiction, since $R_{\sigma}(T) \cap P_{\sigma}(T) = \emptyset$.

Hence $R_{\sigma}(T) = \emptyset$

If an operator T is self-adjoint, then $\sigma(T)$ is a subset of the real line.

Proof

Let T be a self-adjoint operator Let $\lambda \in \sigma(T)$ and λ is not a real number then $\lambda \neq \overline{\lambda}$ \therefore for all non-zero vector x,

$$0 < |\lambda - \overline{\lambda}| ||x||^{2}$$

$$= |\lambda - \overline{\lambda}| < x, x >$$

$$= |< (\overline{\lambda} - \lambda)x, x > |$$

$$= |< (Tx - \lambda x) - (Tx - \overline{\lambda}x), x > |$$

$$= |< (T - \lambda)x, x > - < (T - \lambda)^{*}x, x > | [::T = T^{*}]$$

$$= |< (T - \lambda)x, x > - < x, (T - \lambda)x > |$$

$$\leq |< (T - \lambda)x, x > + |< x, (T - \lambda)x > |$$

$$\leq |(T - \lambda)x| ||x|| + ||x|| ||(T - \lambda)x||$$

$$= 2||Tx - \lambda x|||x||$$

2.4.1 Two kinds of classifications of Spectrum 2.4.2 Spectral mapping theorem

.. $\|Tx - \lambda x\| \|x\| > 0$, \forall nonzero $x \in H \Rightarrow \lambda \notin A_{\sigma}(T)$ $\Rightarrow \lambda \notin \sigma(T)$, [.. for self adjoint operator, $\sigma(T) = A_{\sigma}(T)$] Which is a contradiction.

Hence $\sigma(T)$ of a normal operator is a subset of the real line

Let T be a normal operator, $Tx = \lambda x$ and $Ty = \mu y$, where $\lambda \neq \mu$. Then < x, y >= 0

Proof

Let T be a normal operator, $Tx = \lambda x$ and $Ty = \mu y$, where $\lambda \neq \mu$. Then $\langle x, y \rangle = 0$

The following two conditions on an operator T are equivalent:

- (i) T has an approximate point spectrum μ such that $|\mu| = ||T||$
- (ii) $\sup\{|< Tx, x>|/\|x\|=1\} = \|T\|$

Proof

To prove that (i)⇒(ii)

Assume that T has an approximate point spectrum μ such that

$$|\mu| = \|\mathbf{T}\|$$

 $\Rightarrow \exists \ a \ sequence\{x_n\}$ of unit vectors such that $\|Tx_n - \mu x_n\| \to 0$ and

$$|\mu| = ||T||$$

then

$$\begin{aligned} |< Tx_{n}, x_{n} > -\mu| &= |< Tx_{n}, x_{n} > -\mu < x_{n}, x_{n} > | \\ &= |(< Tx_{n} - \mu x_{n}), x_{n} > | \\ &\leq ||Tx_{n} - \mu x_{n}|| ||x_{n}|| \\ &= ||Tx_{n} - \mu x_{n}|| \to 0 \text{ as } n \to \infty \end{aligned}$$

$$\begin{split} &< Tx_n, x_n > \to \mu \text{ as } n \to \infty \\ &|< Tx_n, x_n > |\to |\mu| \text{ as } n \to \infty \\ &\text{Since } \|T\| \ge \sup\{|< Tx, x > |/\|x\| = 1\} \\ &\ge |< Tx_n, x_n > |\to |\mu| = \|T\| \\ &\Rightarrow \sup\{|< Tx, x > |/\|x\| = 1\} = \|T\|. \\ &\text{Hence (i)} \Rightarrow \text{(ii)} \end{split}$$

To prove that $(ii) \Rightarrow (i)$

Assume that $\sup\{|< Tx, x > |/||x|| = 1\} = ||T||$

 \exists a sequence of vectors $\{x_n\}$ such that $||x_n| = 1$ and

$$|<\mathrm{Tx_n},\mathrm{x_n}>|\to\|\mathrm{T}\|$$

Assume that $\langle Tx_n, x_n \rangle \rightarrow \mu \ni |\mu| = ||T||$

Claim: $\mu \in A_{\sigma}(T)$

Consider

$$\begin{split} \|Tx_{n} - \mu x_{n}\|^{2} &= \langle Tx_{n} - \mu x_{n}, Tx_{n} - \mu x_{n} \rangle \\ &= \|Tx_{n}\|^{2} - \overline{\mu} \langle Tx_{n}, x_{n} \rangle - \mu \langle x_{n}, Tx_{n} \rangle + \mu \overline{\mu} \langle x_{n}, x_{n} \rangle \\ &= \|Tx_{n}\|^{2} - \overline{\mu} \langle Tx_{n}, x_{n} \rangle - \mu \langle \overline{Tx_{n}, x_{n}} \rangle + |\mu|^{2} \\ &\to |\mu|^{2} |-\mu|^{2} - |\mu|^{2} + |\mu|^{2} = 0 \end{split}$$

