2.6 Relations among several classes of Non-normal operator

2.6.1 Paranormal operator

Definition 1:

An operator T on a Hilbert space H is said to be a paranormal operator if $||T^2x|| \ge ||Tx||^2$ for any unit vector $x \in H$.

Definition 2:

An operator T on a Hilbert space H is said to be a subnormal operator if T has a normal extension N that is, there exists a normal operator N on a larger Hilbert space $K \supset H$ such that Tx = Nx for all $x \in H$.

Theorem 1

If T is a paranormal operator, then the following inequalities hold for any vector $x \in H$

$$(p-1) ||T|| \ge \dots \frac{||T^{n+1}x||}{||T^nx||} \ge \dots \frac{||T^4x||}{||T^3x||} \ge \frac{||T^3x||}{||T^2x||} \ge \frac{||T^2x||}{||Tx||} \ge \frac{||Tx||}{||x||}$$

If T is an invertible paranormal operator then the following inequalities hold for any vector $x \in H$

hold for any vector
$$x \in H$$

$$(p-2) \frac{\|Tx\|}{\|T^{-1}x\|} \ge \frac{\|T^{-1}x\|}{\|T^{-2}x\|} \ge \frac{\|T^{-2}x\|}{\|T^{-3}x\|} \ge \dots \frac{\|T^{-n+1}x\|}{\|T^{-n}x\|} \ge \dots \frac{1}{\|T^{-1}\|}$$

Proofs

Since T is paranormal,

$$||T^2x|| \ge ||Tx||^2$$
 for any $x \in H$ with $||x|| = 1$
Replacing x by $\frac{x}{||x||}$ in (1),

$$\left\| T^2 \left(\frac{x}{\|x\|} \right) \right\| \ge \left\| T \left(\frac{x}{\|x\|} \right) \right\|^2$$

$$\Rightarrow \frac{1}{\|x\|} \|T^2 x\| \ge \frac{1}{\|x\|^2} \|T x\|^2$$

$$\Rightarrow \frac{\|T^2x\|}{\|Tx\|} \ge \frac{\|Tx\|}{\|x\|} \text{ for any } x \in H.$$
Replacing x by Tx in (2)

Replacing x by Tx in (2),

$$\Rightarrow \frac{\|T^3x\|}{\|T^2x\|} \ge \frac{\|T^2x\|}{\|Tx\|}$$

Repeating this, we get,
$$\Rightarrow \frac{\|T^{n+1}x\|}{\|T^nx\|} \ge \frac{\|T^nx\|}{\|T^{n-1}x\|} \,\forall \, n = 1, 2, 3, \dots$$

Also
$$||T^{n+1}x|| \le ||T|| ||T^nx||, \forall n = 1, 2, ...$$

Hence we get,

$$||T|| \ge \ldots \ge \frac{||T^{n+1}x||}{||T^nx||} \ge \ldots \frac{||T^4x||}{||T^3x||} \ge \frac{||T^3x||}{||T^2x||} \ge \frac{||T^2x||}{||Tx||} \ge \frac{||Tx||}{||x||}.$$

Let T be an invertible paranormal operators

Replacing x by $T^{-2}x$ in (2), we get

$$\frac{\|x\|}{\|T^{-1}x\|} \ge \frac{\|T^{-1}x\|}{\|T^{-2}x\|} \tag{3}$$

Replacing x by $T^{-1}x$ in (3)

$$\frac{\|T^{-1}x\|}{\|T^{-2}x\|} \ge \frac{\|T^{-2}x\|}{\|T^{-3}x\|} \tag{4}$$

$$\frac{\|T^{-2}x\|}{\|T^{-3}x\|} \ge \frac{\|T^{-3}x\|}{\|T^{-4}x\|} \dots$$

$$\frac{\|T^{-n+1}x\|}{\|T^{-n}x\|} \ge \frac{\|T^{-n}x\|}{\|T^{-(n+1)}x\|} \ \forall \ n = 1, 2, \dots$$

$$||T^{-(n+1)}x|| = ||T^{-1}T^{-n}x|| \le ||T^{-1}|| ||T^{-n}x||$$

$$\Rightarrow \frac{||T^{-n}x||}{||T^{-(n+1)}x||} \ge \frac{1}{||T^{-1}||}, \forall n = 1, 2, ...$$

