
3.1 Young inequality and Holder-Mccarthy inequality
3.1.1 Young inequality and generalized operator means

Theorem Y(Young inequality)
Let A and B be positive invertible operators on a Hilbert space H. Then the following
inequality holds for 0 ≤ λ ≤ 1.

(1− λ)A+ λB ≥ A1/2(A−1/2BA−1/2)λA1/2 ≥ [(1− λ)A−1 + λB−1]−1.

Proof:
Consider f(x) = λx+ 1− λ− xλ for positive number x and λ ∈ [0, 1].

f ′(x) = λ− λxλ−1, x ≥ 0 and λ ∈ [0, 1]

= λ(1− xλ−1)

= λ

(
1− 1

x1−λ

)
= λ

(
1−

(
1

x

)1−λ
)

⇒ f ′(x) < 0 for 0 < x < 1.
f ′(x) = 0 for x = 1.
f ′(x) > 0 for x > 1.
Also f(0+) = 1− λ > 0, f(1) = 0.
Hence f(x) is a non negative function
∴ for any positive operator T and λ ∈ [0, 1]

f(T ) = λT + (1− λ)− T λ ≥ 0.

⇒ λT + (1− λ) ≥ T λ ∀ λ ∈ [0, 1] (1)
If T is a positive operator then T−1 is also a positive operator.
Hence by (1)
λT−1 + (1− λ) ≥ T−λ (2)
⇒ (λT−1 + (1− λ))−1 ≤ T λ (3)
From (1) and (3),
λT + 1− λ ≥ T λ ≥ (λT−1 + 1− λ)−1 (4)
Since A and B are positive invertible operator, A−1/2BA−1/2 is also a positive invertible
operator.
Putting T = A−1/2BA−1/2 in (4) we get,
λ(A−1/2BA−1/2) + 1− λ ≥ (A−1/2BA−1/2)λ ≥ (λA1/2B−1A1/2 + 1− λ)−1 (5)
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Multiplying (5) by A1/2 on both sides, we get
λB + (1− λ)A ≥ A1/2(A1/2BA−1/2)λA1/2 ≥ A1/2(λA1/2B−1A1/2 + 1− λ)−1A1/2

(1− λ)A+ λB ≤ A1/2(A−1/2BA−1/2)λA1/2

≥ A1/2[A1/2(λB−1 + (1− λ)A−1)A1/2]−1A1/2

= A1/2(A−1/2(λB−1 + (1− λ)A−1)A−1/2)A1/2

= [λB−1 + (1− λ)A−1]−1

Hence,
(1− λ) + λB ≥ A1/2(A−1/2BA−1/2)A1/2 ≥ [λB−1 + (1− λ)A−1]−1

Hence the theorem.

Theorem 1:
Let T be a positive operator on a Hilbert space H. Then the following hold.

(i) If 1 ≥ λ ≥ 0 then λT + (1− λ) ≥ T λ

(ii) If λ > 0 then λT + (1− λ) ≤ T λ

(iii) If λ < 0 then λT + (1− λ) ≤ T λ

In addition (i), (ii) and (iii) are mutually equivalent
Proof:

Considerf(x) = λx+ 1− λ− xλ for x > 0

f ′(x) = λ− λxλ−1

= λ

(
1− 1

x1−λ

)
.