$$\therefore \mu \in A_{\sigma}(T)$$

Hence T has an approximate point spectrum μ such that $|\mu| = ||T||$

Hence (ii)⇒(i)

Hence (i) and (ii) are equivalent.

For any operator A and B, $\sigma(AB) - \{0\} = \sigma(BA) - \{0\}$ holds. i.e the nonzero elements of $\sigma(AB)$ and $\sigma(BA)$ are the same.

Proof

Let A and B be any two operators.

To prove that $\sigma(AB) - \{0\} = \sigma(BA) - \{0\}$

To prove this , we have to show that if $\lambda \neq 0$, then $AB - \lambda$ is invertible $\iff BA - \lambda$ is invertible.

Without loss of generality, it is sufficient to show that, if I-AB is invertible, then BA-I is invertible. Let I-AB be invertible and C be its inverse, then

$$(I - AB)C = C(I - AB) = I$$

 $\Rightarrow C - ABC = C - CAB = I$
 $\Rightarrow ABC = CAB = C - I$ (1)

Consider

$$(I + BCA)(I - BA)$$
 = $I - BA + BCA - BCABA$
= $I - BA + BCA - B(C - I)A$
= $I - BA + BCA - BCA + BA$
= I

Similarly
$$(I - BA)(I + BCA) = I$$

i.e $(I - BA)(I + BCA) = (I + BCA)(I - BA) = I$
Hence $(I - BA)$ is invertible and $(I - BA)^{-1} = I + BCA$

2.4.1 Two kinds of classifications of Spectrum 2.4.2 Spectral mapping theorem

2.4.2 Spectral mapping theorem

Theorem (Spectral mapping theorem)

Let $\sigma(T)$ be the spectrum of an operator T and p(t) be any polynomial of a complex number t. Then $\sigma(p(T)) = p(\sigma(T))$

Proof:

Let $\sigma(T)$ be the spectrum of an operator T and p(t) be any polynomial of a complex number t.

Let $\lambda_0 \in \sigma(T)$

 \Rightarrow T - λ_0 I is not invertible.

Since there exists $g(\lambda)$ such that

$$p(\lambda) - p(\lambda_0) = (\lambda - \lambda_0)g(\lambda),$$

$$p(T) - p(\lambda_0 I) = (T - \lambda_0 I)g(T)$$

$$\Rightarrow$$
 p(T) – p(λ_0)I is not invertible. [: T – λ_0 I is not invertible]

$$\Rightarrow p(\lambda_0) \in \sigma(p(T))$$

$$\Rightarrow p(\sigma(T)) \subset \sigma(p(T))$$

←□→ ←□→ ←□→ ←□→ □

(1)

С

onversely,

Let
$$\lambda_0 \in \sigma(p(T))$$

 \Rightarrow p(T) – λ_0 I is not invertible.

Let
$$\lambda_1, \lambda_2, \dots \lambda_n$$
, be such that $p(\lambda_i) = \lambda_0$, for $\lambda = 1, 2, \dots n$

$$\Rightarrow$$
 p(λ) - $\lambda_0 = \alpha(\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$, for some scalar α

$$\Rightarrow$$
 p(T) $-\lambda_0 = \alpha (T - \lambda_1)(T - \lambda_2) \dots (T - \lambda_n),$

If each of $T - \lambda_j I$ is invertible, then $p(T) - \lambda_0 I$ is also invertible.