Combining these inequalities, we get,
$$\frac{\|x\|}{\|T^{-1}x\|} \ge \frac{\|T^{-1}x\|}{\|T^{-2}x\|} \ge \frac{\|T^{-2}x\|}{\|T^{-3}x\|} \ge \dots \ge \frac{\|T^{-n+1}x\|}{\|T^{-n}x\|} \ge \dots \ge \frac{1}{\|T^{-1}\|}$$

Hence the theorem

Theorem 2

If T is a paranormal operator, then the following properties hold:

- (i) T^n is also paranormal for any natural number n.
- (ii) T is normaloid operator. i.e ||T|| = r(T).
- (iii) If T is an invertible paranormal operator then so is T^{-1}

Proof:

(i) From theorem 1,

If T is a paranormal operator, then

$$||T|| \ge \dots \ge \frac{||T^{n+1}x||}{||T^nx||} \ge \dots \frac{||T^4x||}{||T^3x||} \ge \frac{||T^3x||}{||T^2x||} \ge \frac{||T^2x||}{||Tx||} \ge \frac{||Tx||}{||x||}$$
(1)

Applying (1) repeatedly, we get

$$\frac{\|T^{2n}x\|}{\|T^{n}x\|} = \frac{\|T^{2n}x\|}{\|T^{2n-1}x\|} \frac{\|T^{2n-1}x\|}{\|T^{2n-2}x\|} \dots \frac{\|T^{n+1}x\|}{\|T^{n}x\|} \\
\geq \frac{\|T^{n}x\|}{\|T^{n-1}x\|} \frac{\|T^{n-1}x\|}{\|T^{n-2}x\|} \dots \frac{\|Tx\|}{\|x\|} \\
= \frac{\|T^{n}x\|}{\|x\|}$$

i.e
$$\frac{\|T^{2n}x\|}{\|T^{n}x\|} \ge \frac{\|T^{n}x\|}{\|x\|}$$
 (2)

 $\Rightarrow \|T^{2n}x\| \geq \|T^{n}x\|^2$ for any $x \in H$, with $\|x\| = 1$

 $\Rightarrow T^n$ is paranormal for any natural number n

Hence (i) is proved.

(ii) From (1), we get

$$\frac{\|T^n x\|}{\|Tx\|} = \frac{\|T^n x\|}{\|T^{n-1} x\|} \frac{\|T^{-2} x\|}{\|T^{n-3} x\|} \dots \frac{\|T^3 x\|}{\|T^2 x\|} \frac{\|T^2 x\|}{\|Tx\|} \ge \left(\frac{\|Tx\|}{\|x\|}\right)^{n-1} \text{ for any } x \in$$

 $||T^n x|| \ge ||Tx||^n$ for any $x \in H$. with ||x|| = 1

 $||T^n|| \ge ||T||^n$ for all $n \in I$

 $||T^n|| = ||T||^n$, for all $n \in I$ [:: $||T^n|| \le ||T|| ||T^{n-1}|| ... \le ||T||^n$, $n \in I$]

Hence $||T|| = ||T^n||^{1/n}, \ \forall \ n \in I.$

$$\Rightarrow ||T|| = \lim_{n \to \infty} ||T^n||^{1/n} = r(T)$$

Hence T is normaloid.

Hence (ii) is proved.

(iii) From (p-2) of theorem 2,

$$\frac{\|x\|}{\|T^{-1}x\|} \ge \frac{\|T^{-1}x\|}{\|T^{-2}x\|}$$

$$\|T^{-2}x\| \ge \|T^{-1}x\|^2, \ \forall x \in H \text{ with } \|x\| = 1$$

$$\Rightarrow T^{-1} \text{ is paranormal.}$$

Hence (iii) is proved.

