3.1 Young inequality and Holder-Mccarthy inequality

3.1.1 Young inequality and generalized operator means

Theorem Y(Young inequality)

Let A and B be positive invertible operators on a Hilbert space H. Then the following inequality holds for $0 \le \lambda \le 1$.

$$(1-\lambda)A + \lambda B \ge A^{1/2} (A^{-1/2} B A^{-1/2})^{\lambda} A^{1/2} \ge [(1-\lambda)A^{-1} + \lambda B^{-1}]^{-1}.$$

Proof:

Consider $f(x) = \lambda x + 1 - \lambda - x^{\lambda}$ for positive number x and $\lambda \in [0, 1]$.

$$f'(x) = \lambda - \lambda x^{\lambda - 1}, \ x \ge 0 \ and \ \lambda \in [0, 1]$$
$$= \lambda (1 - x^{\lambda - 1})$$
$$= \lambda \left(1 - \frac{1}{x^{1 - \lambda}} \right)$$
$$= \lambda \left(1 - \left(\frac{1}{x} \right)^{1 - \lambda} \right)$$

⇒ f'(x) < 0 for 0 < x < 1. f'(x) = 0 for x = 1. f'(x) > 0 for x > 1. Also $f(0^+) = 1 - \lambda > 0$, f(1) = 0. Hence f(x) is a non negative function \therefore for any positive operator T and $\lambda \in [0, 1]$

$$f(T) = \lambda T + (1 - \lambda) - T^{\lambda} \ge 0.$$

$$\Rightarrow \lambda T + (1 - \lambda) \ge T^{\lambda} \ \forall \ \lambda \in [0, 1]$$
(1)

If T is a positive operator then T^{-1} is also a positive operator. Hence by (1)

$$\lambda T^{-1} + (1 - \lambda) \ge T^{-\lambda} \tag{2}$$

$$\Rightarrow (\lambda T^{-1} + (1 - \lambda))^{-1} \le T^{\lambda} \tag{3}$$

From
$$(1)$$
 and (3) ,

$$\lambda T + 1 - \lambda \ge T^{\lambda} \ge (\lambda T^{-1} + 1 - \lambda)^{-1} \tag{4}$$

Since A and B are positive invertible operator, $A^{-1/2}BA^{-1/2}$ is also a positive invertible operator.

Putting $T = A^{-1/2} B A^{-1/2}$ in (4) we get, $\lambda (A^{-1/2} B A^{-1/2}) + 1 - \lambda \ge (A^{-1/2} B A^{-1/2})^{\lambda} \ge (\lambda A^{1/2} B^{-1} A^{1/2} + 1 - \lambda)^{-1}$ (5)

Multiplying (5) by
$$A^{1/2}$$
 on both sides, we get
 $\lambda B + (1 - \lambda)A \ge A^{1/2}(A^{1/2}BA^{-1/2})^{\lambda}A^{1/2} \ge A^{1/2}(\lambda A^{1/2}B^{-1}A^{1/2} + 1 - \lambda)^{-1}A^{1/2}$
 $(1 - \lambda)A + \lambda B \le A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}$
 $\ge A^{1/2}[A^{1/2}(\lambda B^{-1} + (1 - \lambda)A^{-1})A^{1/2}]^{-1}A^{1/2}$
 $= A^{1/2}(A^{-1/2}(\lambda B^{-1} + (1 - \lambda)A^{-1})A^{-1/2})A^{1/2}$
 $= [\lambda B^{-1} + (1 - \lambda)A^{-1}]^{-1}$

Hence,

 $(1 - \lambda) + \lambda B \ge A^{1/2} (A^{-1/2} B A^{-1/2}) A^{1/2} \ge [\lambda B^{-1} + (1 - \lambda) A^{-1}]^{-1}$ Hence the theorem.

Theorem 1:

Let T be a positive operator on a Hilbert space H. Then the following hold.