Hence there exists $k \ni T - \lambda_k I$ is not invertible. i.e $\lambda_k \in \sigma(T)$

$$\Rightarrow p(\lambda_k) \in p(\sigma(T))$$

$$\Rightarrow \lambda_0 \in p(\sigma(T))$$

$$\Rightarrow \sigma(p(T)) \subset p(\sigma(T))$$

From (1) and (2),
$$p(\sigma(T)) = \sigma(p(T))$$

(2)

Example

Let T be defined as
$$T = \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix}$$

$$|T - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 \\ 6 & 1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (2 - \lambda)(1 - \lambda) - 6 = 0$$

$$\Rightarrow 2 - \lambda - 2\lambda + \lambda^2 - 6$$

$$\Rightarrow \lambda^2 - 3\lambda - 4 = 0$$

$$\Rightarrow (\lambda - 4)(\lambda + 1) = 0$$

$$\Rightarrow$$
 T + I and T - 4I not invertible

$$\Rightarrow -1, 4 \in \sigma(T)$$

$$\Rightarrow \sigma(T) = \{4, -1\}$$

$$T^2 = \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & 3 \\ 18 & 7 \end{pmatrix}$$

(1)

$$|T^{2} - \lambda I| = \begin{vmatrix} 10 - \lambda & 3 \\ 18 & 7 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (10 - \lambda)(7 - \lambda) - 54 = 0$$

$$\Rightarrow 70 - 7\lambda - 10\lambda + \lambda^{2} - 54 = 0$$

$$\Rightarrow \lambda^{2} - 17\lambda + 16 = 0$$

$$\Rightarrow (\lambda - 1)(\lambda - 16) = 6$$

$$\Rightarrow \lambda = 1, 16$$

$$\Rightarrow T^{2} - I \text{ and } T^{2} - 16I \text{ are not invertible}$$

$$\Rightarrow \sigma(T^{2}) = \{1, 16\}$$
Since $\sigma(T) = \{4, -1\}, \{\sigma(T)\}^{2} = \{16, 1\}$
Hence $\sigma(T^{2}) = \{\sigma(T)\}^{2}$

Let $\sigma(T)$ be the spectrum of an invertible operator T. Then

$$\sigma(\mathbf{T}^{-1}) = {\sigma(\mathbf{T})}^{-1}$$

Proof:

Let $\sigma(T)$ be the spectrum of an invertible operator T. Since T is invertible, $0 \neq \sigma(T)$. Now,

$$T^{-1} - \lambda^{-1}I = \lambda \lambda^{-1}T^{-1} - \lambda^{-1}TT^{-1}$$
$$= \lambda \lambda^{-1}T^{-1} - T\lambda^{-1}T^{-1}$$
$$= (\lambda - T)\lambda^{-1}T^{-1}$$

 $\Rightarrow \lambda - T \text{ is invertible iff } (T^{-1} - \lambda^{-1}) \text{ is invertible.}$ Hence $\lambda \notin \sigma(T) \iff \lambda^{-1} \notin \sigma(T^{-1})$ Hence $\sigma(T^{-1}) = {\sigma(T)}^{-1}$

Let $\sigma(T)$ be the spectrum of an operator T. Then $\sigma(T^*) = {\sigma(T)}^* = {\lambda^* / \lambda \in \sigma(T)}$

Proof:

Let $\sigma(T)$ be the spectrum of an invertible operator T.

If $\lambda \notin \sigma(T)$, then $T - \lambda I$ is invertible.

$$\Rightarrow$$
 T* - λ *I is also invertible.

$$\Rightarrow \lambda^* \notin \sigma(T^*)$$

$$\Rightarrow \sigma(\mathbf{T}^*) \subset \{\sigma(\mathbf{T})\}^* \tag{1}$$

Replacing T by T^* in (1)

$$\sigma(\mathbf{T}^{**}) \subset (\sigma(\mathbf{T}^*))^*$$

$$\Rightarrow \sigma(\mathrm{T}) \subset (\sigma(\mathrm{T}^*))^2$$

$$\Rightarrow \{\sigma(T)\}^* \subset \sigma(T^*)$$

From (1)and (2),

$$\sigma(\mathbf{T}^*) = {\sigma(\mathbf{T})}^*$$

4 D > 4 B > 4 B > 3 B 9 Q

(2)

section 2.5 Numerical Range of an operator

2.5.1 Numerical range is convex set

Definition

The numerical range of W(T) of an operator T on a Hilbert space H is defined by

$$W(T) = \{ < Tx, x > / ||x|| = 1 \}$$

Theorem (Toeplitz-Hausdorff theorem)

The numerical range W(T) of an operator T is a convex set in the complex plane

proof

Let T be an operator on a Hilbert space H.