Hence the theorem.

2.6.2 Implication relations among several classes of non-normal opertor.

Theorem 1:

The following inclusion relation hold:

Self adjoint \subseteq Normal \subseteq Quasinormal \subseteq Subnormal \subseteq Hyponormal \subseteq Paranormal \subseteq Normaloid \subseteq Spectraloid.

Proof:

Let T be a Self-adjoint operator

$$\Rightarrow T = T^*$$

Hence $T^*T = TT = TT^*$

Hence T is normal.

Therefore Self-adjoint
$$\subseteq$$
 Normal. (i)

Let T be a normal operator.

$$\Rightarrow T^*T = TT^*$$

Hence
$$T(T^*T) = (TT^*)T = (T^*T)T$$

Hence T is quasi normal.

Therefore Normal
$$\subseteq$$
 Quasinormal. (ii)

Let T be a Quasi normal operator.

Let T = U|T| be the polar decomposition of T.

Then
$$U|T| = |T|U$$
 (1)

By the theorem,

" Let T = U|T| be the polar decomposition of an operator T. Then

T = U|T| is quasinormal iff U|T| = |T|U"

$$T^*T - TT^* = |T|^2 - U|T||T|U^*$$

$$= |T|^2 - |T|UU^*|T| \quad [Using(1)]$$

$$= |T|(I - UU^*)|T| \ge 0$$

Hence T is hyponormal

Define $[T] = T^*T - TT^*$ then $[T] \ge 0$

Since T is quasi normal,

$$[T]T = (T^*T - TT^*)T$$

= $T^*TT - TT^*T$
= $(T^*T)T - T(T^*T) = 0$

$$\begin{array}{l} \therefore ([T]T)^* = 0 \\ \Rightarrow T^*[T] = 0 \\ \Rightarrow T^*[T] = 0 \; (\because \; [T^*] = (T^*T - TT^*)^* = T^*T - TT^* = [T]) \\ [T]^2T = [T][T]T = 0 \\ \text{Similarity } T^*[T]^2 = 0 \dots \end{array}$$

 $[T^n]T = T^*[T^n] = 0$ for all natural number n.

Let S be the square root of [T]. Since the square root is approximated uniformly by polynomials of [T] without constant terms,

$$ST = T^*S$$

Define $N = \begin{pmatrix} T & S \\ 0 & T^* \end{pmatrix}$, where $S = [T]^{1/2}$

then

$$NN^{*} - N^{*}N = \begin{pmatrix} T & S \\ 0 & T^{*} \end{pmatrix} \begin{pmatrix} T^{*} & 0 \\ S^{*} & T \end{pmatrix} - \begin{pmatrix} T^{*} & 0 \\ S^{*} & T \end{pmatrix} \begin{pmatrix} T & S \\ 0 & T^{*} \end{pmatrix}$$

$$= \begin{pmatrix} TT^{*} + SS^{*} & ST \\ T^{*}S^{*} & T^{*}T \end{pmatrix} - \begin{pmatrix} T^{*}T & T^{*}S \\ S^{*}T & S^{*}S + TT^{*} \end{pmatrix}$$

$$= \begin{pmatrix} TT^{*} + SS^{*} - T^{*}T & ST - T^{*}S \\ T^{*}S^{*} - S^{*}T & T^{*}T - S^{*}S - TT^{*} \end{pmatrix}$$

$$TT^* + SS^* - T^*T = SS^* - (T^*T - TT^*)$$

= $[T] - [T] = 0$

$$ST - T^*S = 0$$
 by (2)
 $T^*S^* - S^*T = 0$ by (2)

$$T^*T - S^*S - TT^* = T^*T - TT^* - S^*S$$

= $[T] - [T] = 0$

Hence $NN^* - N^*N = 0$

Hence N is normal.

Hence T has a normal extension N.

Hence T is subnormal.

$$Quasinormal \subseteq Subnormal$$
 (iii)

Let T be a subnormal operator.