- (i) If $1 \ge \lambda \ge 0$ then $\lambda T + (1 \lambda) \ge T^{\lambda}$
- (ii) If $\lambda > 0$ then $\lambda T + (1 \lambda) \leq T^{\lambda}$
- (iii) If $\lambda < 0$ then $\lambda T + (1 \lambda) \leq T^{\lambda}$

In addition (i), (ii) and (iii) are mutually equivalent ${\bf Proof:}$

Consider
$$f(x) = \lambda x + 1 - \lambda - x^{\lambda}$$
 for $x > 0$
 $f'(x) = \lambda - \lambda x^{\lambda - 1}$
 $= \lambda \left(1 - \frac{1}{x^{1 - \lambda}} \right).$

For
$$\lambda \in [0, 1]$$
, $f(0^+) = 1 - \lambda > 0$
 $f(1) = 0$
 $f'(x) < 0$ for $0 < x < 1$
 $f'(1) = 0$
 $f'(x) > 0$ for $x > 1$ (1)
For $\lambda > 1$, $f(0^+) = 1 - \lambda < 0$
 $f(1) = 0$
 $f'(x) > 0$ for $0 < x < 1$
 $f'(1) = 0$
 $f'(x) < 0$ for $x > 1$ (2)
For $\lambda < 0$, $f(0^+) < 0$
 $f'(x) > 0$, $f(1) = 0$, $f'(x) < 0$
 $(1),(2),(3)$ imples,
 $f(x) \ge 0 \ \forall x > 0$ and $\lambda \in [0, 1]$

i.e $1 \ge \lambda \ge 0$ (4) $f(x) < 0 \ \forall \ x > 0 \text{ and } \lambda > 1$ (5)and $f(x) \leq 0 \ \forall \ x > 0$ and $\lambda < 0$ (6) \therefore If T is a positive invertible operator on a Hilbert space then from (4), (5) and (6), we get $f(T) = \lambda T + (1 - \lambda) - T^{\lambda} \ge 0$ for $1 \ge \lambda \ge 0$ (7) $f(T) = \lambda T + (1 - \lambda) - T^{\lambda} \le 0 \text{ for } \lambda > 1$ (8)and $f(T) = \lambda T + (1 - \lambda) - T^{\lambda} < 0$ for $\lambda < 0$ (9)Hence $\lambda T + (1 - \lambda) \ge T^{\lambda}$ for $1 \ge \lambda \ge 0$ $\lambda T + (1 - \lambda) \leq T^{\lambda}$ for $\lambda > 1$ and $\lambda T + (1 - \lambda) \leq T^{\lambda}$ for $\lambda \leq 0$ Hence (i), (ii) and (iii) hold. To prove that (i),(ii) and (iii) are mutually equivalent To prove that (i) \iff (ii): Assum that $\lambda > 1$ then $\frac{1}{\lambda}$. $\therefore \text{ by}(1), \left(\frac{1}{\lambda}\right)^T + \left(1 - \frac{1}{\lambda}\right)^{\lambda} \ge T^{1/\lambda}$ $T + (\lambda - 1) \ge \lambda T^{1/\lambda}$ Put $S = T^{1/\lambda}$, then $S^{\lambda} + (\lambda - 1) \ge \lambda S$ $\Rightarrow S^{\lambda} > \lambda S + 1 - \lambda \text{ for } \lambda > 1$ Hence (i) \Rightarrow (ii). Similarly, (ii) \Rightarrow (i) Hence (i) \iff (ii). To prove that (ii) \iff (iii) Consider (ii), $\lambda T + (1 - \lambda) \leq T^{\lambda}$ for $\lambda > 1$. Mutiplying this inequality by T^{-1} we get, $\lambda + (1-\lambda)T^{-1} \leq T^{\lambda-1}$ for any $\lambda > 1$ Put $\mu = 1 - \lambda < 0$ and $S = T^{-1}$ $\Rightarrow (1-\mu) + \mu S \leq S^{1-\lambda} = S^{\mu}$ i.e $\mu S + (1 - \mu) \leq S^{\mu}$ for $\mu < 0$ Hence (ii) \Rightarrow (iii) Similarly (iii) \Rightarrow (ii). Hence (ii) \iff (iii) Hence (i) \iff (ii) \iff (iii). Hence the theorem.

Theorem 2:

Let A and B be the positive invertible operator on a Hilbert space H then the following hold and are mutually equivalent.

(i) If $1 \ge \lambda \ge 0$ then $(1 - \lambda)A + \lambda B \ge A^{1/2}(A^{-1/2}BA^{-1/2})A^{1/2}$

(ii) If $\lambda > 1$ then $(1 - \lambda)A + \lambda B \leq A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}$

(iii) If $\lambda < 0$ then $(1 - \lambda)A + \lambda B \le A^{1/2} (A^{-1/2} B A^{-1/2})^{\lambda} A^{1/2}$

Proof:

In the theorem,

"Let T be a positive operator on a Hilbert space H. Then the following hold.