For λ ∈ [0, 1], f(0+) = 1− λ > 0
f(1) = 0
f ′(x) < 0 for 0 < x < 1
f ′(1) = 0
f ′(x) > 0 for x > 1 (1)
For λ > 1, f(0+) = 1− λ < 0
f(1) = 0
f ′(x) > 0 for 0 < x < 1
f ′(1) = 0
f ′(x) < 0 for x > 1 (2)
For λ < 0, f(0+) < 0
f ′(x) > 0, f(1) = 0, f ′(x) < 0 (3)
(1),(2),(3) impies,
f(x) ≥ 0 ∀x > 0 and λ ∈ [0, 1]
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i.e 1 ≥ λ ≥ 0 (4)
f(x) ≤ 0 ∀ x > 0 and λ > 1 (5)
and f(x) ≤ 0 ∀ x > 0 and λ < 0 (6)
∴ If T is a positive invertible operator on a Hilbert space then from (4), (5) and (6), we
get
f(T ) = λT + (1− λ)− T λ ≥ 0 for 1 ≥ λ ≥ 0 (7)
f(T ) = λT + (1− λ)− T λ ≤ 0 for λ > 1 (8)
and f(T ) = λT + (1− λ)− T λ ≤ 0 for λ < 0 (9)
Hence
λT + (1− λ) ≥ T λ for 1 ≥ λ ≥ 0
λT + (1− λ) ≤ T λ for λ > 1
and λT + (1− λ) ≤ T λ for λ ≤ 0
Hence (i), (ii) and (iii) hold.
To prove that (i),(ii) and (iii) are mutually equivalent
To prove that (i) ⇐⇒ (ii):
Assum that λ > 1 then 1

λ
.

∴ by(1),
(
1
λ

)T
+
(
1− 1

λ

)
≥ T 1/λ

T + (λ− 1) ≥ λT 1/λ

Put S = T 1/λ, then Sλ + (λ− 1) ≥ λS
⇒ Sλ ≥ λS + 1− λ for λ > 1
Hence (i)⇒ (ii).
Similarly, (ii)⇒ (i)
Hence (i) ⇐⇒ (ii).
To prove that (ii) ⇐⇒ (iii)
Consider (ii),
λT + (1− λ) ≤ T λ for λ > 1.
Mutiplying this inequality by T−1 we get,
λ+ (1− λ)T−1 ≤ T λ−1 for any λ > 1
Put µ = 1− λ < 0 and S = T−1

⇒ (1− µ) + µS ≤ S1−λ = Sµ

i.e µS + (1− µ) ≤ Sµ for µ < 0
Hence (ii)⇒ (iii)
Similarly (iii)⇒ (ii).
Hence (ii) ⇐⇒ (iii)
Hence (i) ⇐⇒ (ii) ⇐⇒ (iii).
Hence the theorem.

Theorem 2:
Let A and B be the positive invertible operator on a Hilbert space H then the following
hold and are mutually eqivalent.

(i) If 1 ≥ λ ≥ 0 then (1− λ)A+ λB ≥ A1/2(A−1/2BA−1/2)A1/2
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(ii) If λ > 1 then (1− λ)A+ λB ≤ A1/2(A−1/2BA−1/2)λA1/2

(iii) If λ < 0 then (1− λ)A+ λB ≤ A1/2(A−1/2BA−1/2)λA1/2

Proof:
In the theorem,
”Let T be a positive operator on a Hilbert space H. Then the following hold.

(i) If 1 ≥ λ ≥ 0 then λT + (1− λ) ≥ T λ

(ii) If λ > 1 then λT + (1− λ) ≤ T λ

(iii) If λ ≤ 0 then λT + (1− λ) ≤ T λ

In addition (i), (ii) and (iii) are mutually equivalent
Put T = A−1/2BA−1/2

Then we get,
(i) If 1 ≥ λ ≥ 0
λ(A−1/2BA−1/2) + 1− λ ≥ (A−1/2BA−1/2)λ

Pre multiplying and post mutiplying by A1/2 we get
λB + (1− λ)A ≥ A1/2(A−1/2BA−1/2)λA1/2

Similarly, we get
(ii) If λ > 1 then
λB + (1− λ)A ≤ A1/2(A−1/2BA−1/2)λA1/2

(iii) If λ < 0 then
λB + (1− λ)A ≤ A1/2(A−1/2BA−1/2)λA1/2

and (i), (ii) and (iii) are mutually equivalent.

3.1.2 Hölder-McCarthy inequality
Theorem: H-M(Hölder-McCarthy inequality)
Let A be a positive linear operator on a Hilbert space H. Then the following properties
(i), (ii) and (iii) are hold.