Then T has a normal extension N, which can be expressed as

$$N = \begin{pmatrix} T & X \\ 0 & Y \end{pmatrix}$$
 on a larger Hilbert space $K \supset H$

Since N is normal,

$$N^*N = NN^*$$

$$\begin{pmatrix} T^* & 0 \\ X^* & Y^* \end{pmatrix} \begin{pmatrix} T & X \\ 0 & Y \end{pmatrix} = \begin{pmatrix} T & X \\ 0 & Y \end{pmatrix} \begin{pmatrix} T^* & 0 \\ X^* & Y^* \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} T^*T & T^*X \\ X^*T & X^*X + Y^*Y \end{pmatrix} = \begin{pmatrix} TT^* + XX^* & XY^* \\ YX^* & YY^* \end{pmatrix}$$

$$\Rightarrow T^*T = TT^* + XX^*$$
(3)

$$T^*X = XY^* \tag{4}$$

$$X^*T = YX^* \tag{5}$$

$$X^*X + Y^*Y = YY^* \tag{6}$$

Since $XX^* \ge 0$, (3) $\Rightarrow T^*T \ge TT^*$

 $\Rightarrow T$ is hyponormal.

Let T be hyponormal

$$\Rightarrow ||Tx|| \ge ||T^*x||, \ \forall x \in H.$$

$$\Rightarrow ||TTx|| \ge ||T^*Tx||, \ \forall x \in H. \tag{7}$$

(v)

Consider,

$$||Tx||^{2} = \langle Tx, Tx \rangle$$

$$= \langle T^{*}Tx, x \rangle$$

$$\leq ||T^{*}Tx|| ||x||$$

$$\leq ||T^{2}x|| ||x||$$

$$\Rightarrow ||T^2x|| \ge ||Tx||^2 \ \forall x \in H \text{ with } ||x|| = 1$$

Hence T is paranormal.

Therefore Hyponormal
$$\subseteq$$
 paranormal

Let T be a paranormal operator, then T is normaloid.

(by Theorem,

"If T is a paranormal operator, then the following properties hold:

- (i) T^n is also paranormal for any natural number n.
- (ii) T is normaloid operator. i.e ||T|| = r(T).
- (iii) If T is an invertible paranormal operator then so is T^{-1} "

Hence paranormal
$$\subseteq$$
 Normaloid (vi)

Let T be a normaloid operator

$$\Rightarrow ||T|| = r(T) \tag{8}$$

In general,
$$||T|| \ge w(T) \ge r(T) = ||T||$$

 $\Rightarrow w(T) = r(T)$

Hence T is spectraloid.

Hence Normaloid
$$\subseteq$$
 Spectraloid (viii)

Hence the theorem.

2.7 Characterization of Convexoid operators and Related Examples

2.7.1 Characterization of Convexoid operators

Definitions

(1) An operator T is said to be a **convexoid operator** if

$$\overline{W(T)} = co\sigma(T)$$

where $co\sigma(T)$ means the convex hull of the spectrum $\sigma(T)$ of T.

(2) An operator T is said to be a **condition** G_1 **operator** if

$$\|(T-\mu)^{-1}\| = \frac{1}{d(\mu, \sigma(T))}$$
 for all $\mu \notin \sigma(T)$,

where $\sigma(T)$ means the spectrum $\sigma(T)$ of T.

(3) An operator T is said to be a **transaloid operator** if

$$T - \mu$$
 is normaloid for any $\mu \in C$

Lemma 1:

If X is any bounded closed set in the complex plane, then

- (i) co X={the intersection of all circles which contain the set X} = $\bigcap_{\mu} \{ \lambda / |\lambda \mu| \le \sup_{x \in X} |x \mu| \}$
- (ii) co X={the intersection of all closed half planes which contain the set X} = $\bigcap_{\theta} \{ \lambda / Re \lambda e^{i\theta} \ge \inf_{x \in X} Rese^{i\theta} \}$

Theorem 1:

An operator T is convexoid if and only if $T-\lambda$ is spectraloid for all complex numbers λ .