- (i) If $1 \ge \lambda \ge 0$ then $\lambda T + (1 \lambda) \ge T^{\lambda}$
- (ii) If $\lambda > 1$ then $\lambda T + (1 \lambda) \leq T^{\lambda}$
- (iii) If $\lambda \leq 0$ then $\lambda T + (1 \lambda) \leq T^{\lambda}$

In addition (i), (ii) and (iii) are mutually equivalent Put $T = A^{-1/2}BA^{-1/2}$ Then we get, (i) If $1 \ge \lambda \ge 0$ $\lambda(A^{-1/2}BA^{-1/2}) + 1 - \lambda \ge (A^{-1/2}BA^{-1/2})^{\lambda}$ Pre multiplying and post mutiplying by $A^{1/2}$ we get $\lambda B + (1 - \lambda)A \ge A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}$ Similarly, we get (ii) If $\lambda > 1$ then $\lambda B + (1 - \lambda)A \le A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}$ (iii) If $\lambda < 0$ then $\lambda B + (1 - \lambda)A \le A^{1/2}(A^{-1/2}BA^{-1/2})^{\lambda}A^{1/2}$ and (i), (ii) and (iii) are mutually equivalent.

3.1.2 Hölder-McCarthy inequality

Theorem: H-M(Hölder-McCarthy inequality)

Let A be a positive linear operator on a Hilbert space H. Then the following properties (i), (ii) and (iii) are hold.

- (i) $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $\lambda > 1$ and any unit vector x
- (ii) $\langle A^{\lambda}x, x \rangle \leq \langle Ax, x \rangle^{\lambda}$ for any $\lambda \in [0, 1]$ and any unit vector x

(iii) If A is invertible then $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $\lambda < 0$ and any unit vector x

Moreover (i),(ii) and (iii) are equivalent to the following (i)', (ii)'and (iii)' respectively.

(i)'
$$\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda} \|x\|^{2(1-\lambda)}$$
 for any $\lambda > 1$ and any vector x

(ii)' $\langle A^{\lambda}x, x \rangle \leq \langle Ax, x \rangle^{\lambda} ||x||^{2(1-\lambda)}$ for any $\lambda \in [0, 1]$ and any vector x

(iii)' If A is invertible then $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda} \|x\|^{2(1-\lambda)}$ for any $\lambda < 0$ and any vector x

Proof:

To prove (ii):

i.e $\langle A^{\lambda}x, x \rangle \leq \langle Ax, x \rangle^{\lambda} ||x||^{2(1-\lambda)}$ for any $\lambda \in [0, 1]$ and unit vector xTo prove this, it is sufficient to prove that if (ii) holds for some $\alpha, \beta \in [0, 1]$ then (ii) holds for $\frac{\alpha+\beta}{2} \in [0, 1]$, by the continuity of the operator. Hence assume that, $\langle A^{\alpha}x, x \rangle \leq \langle Ax, x \rangle^{\alpha}$ (1) and $\langle A^{\beta}x, x \rangle \leq \langle Ax, x \rangle^{\beta}$ (2) for any unit vector x and for some $\alpha, \beta \in [0, 1]$

For any unit vector x consider

$$\begin{split} \left| \left\langle A^{\frac{\alpha+\beta}{2}}x,x \right\rangle \right|^2 &= \left| \left\langle A^{\alpha/2}x,A^{\beta/2}x \right\rangle |^2 \left[\because A \ge 0 \right] \\ &\leq \left\| A^{\alpha/2}x \right\|^2 \| A^{\beta/2}x \|^2 \\ &= \left\langle A^{\alpha/2}x,A^{\alpha/2}x \right\rangle \left\langle A^{\beta/2}x,A^{\beta/2}x \right\rangle \\ &= \left\langle A^{\alpha}x,x \right\rangle \left\langle A^{\beta}x,x \right\rangle \\ &= \left\langle Ax,x \right\rangle^{\alpha} \left\langle Ax,x \right\rangle^{\beta} \quad [by \ (1)\&(2)] \\ &= \left\langle Ax,x \right\rangle^{\alpha+\beta} \\ \left\langle A^{\frac{\alpha+\beta}{2}}x,x \right\rangle &\leq \left\langle Ax,x \right\rangle^{\frac{\alpha+\beta}{2}} \end{split}$$