(i)
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any λ > 1 and any unit vector x

(ii)
〈
Aλx, x

〉
≤ ⟨Ax, x⟩λ for any λ ∈ [0, 1] and any unit vector x

(iii) If A is invertible then
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any λ < 0 and any unit vector x

Moreover (i),(ii) and (iii) are equivalent to the following (i)’, (ii)’and (iii)’ respectively.

(i)’
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ ∥x∥2(1−λ) for any λ > 1 and any vector x

(ii)’
〈
Aλx, x

〉
≤ ⟨Ax, x⟩λ ∥x∥2(1−λ) for any λ ∈ [0, 1] and any vector x
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(iii)’ If A is invertible then
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ ∥x∥2(1−λ) for any λ < 0 and any vector x

Proof:
To prove (ii):
i.e
〈
Aλx, x

〉
≤ ⟨Ax, x⟩λ ∥x∥2(1−λ) for any λ ∈ [0, 1] and unit vector x

To prove this, it is sufficient to prove that if (ii) holds for some α, β ∈ [0, 1] then (ii) holds
for α+β

2
∈ [0, 1], by the continuity of the operator.

Hence assume that,
⟨Aαx, x⟩ ≤ ⟨Ax, x⟩α (1)
and

〈
Aβx, x

〉
≤ ⟨Ax, x⟩β (2)

for any unit vector x and for some α, β ∈ [0, 1]
For any unit vector x consider∣∣∣〈Aα+β

2 x, x
〉∣∣∣2 = |

〈
Aα/2x,Aβ/2x

〉
|2 [∵ A ≥ 0]

≤ ∥Aα/2x∥2∥Aβ/2x∥2

=
〈
Aα/2x,Aα/2x

〉 〈
Aβ/2x,Aβ/2x

〉
= ⟨Aαx, x⟩

〈
Aβx, x

〉
= ⟨Ax, x⟩α ⟨Ax, x⟩β [by (1)&(2)]

= ⟨Ax, x⟩α+β〈
A

α+β
2 x, x

〉
≤ ⟨Ax, x⟩

α+β
2

Hence (ii) holds for α+β
2

∈ [0, 1]
Hence for any λ ∈ [0, 1]〈
Aλx, x

〉
≤ ⟨Ax, x⟩λ for any unit vector x (3)

Hence (ii) is true.
To prove(i):
Let λ > 1
⇒ 1

λ
∈ [0, 1]

∵ by(ii), i.e (3) for any unit vector x〈
A1/λx, x

〉
≤ ⟨Ax, x⟩1/λ

∴ ⟨Ax, x⟩ =
〈
(Aλ)1/λx, x

〉
≤

〈
Aλx, x

〉1/λ
⇒ ⟨Ax, x⟩λ ≤

〈
Aλx, x

〉
i.e
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ (4)

for any unit vector x and λ > 1
Hence (i) holds.
(iii)Assume that A−1 exists
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case (i): λ = −1
Then for any unit vector x

1 = ∥x∥4 = |
〈
A−1/2A1/2x, x

〉
|2

= |
〈
A1/2x,A−1/2x

〉
|2

≤ ∥A1/2x∥2∥A−1/2x∥2

= ⟨Ax, x⟩
〈
A−1x, x

〉
⇒ ⟨A−1x, x⟩ ≥ ⟨Ax, x⟩−1 (5)
for any unit vector x
case (ii):λ < −1
For any unit vector x 〈

Aλx, x
〉

=
〈
A−|λ|x, x

〉
=

〈
(A−1)|λ|x, x

〉
where|λ| > 1

≥
〈
A−1x, x

〉|λ|
by(4) i.e(i)

≥ (⟨Ax, x⟩−1)λ by(5)

= ⟨Ax, x⟩−|λ|

= ⟨Ax, x⟩λ

Hence
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any λ < −1 (6)

Case(iii): Let −1 ≤ λ ≤ 0
Then for any unit vector x

〈
Aλx, x

〉
=

〈
A−|λ|x, x

〉
=

〈
(A|λ|)−1x, x

〉
where|λ| ∈ [0, 1]