Proof:

Since
$$\overline{W(T)}$$
 is convex,
 $\overline{W(T)} = \bigcap_{\mu} \{ \lambda / |\lambda - \mu| \le w(T - \mu) \}$ (1)
By lemma,

- (i) co X={the intersection of all circles which contain the set X} = $\bigcap_{\mu} \{ \lambda / |\lambda - \mu| \le \sup_{x \in X} |x - \mu| \}$
- (ii) co X={the intersection of all closed half planes which contain the set X} = $\bigcap_{\theta} \{ \lambda / Re \lambda e^{i\theta} \ge \inf_{x \in X} Rese^{i\theta} \}$ (2)

Now, T is convexoid
$$\iff \overline{W(T)} = co\sigma(T)$$
 [by Definition]
 $\iff \cap_{\mu} \{\lambda/|\lambda - \mu| \le w(T - \mu)|\}$
 $= \cap_{\mu} \{\lambda/|\lambda - \mu| \le r(T - \mu)|\}$
 $\iff w(T - \lambda) = r(T - \lambda), \ \forall \lambda \in C \ [\because \sigma(T) - \lambda = \sigma(T - \lambda), co\sigma(T) - \lambda = co\sigma(T - \lambda)]$
Hence $T - \lambda$ is spectraloid for all λ .

Theorem 2

An operator T is convexoid iff
$$||(T - \mu)^{-1}|| \le \frac{1}{d(\mu, co\sigma(T))}, \ \forall \mu \notin co\sigma(T)$$

Proof:

Let T be convexoid operator.

$$\Rightarrow \overline{W(T)} = co\sigma(T)$$

By the result,

$$||(T - \mu)^{-1}|| \le \frac{1}{d(\mu, \overline{W(T)})}, \ \forall \mu \notin \overline{W(T)}"$$

$$||(T - \mu)^{-1}|| \le \frac{1}{d(\mu, \cos\sigma(T))}, \ \forall \mu \notin \cos\sigma(T)$$

Conversely, assume that
$$\|(T-\mu)^{-1}\| \leq \frac{1}{d(\mu, co\sigma(T))}, \ \forall \mu \notin co\sigma(T)$$

$$\Rightarrow \|(T-\mu)x\| \ge d(\mu, co\sigma(T)), \forall \mu \notin co\sigma(T) \text{ and } \|x\| = 1$$

$$\Rightarrow ||Tx - \mu x||^2 \ge d(\mu, co\sigma(T))^2, \forall \mu \notin co\sigma(T) \ and \ ||x|| = 1$$

$$\Rightarrow ||Tx||^2 - 2Re < Tx, x > \overline{\mu} + |\mu|^2 \ge \inf_{s \in co\sigma(T)} (|s|^2 - 2Res\overline{\mu} + |\mu|^2)$$
 (1)

Take $\mu = |\mu|e^{-i(\theta+\pi)}$ in (1)

$$||Tx||^2 - 2Re < Tx, x > e^{i(\theta + \pi)} + |\mu|^2 \ge \inf_{s \in co\sigma(T)} (|s|^2 - 2Res|\mu|e^{i(\theta + \pi)} + |\mu|^2)$$
(2)

$$(2)$$
÷ $|\mu|$,

$$\frac{||Tx||^2}{|\mu|} - 2Re < Tx, x > e^{i(\theta + \pi)} + |\mu| \ge \inf_{s \in co\sigma(T)} \left(\frac{|s|^2}{|\mu|} - 2Res|\mu|e^{i(\theta + \pi)} + |\mu| \right)$$

$$\frac{\|Tx\|^2}{|\mu|} - 2Re < Tx, x > e^{i(\theta+\pi)} \ge \inf_{s \in co\sigma(T)} \left(\frac{|s|^2}{|\mu|} - 2Res|\mu|e^{i(\theta+\pi)}\right)$$