Hence (ii) holds for $\frac{\alpha+\beta}{2} \in [0,1]$ Hence for any $\lambda \in [0,1]$ $\langle A^{\lambda}x, x \rangle \leq \langle Ax, x \rangle^{\lambda}$ for any unit vector xHence (ii) is true. To prove(i): Let $\lambda > 1$ $\Rightarrow \frac{1}{\lambda} \in [0,1]$ \therefore by(ii), i.e (3) for any unit vector x

for any unit vector Hence (i) holds.

i.e $\langle A^{\lambda}x, x \rangle \geq \langle Ax, \rangle$

(iii)Assume that A^{-1} exists

(3)

case (i): $\lambda = -1$ Then for any unit vector x

$$1 = ||x||^{4} = |\langle A^{-1/2}A^{1/2}x, x \rangle|^{2}$$

= |\langle A^{1/2}x, A^{-1/2}x \rangle|^{2}
$$\leq ||A^{1/2}x||^{2}||A^{-1/2}x||^{2}$$

= \langle Ax, x \langle \langle A^{-1}x, x \rangle
-1 (5)

 $\Rightarrow \langle A^{-1}x, x \rangle \ge \langle Ax, x \rangle^{-1}$ for any unit vector x case (ii): $\lambda < -1$ For any unit vector x

$$\begin{split} \left\langle A^{\lambda}x, x \right\rangle &= \left\langle A^{-|\lambda|}x, x \right\rangle \\ &= \left\langle (A^{-1})^{|\lambda|}x, x \right\rangle \quad where |\lambda| > 1 \\ &\geq \left\langle A^{-1}x, x \right\rangle^{|\lambda|} \quad by(4) \ i.e(i) \\ &\geq \left(\left\langle Ax, x \right\rangle^{-1} \right)^{\lambda} \quad by(5) \\ &= \left\langle Ax, x \right\rangle^{-|\lambda|} \\ &= \left\langle Ax, x \right\rangle^{\lambda} \end{split}$$

Hence $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $\lambda < -1$ Case(iii): Let $-1 \leq \lambda \leq 0$ Then for any unit vector x

$$\begin{split} \langle A^{\lambda}x, x \rangle &= \langle A^{-|\lambda|}x, x \rangle \\ &= \langle (A^{|\lambda|})^{-1}x, x \rangle \quad where |\lambda| \in [0, 1] \\ &\geq \langle A^{|\lambda|}x, x \rangle^{-1} \quad by(5) \\ &\geq (\langle Ax, x \rangle^{|\lambda|})^{-1} \quad by(6) i.e(ii) \\ &= \langle Ax, x \rangle^{-|\lambda|} \\ &= \langle Ax, x \rangle^{\lambda} \end{split}$$

Hence $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $-1 \leq \lambda \leq 0$ (5),(6) and (7) implies, $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $\lambda < 0$ and any unit vector xHence (iii) holds. Hence (i), (ii) and (iii) holds. To prove that (i) \iff (i)': Consider (i), $\langle A^{\lambda}x, x \rangle \geq \langle Ax, x \rangle^{\lambda}$ for any $\lambda > 1$ and any unit vector x

6

(6)

(7)

Replacing x by $\frac{x}{\|x\|}$ we get $\left\langle A^{\lambda}\left(\frac{x}{\|x\|}\right), \frac{x}{\|x\|}\right\rangle \ge \left\langle A\left(\frac{x}{\|x\|}\right), \frac{x}{\|x\|}\right\rangle^{\lambda}$ for any $\lambda > 1$ and any vector x $\iff \frac{1}{\|x\|^2} \left\langle A^{\lambda}x, x \right\rangle \ge \frac{1}{\|x\|^{2\lambda}} \left\langle Ax, x \right\rangle^{\lambda}$ $\iff \left\langle A^{\lambda}x, x \right\rangle \ge \frac{\|x\|^2}{\|x\|^{2\lambda}} \left\langle Ax, x \right\rangle^{\lambda}$ for any $\lambda > 1$ and any vector x $\iff \left\langle A^{\lambda}x, x \right\rangle \ge \left\langle Ax, x \right\rangle^{\lambda} \|x\|^{2(1-\lambda)}$ for any $\lambda > 1$ and any vector x. Hence (i) \Rightarrow (i)' Similarly, replacing x by $\frac{x}{\|x\|}$ in (ii)and (iii), we get (ii)' and (iii)' Hence (i), (ii), and (iii) are equivalent to (i)', (ii)' and (iii)'