≥
〈
A|λ|x, x

〉−1
by(5)

≥ (⟨Ax, x⟩|λ|)−1 by(6)i.e(ii)

= ⟨Ax, x⟩−|λ|

= ⟨Ax, x⟩λ

Hence
〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any −1 ≤ λ ≤ 0 (7)

(5),(6) and (7) implies,〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any λ < 0 and any unit vector x

Hence (iii) holds.
Hence (i), (ii) and (iii) holds.
To prove that (i) ⇐⇒ (i)’:
Consider (i),〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ for any λ > 1 and any unit vector x
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Replacing x by x
∥x∥ we get〈

Aλ
(

x
∥x∥

)
, x
∥x∥

〉
≥
〈
A
(

x
∥x∥

)
, x
∥x∥

〉λ
for any λ > 1 and any vector x
⇐⇒ 1

∥x∥2
〈
Aλx, x

〉
≥ 1

∥x∥2λ ⟨Ax, x⟩
λ

⇐⇒
〈
Aλx, x

〉
≥ ∥x∥2

∥x∥2λ ⟨Ax, x⟩
λ

for any λ > 1 and any vector x
⇐⇒

〈
Aλx, x

〉
≥ ⟨Ax, x⟩λ ∥x∥2(1−λ)

for any λ > 1 and any vector x.
Hence (i) ⇒ (i)’
Similarly, replacing x by x

∥x∥ in (ii)and (iii), we get (ii)’ and (iii)’
Hence (i), (ii), and (iii) are equivalent to (i)’, (ii)’ and (iii)’

3.1.3 Hölder-McCarthy and Young inequalities are equiv-
alent for Hilbert space operators
Theorem 1:
For a positive linear operator A on a Hilbert space H and λ ∈ [0, 1]. We give an elementary
proof of the equivalence of the following two inequalities

(1) H0̈lder- McCarrthy inequality:
⟨Ax, x⟩λ ≥

〈
Aλx, x

〉
for all unit vectors x ∈ H

(2) Young inequality:
λA+ I − λ ≥ Aλ

Proof:
(1)⇒(2)
Assume (1), Hölder- McCarthy inequality
Consider, f(x) = λx+ 1− λ− xλ for positive numbers x and λ ∈ [0, 1]

f ′(x) = λ− λxλ−1, x > 0 and λ ∈ [0, 1]

= λ

(
1− 1

x1−λ

)
= λ

(
1−

(
1

x

)1−λ
)

⇒ f ′(x) < 0 for 0 < x < 1
f ′(x) = 0 for x = 1
f ′(x) > 0 for x > 1
Also f(0+) = 1− λ > 0, f(1)=0
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Hence f(x) is a nonnegative convex function with minimum value f(1)=0.
So we have
λa+ 1− λ ≥ aλ (1)
for positive a and λ ∈ [0, 1]
Replacing a by ⟨Ax, x⟩ ≥ 0 for ∥x∥ = 1& λ ∈ [0, 1] in (1), we get

λ ⟨Ax, x⟩+ 1− λ ≥ ⟨Ax, x⟩λ

⟨λAx, x⟩+ 1− λ ≥
〈
Aλx, x

〉
by (1)

λA+ 1− λ ≥ Aλ [∵ ∥x∥ = 1]

Hence (1)⇒ (2) is proved.
(2)⇒ (1)
We may assume λ ∈ [0, 1]
i.e λA+ 1− λ ≥ Aλ

Replace A by k1/λA for a positive number k, then
λk1/λA+ 1− λ ≥ (k1/λ)λ ∀ x > 0
⇒ λk1/λ ⟨Ax, x⟩+ 1− λ ≥ (k1/λ)λ

〈
Aλx, x

〉
∀ x > 0 with ∥x∥ = 1

λk1/λ ⟨Ax, x⟩+ 1− λ ≥ k
〈
Aλx, x

〉
(2)