$$-2Re < Tx, x > |\mu|e^{i(\theta+\pi)} \ge \inf_{s \in co\sigma(T)} \left(-2Rese^{i(\theta+\pi)}\right) \ as \ |\mu| \to \infty$$

$$Re < Tx, x > |\mu|e^{i(\theta+\pi)} \ge \inf_{s \in co\sigma(T)} Res|\mu|e^{i(\theta+\pi)} \ for \ \|x\| = 1$$

$$\Rightarrow If \lambda \in \overline{W(T)}, \text{ then } \lambda = < Tx, x > \text{ for some } x \in H \text{ with } \|x\| = 1$$

$$\therefore (3) \Rightarrow Re\lambda e^{i\theta} \ge \inf_{s \in co\sigma(T)} Rese^{i\theta} \ for \ all \ \theta.$$

$$\Rightarrow \lambda \in \bigcap_{\theta} \{\lambda/Re\lambda e^{i\theta} \ge \inf_{s \in co\sigma(T)} Rese^{i\theta} \}$$

$$\Rightarrow \lambda \in co\sigma(T)$$
Hence $\overline{W(T)} \subseteq co\sigma(T)$
Since $\overline{W(T)} \supseteq co\sigma(T)$ is always true.
$$\overline{W}(T) = co\sigma(T)$$
Hence T is convexoid.

Theorem 3:

Hence the theorem.

Let T be a hyponormal operator. Then the following properties hold:

- (i) $T \mu$ is also a hyponormal for any $\mu \in C$.
- (ii) T is a transaloid operator.
- (iii) T^{-1} ia also a hyponormal operator if T^{-1} exists.
- (iv) T is a condition G_1 operator.

Proof:

Let T be a hyponormal operator.

$$\Rightarrow T^*T \ge TT^* \tag{1}$$

(i) let $\mu \in C$

$$(T - \mu)^* (T - \mu) - (T - \mu)(T - \mu)^* = (T^* - \overline{\mu})(T - \mu) - (T - \mu)(T^* - \overline{\mu})$$

$$= (T^*T - \overline{\mu}T - \mu T^* + |\mu|^2) - (TT^* - \mu T^* - \overline{\mu}T^* - TT^*)$$

$$= T^*T - TT^* \ge 0$$

Hence $T - \mu$ is hyponormal for all $\mu \in C$.

(ii) By (i), $T - \mu$ is hyponormal for all $\mu \in C$

 $\Rightarrow T-\mu$ is normaloid for all $\mu \in C$ [: hyponormal operators are normaloid.]

 \Rightarrow T is transaloid operator.

(iii) By (i),
$$T^*T \geq TT^*$$

$$\Rightarrow T^{-1}T^*TT^{*-1} > I$$

$$\Rightarrow (T^{-1}T^*TT^{*-1})^{-1} \leq I^{-1}$$

$$\Rightarrow T^*T^{-1}T^{*-1}T \leq I$$

or
$$I \ge T^* T^{-1} T^{*-1} T$$

i.e
$$T^{*-1}T^{-1} \ge T^{-1}T^{*-1}$$

i.e
$$(T^{-1})^*T^{-1} \ge T^{-1}(T^{-1})^*$$

 $\Rightarrow T^{-1}$ is also hyponormal, if T^{-1} exists.

(iv) Consider

$$\frac{1}{d(\mu, \sigma(T))} = \sup \frac{1}{|\sigma(T) - \mu|} \text{for any } \mu \notin \sigma(T)$$

$$= \sup \frac{1}{|\sigma(T - \mu)|} [\text{by spectral mapping theorem}]$$

$$= \sup |\sigma(T - \mu)^{-1}| [\because \sigma(T^{-1}) = {\sigma(T)}^{-1}]$$

$$= \sigma(T - \mu)^{-1}$$

i.e
$$\frac{1}{d(\mu, \sigma(T))} = \sigma(T - \mu)^{-1}$$
 (1)

By (i), $T - \mu$ is hyponormal for any $\mu \in C$.