3.1.3 Hölder-McCarthy and Young inequalities are equivalent for Hilbert space operators

Theorem 1:

For a positive linear operator A on a Hilbert space H and $\lambda \in [0, 1]$. We give an elementary proof of the equivalence of the following two inequalities

- (1) Holder- McCarrthy inequality: $\langle Ax, x \rangle^{\lambda} \geq \langle A^{\lambda}x, x \rangle$ for all unit vectors $x \in H$
- (2) Young inequality: $\lambda A + I - \lambda \ge A^{\lambda}$

Proof:

(1) \Rightarrow (2) Assume (1), Hölder- McCarthy inequality Consider, $f(x) = \lambda x + 1 - \lambda - x^{\lambda}$ for positive numbers x and $\lambda \in [0, 1]$

$$f'(x) = \lambda - \lambda x^{\lambda - 1}, \ x > 0 \ and \ \lambda \in [0, 1]$$
$$= \lambda \left(1 - \frac{1}{x^{1 - \lambda}} \right)$$
$$= \lambda \left(1 - \left(\frac{1}{x} \right)^{1 - \lambda} \right)$$

 $\begin{array}{l} \Rightarrow f'(x) < 0 \mbox{ for } 0 < x < 1 \\ f'(x) = 0 \mbox{ for } x = 1 \\ f'(x) > 0 \mbox{ for } x > 1 \\ \mbox{Also } f(0^+) = 1 - \lambda > 0, \mbox{ f}(1) = 0 \end{array}$

Hence f(x) is a nonnegative convex function with minimum value f(1)=0. So we have

 $\lambda a + 1 - \lambda \ge a^{\lambda}$ for positive a and $\lambda \in [0, 1]$ Replacing a by $\langle Ax, x \rangle \ge 0$ for ||x|| = 1 & $\lambda \in [0, 1]$ in (1), we get (1)

eplacing a by
$$\langle Ax, x \rangle \ge 0$$
 for $||x|| = 1$ & $\lambda \in [0, 1]$ in (1), we get

$$\begin{array}{rcl} \lambda \left\langle Ax, x \right\rangle + 1 - \lambda & \geq & \left\langle Ax, x \right\rangle^{\lambda} \\ \left\langle \lambda Ax, x \right\rangle + 1 - \lambda & \geq & \left\langle A^{\lambda}x, x \right\rangle \ by \ (1) \\ \lambda A + 1 - \lambda & \geq & A^{\lambda} \ [\because \|x\| = 1] \end{array}$$

Hence (1) \Rightarrow (2) is proved. (2) \Rightarrow (1) We may assume $\lambda \in [0, 1]$ i.e $\lambda A + 1 - \lambda \ge A^{\lambda}$ Replace A by $k^{1/\lambda}A$ for a positive number k, then $\lambda k^{1/\lambda}A + 1 - \lambda \ge (k^{1/\lambda})^{\lambda} \forall x > 0$ $\Rightarrow \lambda k^{1/\lambda} \langle Ax, x \rangle + 1 - \lambda \ge (k^{1/\lambda})^{\lambda} \langle A^{\lambda}x, x \rangle \forall x > 0$ with ||x|| = 1 $\lambda k^{1/\lambda} \langle Ax, x \rangle + 1 - \lambda \ge k \langle A^{\lambda}x, x \rangle$ Put $k \langle Ax, x \rangle^{-\lambda}$ in(2) if $\langle Ax, x \rangle \ne 0$ then (2)

$$\lambda \langle Ax, x \rangle^{-1} \langle Ax, x \rangle + 1 - \lambda \geq \langle Ax, x \rangle^{-\lambda} \langle A^{\lambda}x, x \rangle$$

$$\Rightarrow \lambda + 1 - \lambda \geq \langle Ax, x \rangle^{-\lambda} \langle A^{\lambda}x, x \rangle$$

$$\Rightarrow 1 \geq \langle Ax, x \rangle^{-\lambda} \langle A^{\lambda}x, x \rangle$$

$$\Rightarrow \langle Ax, x \rangle^{\lambda} \geq \langle A^{\lambda}x, x \rangle$$

for ||x|| = 1. If $\langle Ax, x \rangle = 0$ then $A^{1/2}x = 0$ So $A^{\lambda}x = 0$ for $\lambda \in [0, 1]$, by induction and continuity of A. Hence $(2) \Rightarrow (1)$ is proved.