Put k ⟨Ax, x⟩−λ in(2) if ⟨Ax, x⟩ ̸= 0 then

λ ⟨Ax, x⟩−1 ⟨Ax, x⟩+ 1− λ ≥ ⟨Ax, x⟩−λ 〈Aλx, x
〉

⇒ λ+ 1− λ ≥ ⟨Ax, x⟩−λ 〈Aλx, x
〉

⇒ 1 ≥ ⟨Ax, x⟩−λ 〈Aλx, x
〉

⇒ ⟨Ax, x⟩λ ≥
〈
Aλx, x

〉
for ∥x∥ = 1.
If ⟨Ax, x⟩ = 0 then A1/2x = 0
So Aλx = 0 for λ ∈ [0, 1], by induction and continuity of A.
Hence (2)⇒(1) is proved.

3.2 Lowner Heinz inequality and Furuta inequality
3.2.1 Simplified proofs three order preserving operator inequali-
ties

Theorem L-H:(Lowner Heinz inequality)
A ≥ B ≥ 0 ensures Aα ≥ Bβ for any α ∈ [0, 1]
Proof:
Case(i): A ≥ B > 0
Let Aα ≥ Bα and Aβ ≥ Bβ for some α, β ∈ [0, 1]
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It is sufficient to prove that A
α+β
2 ≥ B

α+β
2 by the continuity of an operator.

i.e To prove A
α+β
4 A

α+β
4 ≥ B

α+β
2

Pre and post multiply by A−α+β
4

A−α+β
4 A

α+β
4 A

α+β
4 A−α+β

4 ≥ A−α+β
4 B

α+β
2 A−α+β

4

I ≥ A−α+β
4 B

α+β
2 A−α+β

4

0 ≤ A−α+β
4 B

α+β
2 A−α+β

4 ≤ I

By continuity to prove, ∥A−α+β
4 B

α+β
2 A−α+β

4 ∥ ≤ 1
Consider,

∥A−α+β
4 B

α+β
2 A−α+β

4 ∥ = r(A−α+β
4 B

α+β
2 A−α+β

4 )

= r[A−α+β
4 B

α+β
2 A−α+β

4 A
β−α
4 A

α−β
4 ] [∵ A−α+β

4 B
α+β
2 A−α+β

4 is positive]

= r(A
α−β
4 A−α+β

4 B
α+β
2 A−α+β

4 A
β−α
4 ) [∵ r(ST ) = r(TS), S ≥ 0 and T ≥ 0]

= r(A−β
2B

α+β
2 A−α

2 )

= r(A−β
2B

β
2B

α
2 A−α

2 )

= ∥(A−β
2B

β
2 )(B

α
2 A−α

2 )∥
≤ ∥(A−β

2B
β
2 )∥∥(B

α
2 A−α

2 )∥
≤ 1

⇒ ∥A−α+β
4 B

α+β
2 A−α+β

4 ∥ ≤ 1

⇒ A
α+β
2 ≥ B

α+β
2

∴ Aα ≥ Bα for any α ∈ [0, 1]
Hence proved.
Case(ii): In the general case A ≥ B ≥ 0
The condition A ≥ B ≥ 0 ensures A+ ϵ ≥ B + ϵ ≥ ϵ for any ϵ > 0
Then A1 = A+ ϵ and B1 = B + ϵ are both invertible and A1 ≥ B1 ≥ 0
So that Aα

1 ≥ Bα
1 for any α ∈ [0, 1] by case (i)

Let ϵ → 0 then we have
Aα ≥ Bα for any α ∈ [0, 1]
Hence proved.

Theorem F:(Furuta inequality)
If A ≥ B ≥ 0 then for each r ≥ 0.