Let
$$\xi = \langle Tx, x \rangle$$
, $\eta = \langle Ty, y \rangle \in W(T)$

where x and y are unit vectors in H.

To prove that W(T) is a convex, it is sufficient to prove that every point of the line segment joining ξ and η is in W(T)

If $\xi = \eta$, then the result is true.

If $\xi \neq \eta$, then there exist complex numbers α and β such that $\alpha \xi + \beta = 1$ and $\alpha \eta + \beta = 0$

Then it is sufficient to prove that the unit interval

$$[0,1] \subset W(\alpha T + \beta) = \alpha W(T) + \beta$$

If $\alpha < Tx, x > +\beta = t$, then

$$\alpha < \text{Tx}, x > +\beta = t(\alpha \xi + \beta) + (1 - t)(\alpha \eta + \beta)$$

$$= \alpha t \xi + \beta t + \alpha \eta + \beta - \alpha t \eta - \beta t$$

$$= \alpha (t \xi + (1 - t)\eta) + \beta$$

 \therefore Without loss of generality, we can assume that $\xi = 1$ and $\eta = 0$

Since T can be written as T = A + iB, where A and B are self adjoint operators and $\langle Tx, x \rangle = 1$ and $\langle Ty, y \rangle = 0$ are real, we get

$$<(A + iB)x, x >= 1 \text{ and } <(A + iB)y, y >= 0$$

$$\Rightarrow < Ax, x >= 1, < Bx, x >= 0, < Ay, y >= 0, < By, y >= 0$$

If x is replaced by λx , where $|\lambda| = 1$, then

$$<$$
 T(λ x), λ x $>=$ $\lambda \overline{\lambda}$ $<$ Tx, x $>=$ $<$ Tx, x $>$

Hence < Tx, x > remains the same, but < Bx, y > becomes $\lambda <$ Bx, y > Hence without loss of generality, we may assume that < Bx, y > is purely imaginary.

Put h(t) = tx + (1 - t)y, where $t \in [0, 1]$.

If x and y were linearly dependent, then since they are unit vectors, $y = \mu x$, where $|\mu| = 1$

then < Ty, y >=< T(μ x), μ x >= $\mu\overline{\mu}$ < Tx, x >=< Tx, x >

 $\Rightarrow 1 - \xi = \eta = 0$, which is a contradiction.

Hence x and y are linearly independent.

Therefore $h(t) \neq 0$.

Hence

$$<\mathrm{Th}(t),h(t)>=<\mathrm{Ah}(t),h(t)>+\mathrm{i}<\mathrm{Bh}(t),h(t)>=<\mathrm{Ah}(t),h(t)>$$
 Hence $<\mathrm{Th}(t),h(t)>$ is real for all $t.$

Hence the function,

$$f(t) = \left\langle T \frac{h(t)}{\|h(t)\|}, \frac{h(t)}{\|h(t)\|} \right\rangle \in W(T)$$

and f(t) is real-valued and continues on the closed interval [0, 1]. Hence f([0, 1]) is connected. Since

$$f(0) = \left\langle T \frac{h(0)}{\|h(0)\|}, \frac{h(0)}{\|h(0)\|} \right\rangle$$

$$= \langle Ty, y \rangle$$

$$= \eta = 0 \text{ and}$$

$$f(1) = \left\langle T \frac{h(1)}{\|h(1)\|}, \frac{h(1)}{\|h(1)\|} \right\rangle$$

$$= \langle Tx, x \rangle$$

$$= \xi = 1$$

```
0, 1 \in f([0, 1])

\Rightarrow [0, 1] \subset f([0, 1]) [: f([0, 1]) \text{is connected}]

Hence [0, 1] \subset W(T) [: f([0, 1]) \subset W(T)]

Hence W(T) is a convex set in the complex plane.
```

- (i) If T is a two- by-two matrix with distinct eigenvalues α and β and corresponding normalized eigenvectors x and y, then W(T) is a closed elliptied disc with foci at α and β ; if $\gamma = |\langle x, y \rangle|$ and $\delta = \sqrt{1 - \gamma^2}$, then the minor axis and the major axis can be expressed respectively as follows
 - the minor axis = $\frac{\gamma |\alpha \beta|}{\delta}$ and the major axis = $\frac{|\alpha \beta|}{\delta}$
- (ii) If T has only one eigenvalue α , then W(T) is the disc with center α and radius $\frac{1}{2} \|\mathbf{T} - \alpha\|$