3.2 Lowner Heinz inequality and Furuta inequality

3.2.1 Simplified proofs three order preserving operator inequalities

Theorem L-H:(Lowner Heinz inequality)

 $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\beta}$ for any $\alpha \in [0, 1]$ **Proof:** Case(i): $A \ge B > 0$ Let $A^{\alpha} \ge B^{\alpha}$ and $A^{\beta} \ge B^{\beta}$ for some $\alpha, \beta \in [0, 1]$ It is sufficient to prove that $A^{\frac{\alpha+\beta}{2}} \ge B^{\frac{\alpha+\beta}{2}}$ by the continuity of an operator. i.e To prove $A^{\frac{\alpha+\beta}{4}}A^{\frac{\alpha+\beta}{4}} \ge B^{\frac{\alpha+\beta}{2}}$ Pre and post multiply by $A^{-\frac{\alpha+\beta}{4}}$

$$\begin{array}{rcl} A^{-\frac{\alpha+\beta}{4}}A^{\frac{\alpha+\beta}{4}}A^{\frac{\alpha+\beta}{4}}A^{-\frac{\alpha+\beta}{4}} & \geq & A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}\\ & I & \geq & A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}\\ & 0 & \leq & A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}} \leq I \end{array}$$

By continuity to prove, $\|A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}\| \le 1$ Consider,

$$\begin{split} \|A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}\| &= r(A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}) \\ &= r[A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}A^{\frac{\beta-\alpha}{4}}A^{\frac{\alpha-\beta}{4}}] [\because A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}} is positive] \\ &= r(A^{\frac{\alpha-\beta}{4}}A^{-\frac{\alpha+\beta}{4}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}A^{\frac{\beta-\alpha}{4}}) [\because r(ST) = r(TS), \ S \ge 0 \ and \ T \ge 0] \\ &= r(A^{-\frac{\beta}{2}}B^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha}{2}}) \\ &= r(A^{-\frac{\beta}{2}}B^{\frac{\beta}{2}}B^{\frac{\alpha}{2}}A^{-\frac{\alpha}{2}}) \\ &= n(A^{-\frac{\beta}{2}}B^{\frac{\beta}{2}}B^{\frac{\alpha}{2}}A^{-\frac{\alpha}{2}}) \\ &= \|(A^{-\frac{\beta}{2}}B^{\frac{\beta}{2}})(B^{\frac{\alpha}{2}}A^{-\frac{\alpha}{2}})\| \\ &\leq \|(A^{-\frac{\beta}{2}}B^{\frac{\beta}{2}})\|\|(B^{\frac{\alpha}{2}}A^{-\frac{\alpha}{2}})\| \\ &\leq 1 \\ &\Rightarrow A^{\frac{\alpha+\beta}{2}}A^{-\frac{\alpha+\beta}{4}}\| &\leq 1 \\ &\Rightarrow A^{\frac{\alpha+\beta}{2}} \ge B^{\frac{\alpha+\beta}{2}} \end{split}$$

 $\therefore A^{\alpha} \geq B^{\alpha} \text{ for any } \alpha \in [0, 1]$ Hence proved. Case(ii): In the general case $A \geq B \geq 0$ The condition $A \geq B \geq 0$ ensures $A + \epsilon \geq B + \epsilon \geq \epsilon$ for any $\epsilon > 0$ Then $A_1 = A + \epsilon$ and $B_1 = B + \epsilon$ are both invertible and $A_1 \geq B_1 \geq 0$ So that $A_1^{\alpha} \geq B_1^{\alpha}$ for any $\alpha \in [0, 1]$ by case (i) Let $\epsilon \to 0$ then we have $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in [0, 1]$ Hence proved.

Theorem F:(Furuta inequality)

If $A \ge B \ge 0$ then for each $r \ge 0$.