(i) (Br/2ApBr/2)1/q ≥ (Br/2BpBr/2)1/q and

(ii) (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r
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Proof:
For proving this theorem, we need the follwing lemma
Lemma:A
Let X be a positive invertible operator and Y be an invertible operator. For any real
number λ

(Y XY ∗)λ = Y X1/2(X1/2Y ∗Y X1/2)λ−1X1/2Y ∗

Proof: for lemma
Let Y X1/2 = UH be the polar decomposition of Y X1/2, where U is unitary and H =
|Y X1/2| [where |T | denotes (T ∗ T )1/2]
Then

(Y XY ∗)λ = (Y X1/2X1/2Y ∗)λ

= (UHH∗U∗)λ[∵ Y X1/2 = UH, X1/2Y ∗ = H∗U∗]

= (UH2U∗)λ

= UH2λU∗

= Y X1/2H−1H2λH−1X1/2Y ∗[∵ X > 0, U∗ = (Y X1/2H−1)∗ = H−1X1/2Y ∗]

= Y X1/2H2(λ−1)X1/2Y ∗

= Y X1/2(H2)λ−1X1/2Y ∗

= Y X1/2(X1/2Y ∗Y X1/2)λ−1X1/2Y ∗[∵ H2 = (Y X1/2)∗(Y X1/2) = X1/2Y ∗Y X1/2]

Hence the lemma.
Proof of the Theorem:
Let A ≥ B ≥ 0, r ≥ 0
To prove (ii): i.e (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q holds for p ≥ 0 and q ≥ 1 with
(1 + r)q ≥ p+ r
case(i): 0 ≤ p ≤ 1
Since 0 ≤ p ≤ 1, by Lowner- Heinz inequality,
A ≥ B ≥ 0
⇒ Ap ≥ Bp

⇒ (Ar/2ApAr/2) ≥ (Ar/2BpAr/2)
Hence again by Lowner- Heinz inequality, (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

for q ≥ 1 and (1 + r)q ≥ p+ r
Case (ii):
Consider p ≥ 1 and q > p+r

1+r
and r ≥ 0

then q > p+r
1+r

≥ 1 ⇒ 1
q
< 1+r

p+r
< 1 [∵ p ≥ 1, p+ r ≥ 1 + r ]

if (Ar/2ApAr/2) ≥ (Ar/2BpAr/2)1/q

Then by Lowner- Heienz inquality, (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

Therefore it is enough to show that
(Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

for q = p+r
1+r

, p ≥ 1 & r ≥ 0

i.e (Ap+r)
1+r
p+r ≥ (Ar/2BpAr/2)

1+r
p+r



11

i.e A1+r ≥ (Ar/2BpAr/2)
1+r
p+r (1)

for p ≥ 1 and r ≥ 0.
Without loss of generality, assume that A and B are invertible.
If r ∈ [0, 1] then A ≥ B ≥ 0 ⇒ Ar ≥ Br [by L-H]
Therefore

(Ar/2BpAr/2)
1+r
p+r = Ar/2Bp/2(Bp/2ArBp/2)

1+r
p+r

−1Bp/2Ar/2

= Ar/2Bp/2(Bp/2ArBp/2)−
p−1
p+rBp/2Ar/2

= Ar/2Bp/2(B−p/2A−rB−p/2)
p−1
p+rBp/2Ar/2

≤ Ar/2Bp/2(B−p/2B−rB−p/2)
p−1
p+rBp/2Ar/2

= Ar/2(B−(r+p))
p−1
p+r

+pAr/2

= Ar/2(B−p+1+p)Ar/2

= Ar/2BAr/2

≤ Ar/2AAr/2

= A1+r

Hence A ≥ B ≥ 0 implies,
A1+r ≥ (Ar/2BpAr/2)

1+r
p+r for r ∈ [0, 1] (2)

p ≥ 1 and q = 1+r
p+r

Put A1 = A1+r, B1 = (Ar/2BpAr/2)
1+r
p+r in (2) then A1 ≥ B1 ≥ 0.

Repeating (2) for A1 ≥ B1 ≥ 0,

A1+r
1 ≥ (A

r/2
1 Bp

1A
r/2
1 )

1+r
p+r for r1 ∈ [0, 1]&p1 ≥ 1.