By (iii), $(T - \mu)^{-1}$ is hyponormal for any $\mu \in C$.

Since a hyponormal operator is a normaloid, $r(T-\mu)^{-1} = ||(T-\mu)^{-1}||$ (2) From (1) and (2)

$$\|(T-\mu)^{-1}\| = \frac{1}{d(\mu, \sigma(T))} \ \forall \mu \notin \sigma(T).$$

Hence T is a condition G_1 operator.

Hence the theorem.

Theorem 4:

The following properties hold:

- (i) If T is a transaloid operator, then T is a convexoid operator
- (ii) If T is a condition G_1 operator, then T is a convexoid operator

Proof:

(i) Let T be a transaloid operator, then by definition

 $T-\mu$ is normaloid for any $\mu \in C$

Since a normaloid operator is also a spectraloid operator, $T - \mu$ is spectraloid for any $\mu \in C$

Hence T is convexoid.

By the theorem, "An operator T is convexed iff $T - \lambda$ is spectraled for all complex number λ "

Hence (i) is proved.

(ii) Let T be a condition G_1 operator

(ii) Let T be a condition
$$G_1$$
 operator
$$\Rightarrow \|(T - \mu)^{-1}\| = \frac{1}{d(\mu, \sigma(T))}, \forall \mu \notin \sigma(T)$$

$$\because co\sigma(T) \supseteq \sigma(T), d(\mu, \sigma(T)) \ge d(\mu, co\sigma(T))$$

$$\frac{1}{d(\mu, \sigma(T))} \le \frac{1}{d(\mu, co\sigma(T))}$$

$$\Rightarrow \|(T - \mu)^{-1}\| \le \frac{1}{d(\mu, co\sigma(T))}, \forall \mu \notin \sigma(T)$$
Hence T is conveyoid

Hence T is convexoid.

By theorem," An operator T is convexoid iff $\|(T-\mu)^{-1}\| \leq \frac{1}{d(\mu, co\sigma(T))}, \ \forall \mu \notin$ $co\sigma(T)$ "

Hence (ii) is proved.

Hence the theorem.

Corollary 5:

- (i) Every hyponormal operator is convexoid
- (ii) Every normal operator is convexoid

Proof:

(i) Let T be hyponormal operator, then T is transaloid.

Then T is a convexoid operators.

By theorem, "Let T be a hyponormal operator. Then the following properties hold:

(i) $T - \mu$ is also a hyponormal for any $\mu \in C$.

- (ii) T is a transaloid operator.
- (iii) T^{-1} ia also a hyponormal operator if T^{-1} exists.
- (iv) T is a condition G_1 operator.

and "If T is a transaloid operator, then T is a convexoid operator" Hence a hyponormal is convexoid.

(ii) Since every normal operator is a hyponormal operator and every hyponormal operator is convexoid, every normal operator is convexoid.

Theorem 6:

An operator T is convexoid iff $Re\Sigma(e^{i\theta}T) = \Sigma(Re(e^{i\theta}T))$ for any $0 \le \theta \le 2\pi$, where $\Sigma(S)$ denotes $co\sigma(S)$.

Proof:

Let T be a convexoid operator.

$$\Rightarrow \frac{W(T) = co\sigma(T) = \Sigma(T)}{W(Re(e^{i\theta}T))} = \Sigma(Re(e^{i\theta}T))$$
(1)

But
$$\overline{W(Re(e^{i\theta}T))} = Re\overline{W}(e^{i\theta}T) = Re\Sigma(e^{i\theta}T)$$
 (2)

From (1) and (2),

 $Re\Sigma(e^{i\theta}T) = \Sigma(Re(e^{i\theta}T))$ for any $0 \le \theta \le 2\pi$, where $\Sigma(S)$ denotes $co\sigma(S)$. Conversely, assume that $Re\Sigma(e^{i\theta}T) = \Sigma(Re(e^{i\theta}T))$ then $Re\{\Sigma(e^{i\theta}T)\} = \Sigma\{(Re(e^{i\theta}T))\}$