(i) $(B^{r/2}A^pB^{r/2})^{1/q} \ge (B^{r/2}B^pB^{r/2})^{1/q}$ and

(ii)
$$(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$$

holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$

Proof:

For proving this theorem, we need the following lemma

Lemma:A

Let X be a positive invertible operator and Y be an invertible operator. For any real number λ

$$(YXY^*)^{\lambda} = YX^{1/2}(X^{1/2}Y^*YX^{1/2})^{\lambda-1}X^{1/2}Y^*$$

Proof: for lemma

Let $YX^{1/2} = UH$ be the polar decomposition of $YX^{1/2}$, where U is unitary and $H = |YX^{1/2}|$ [where |T| denotes $(T * T)^{1/2}$] Then

$$\begin{split} (YXY^*)^{\lambda} &= (YX^{1/2}X^{1/2}Y^*)^{\lambda} \\ &= (UHH^*U^*)^{\lambda}[\because YX^{1/2} = UH, \ X^{1/2}Y^* = H^*U^*] \\ &= (UH^2U^*)^{\lambda} \\ &= UH^{2\lambda}U^* \\ &= YX^{1/2}H^{-1}H^{2\lambda}H^{-1}X^{1/2}Y^*[\because X > 0, U^* = (YX^{1/2}H^{-1})^* = H^{-1}X^{1/2}Y^*] \\ &= YX^{1/2}H^{2(\lambda-1)}X^{1/2}Y^* \\ &= YX^{1/2}(H^2)^{\lambda-1}X^{1/2}Y^* \\ &= YX^{1/2}(X^{1/2}Y^*YX^{1/2})^{\lambda-1}X^{1/2}Y^*[\because H^2 = (YX^{1/2})^*(YX^{1/2}) = X^{1/2}Y^*YX^{1/2}] \end{split}$$

Hence the lemma.

Proof of the Theorem:

Let $A \ge B \ge 0, r \ge 0$ To prove (ii): i.e $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ case(i): $0 \le p \le 1$ Since $0 \le p \le 1$, by Lowner- Heinz inequality, $A \ge B \ge 0$ $\Rightarrow A^p \ge B^p$ $\Rightarrow (A^{r/2}A^pA^{r/2}) \ge (A^{r/2}B^pA^{r/2})$ Hence again by Lowner- Heinz inequality, $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ for $q \ge 1$ and $(1+r)q \ge p+r$ Case (ii): Consider $p \ge 1$ and $q > \frac{p+r}{1+r}$ and $r \ge 0$ then $q > \frac{p+r}{1+r} \ge 1 \Rightarrow \frac{1}{q} < \frac{1+r}{p+r} < 1 [\because p \ge 1, p+r \ge 1+r]$ if $(A^{r/2}A^pA^{r/2}) \ge (A^{r/2}B^pA^{r/2})^{1/q}$ Then by Lowner- Heinz inequality, $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ Therefore it is enough to show that $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ for $q = \frac{p+r}{1+r}, p \ge 1 \& r \ge 0$ i.e $(A^{p+r})^{\frac{1+r}{p+r}} \ge (A^{r/2}B^pA^{r/2})^{\frac{1+r}{p+r}}$

i.e
$$A^{1+r} \ge (A^{r/2}B^p A^{r/2})^{\frac{1+r}{p+r}}$$
 (1)
for $p \ge 1$ and $r \ge 0$.
Without loss of generality, assume that A and B are invertible

Without loss of generality, assume that A and B are invertible. If $r \in [0, 1]$ then $A \ge B \ge 0 \Rightarrow A^r \ge B^r$ [by L-H] Therefore

$$\begin{split} (A^{r/2}B^{p}A^{r/2})^{\frac{1+r}{p+r}} &= A^{r/2}B^{p/2}(B^{p/2}A^{r}B^{p/2})^{\frac{1+r}{p+r}-1}B^{p/2}A^{r/2} \\ &= A^{r/2}B^{p/2}(B^{p/2}A^{r}B^{p/2})^{-\frac{p-1}{p+r}}B^{p/2}A^{r/2} \\ &= A^{r/2}B^{p/2}(B^{-p/2}A^{-r}B^{-p/2})^{\frac{p-1}{p+r}}B^{p/2}A^{r/2} \\ &\leq A^{r/2}B^{p/2}(B^{-p/2}B^{-r}B^{-p/2})^{\frac{p-1}{p+r}}B^{p/2}A^{r/2} \\ &= A^{r/2}(B^{-(r+p)})^{\frac{p-1}{p+r}+p}A^{r/2} \\ &= A^{r/2}(B^{-p+1+p})A^{r/2} \\ &= A^{r/2}BA^{r/2} \\ &\leq A^{r/2}AA^{r/2} \\ &= A^{1+r} \end{split}$$