Put p1 =
p+r
1+r

> 1 and r1 = r

(A1+r)2 ≥ {(Ar+1)1/2[(Ar/2BpAr/2)
1+r
p+r ]

p+r
1+r (Ar+1)1/2}

2(1+r)
p+2r+1

A2(1+r) ≥ {A(r+1)/2Ar/2BpAr/2A(r+1)/2}
2(1+r)
p+2r+1

= {Ar+1/2BpAr+1/2}
2(1+r)
p+2r+1

for p ≥ 1 and r ∈ [0, 1].
Put s/2 = r + 1/2
⇒ s = 2r + 1
∴ 2r + 2 = s+ 1
Substitute in (3)
As+1 ≥ (As/2BpAs/2)

s+1
s+p for p ≥ 1 and s = 2r + 1 ∈ [1, 3] (4)

Therefore From (2)and (4),
A1+r ≥ (Ar/2BpAr/2)

1+r
p+r for p ≥ 1 and r ∈ [0, 3]

Repeating this process,
(1) holds for any r ≥ 0 and p ≥ 1
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Therefore (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q holds p ≥ 0 and q ≥ 1 with (1+ r)q ≥ p+ r
Hence (ii) is proved.
To prove (i):
If A ≥ B > 0 then B−1 ≥ A−1 > 0.
Hence by (ii) for each r ≥ 0
((B−1)r/2(B−1)p(B−1)r/2)1/q ≥ ((B−1)r/2(A−1)p(B−1)r/2)1/q

B− (p+r)
q ≥ (B−r/2A−pB−r/2)1/q

holds for each p and q such that p ≥ 0 and q ≥ 1 and (1 + r)q ≥ p+ r.
Taking inverse,

(B−r/2A−pB−r/2)−1/q ≥ B
(p+r)

q

(Br/2ApBr/2)1/q ≥ B
(p+r)

q

(Br/2ApBr/2)1/q ≥ (Br/2BpBr/2)1/q

for each r ≥ 0, p ≥ 0, q ≥ 1 with (1 + r)q ≥ p+ r
Hence (i) is proved.

Theorem F1:
If A ≥ B ≥ 0 then the following inequalities hold:

(i) (Br/2ApBr/2)
1+r
p+r ≥ B1+r

(ii) A1+r ≥ (Ar/2BpAr/2)
1+r
p+r for p ≥ 1 and r ≥ 0

Proof:
Consider the Furuta inequality, If A ≥ B ≥ 0 then for each r ≥ 0.

(i) (Br/2ApBr/2)1/q ≥ (Br/2BpBr/2)1/q (1)

(ii) (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q (2)
holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r

Let q = p+r
1+r

then q ≥ 1 if p ≥ 1 and r ≥ 0

∴ by (1), (Br/2ApBr/2)
1+r
p+r ≥ (Bp+r)

1+r
p+r

⇒ (Br/2ApBr/2)
1+r
p+r ≥ B1+r

and by (2),
A1+r ≥ (Ar/2BpAr/2)

1+r
p+r for p ≥ 1 and r ≥ 0

Hence the theorem.
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Theorem F’
If A ≥ C ≥ B ≥ 0 then for each r ≥ 0
(Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q

holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r
Proof:
Consider the Furuta inequality, If A ≥ B ≥ 0 then for each r ≥ 0.

(i) (Br/2ApBr/2)1/q ≥ (Br/2BpBr/2)1/q

(ii) (Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r

Since A ≥ C by (i)
(Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q (1)
Since C ≥ B by (ii)
(Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q (2)
By (1) and (2), for each r ≥ 0,
(Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q

holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r
Similarly taking B=C in (1), we get (i) and taking A=C in(2), we get (ii)
Hence Furuta inequality and (1) and (2) are equivalent.

Theorem F”
If A ≥ C ≥ B ≥ 0 holds iff
(Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q

holds for all r ≥ 0, p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r
Proof:
By Theorem F’,
A ≥ C ≥ B ≥ 0 ⇒ (Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q (1)
holds for all r ≥ 0, p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r
Conversely, assume (1),
Put r = 0, p = q = 1 then we get A ≥ C ≥ B
Hence the theorem.

Theorem G: (Generalized Furuta inequalitiy)
If A ≥ B ≥ 0 with A > 0 then for t ∈ [0, 1] and p ≥ 1

A1−t+r ≥ {Ar/2(A−t/2BpA−t/2)sAr/2}
1−t+r

(p−t)s+t

for s ≥ 1 and r ≥ t
Proof:
Assume that B is invertible.
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Claim: If A ≥ B ≥ 0 with A > 0, then
A ≥ {At/2(A−t/2BpA−t/2)sAt/2}

1
(p−t)s+t (1)

for t ∈ [0, 1] p ≥ 1 and s ≥ 1.
Let A ≥ B > 0, t ∈ [0, 1]
Suppose if 1 ≤ s ≤ 2, p ≥ 1.
then s− 1, 1

(p−t)s+t
∈ [0, 1]

Since t ∈ [0, 1] by Lowner- Heinz inequality A ≥ B > 0 ⇒ At ≥ Bt (2)
Let B1 = {At/2(A−t/2BpA−t/2)sAt/2}

1
(p−t)s+t and A1 = A

By lemma,
(Y XY ∗)λ = Y X1/2(X1/2Y ∗Y X1/2)λ−1X1/2Y ∗

where X ≥ 0 we have
(A−t/2BpA−t/2)s = A−t/2Bp/2(Bp/2A−t/2A−t/2Bp/2)s−1Bp/2A−t/2

∴ B1 = {Bt/2(Bp/2A−tBp/2)s−1Bp/2}
1

(p−t)s+t

≤ {Bt/2(Bp/2B−tBp/2)s−1Bp/2}
1

(p−t)s+t [by(2)]

= {Bp/2+(p−t)(s−1)+p/2}
1

(p−t)s+t

= {Bp+(p−t)s−p−t}
1

(p−t)s+t

= B ≤ A = A1

i.e B1 ≤ A1 (3)
Hence (1) is proved for 1 ≤ s ≤ 2.
Now since A1 ≥ B1 > 0, replacing A by A1 and B by B1 in (1), we get ,

A1 ≥ {At1/2
1 (A

−t1/2
1 Bp1

1 A
−t1/2
1 )s1A

t1/2
1 }

1
(p1−t1)s1+t1 (4)

for 1 ≤ s1 ≤ 2, p1 ≥ and t1 ∈ [0, 1]
Put t1 = t ∈ [0, 1] and p1 = (p− t)s+ t ≥ 1 in (4)
then,
A ≥ {At/2(A−t/2([At/2(A−t/2BpA−t/2)At/2]

1
(p−t)s+t )(p−t)s+tA−t/2)s1At/2}

1
(p−t)ss1+t

= {At/2(A−t/2[At/2(A−t/2BpA−t/2)sAt/2]A−t/2)s1}
1

(p−t)ss1+t

= {At/2(A−t/2BpA−t/2)ss1At/2}
1

(p−t)ss1+t for t ∈ [0, 1], p ≥ 1 and 1 ≤ ss1 ≤ 4 (5)
Repeating this process, we get (1), for t ∈ [0, 1], p ≥ 1 and any s ≥ 1

Put A2 = A and B2 = {At/2(A−t/2BpA−t/2)sAt/2}
1

(p−t)s+t in (1) then A2 ≥ B2 ≥ 0
Therefore by Furuta inequality (ii) for t ∈ [0, 1] and p ≥ 1 and s ≥ 1

A1+r2
2 ≥ (A

r2/2
2 Bp2

2 A
r2/2
2 )

1+r2
p2+r2 holds for p2 ≥ 1 and r2 ≥ 0 (6)

Put r2 = r − t ≥ 0 and p2 = (p− t)s+ t ≥ 1 in (6) then
A1+r−t ≥ (A

r−t
2 At/2(A−t/2BpA−t/2)sAt/2

r−t
2 A

r−t
2 )

1+r−t
(p−t)s+t

= Ar/2(A−t/2BpA−t/2)Ar/2
1+r−t

(p−t)s+r

for s ≥ 1 and r ≥ t
Hence the Generalized Furuta inequality is proved.