Hence
$$A \ge B \ge 0$$
 implies,
 $A^{1+r} \ge (A^{r/2}B^p A^{r/2})^{\frac{1+r}{p+r}}$ for $r \in [0,1]$
 $p \ge 1$ and $q = \frac{1+r}{p+r}$
Put $A_1 = A^{1+r}, B_1 = (A^{r/2}B^p A^{r/2})^{\frac{1+r}{p+r}}$ in (2) then $A_1 \ge B_1 \ge 0$.
Repeating (2) for $A_1 \ge B_1 \ge 0$,
 $A_1^{1+r} \ge (A_1^{r/2}B_1^p A_1^{r/2})^{\frac{1+r}{p+r}}$ for $r_1 \in [0,1]\& p_1 \ge 1$.
Put $p_1 = \frac{p+r}{1+r} > 1$ and $r_1 = r$

$$\begin{aligned} (A^{1+r})^2 &\geq \{ (A^{r+1})^{1/2} [(A^{r/2} B^p A^{r/2})^{\frac{1+r}{p+r}}]^{\frac{p+r}{1+r}} (A^{r+1})^{1/2} \}^{\frac{2(1+r)}{p+2r+1}} \\ A^{2(1+r)} &\geq \{ A^{(r+1)/2} A^{r/2} B^p A^{r/2} A^{(r+1)/2} \}^{\frac{2(1+r)}{p+2r+1}} \\ &= \{ A^{r+1/2} B^p A^{r+1/2} \}^{\frac{2(1+r)}{p+2r+1}} \end{aligned}$$

for $p \ge 1$ and $r \in [0, 1]$. Put s/2 = r + 1/2 $\Rightarrow s = 2r + 1$ $\therefore 2r + 2 = s + 1$ Substitute in (3) $A^{s+1} \ge (A^{s/2}B^pA^{s/2})^{\frac{s+1}{s+p}}$ for $p \ge 1$ and $s = 2r + 1 \in [1, 3]$ (4) Therefore From (2)and (4), $A^{1+r} \ge (A^{r/2}B^pA^{r/2})^{\frac{1+r}{p+r}}$ for $p \ge 1$ and $r \in [0, 3]$ Repeating this process, (1) holds for any $r \ge 0$ and $p \ge 1$

Therefore $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ holds $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$. Hence (ii) is proved. To prove (i): If $A \ge B > 0$ then $B^{-1} \ge A^{-1} > 0$. Hence by (ii) for each $r \ge 0$ $((B^{-1})^{r/2}(B^{-1})^p(B^{-1})^{r/2})^{1/q} \ge ((B^{-1})^{r/2}(A^{-1})^p(B^{-1})^{r/2})^{1/q}$ $B^{-\frac{(p+r)}{q}} \ge (B^{-r/2}A^{-p}B^{-r/2})^{1/q}$ holds for each p and q such that $p \ge 0$ and $q \ge 1$ and $(1+r)q \ge p+r$. Taking inverse,

$$(B^{-r/2}A^{-p}B^{-r/2})^{-1/q} \geq B^{\frac{(p+r)}{q}} (B^{r/2}A^{p}B^{r/2})^{1/q} \geq B^{\frac{(p+r)}{q}} (B^{r/2}A^{p}B^{r/2})^{1/q} \geq (B^{r/2}B^{p}B^{r/2})^{1/q}$$

for each $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+r)q \ge p+r$ Hence (i) is proved.

Theorem F1:

If $A \ge B \ge 0$ then the following inequalities hold:

(i)
$$(B^{r/2}A^pB^{r/2})^{\frac{1+r}{p+r}} \ge B^{1+r}$$

(ii) $A^{1+r} \ge (A^{r/2}B^pA^{r/2})^{\frac{1+r}{p+r}}$ for $p \ge 1$ and $r \ge 0$

Proof:

Consider the Furuta inequality, If $A \ge B \ge 0$ then for each $r \ge 0$.

(i)
$$(B^{r/2}A^pB^{r/2})^{1/q} \ge (B^{r/2}B^pB^{r/2})^{1/q}$$
 (1)

(ii) $(A^{r/2}A^p A^{r/2})^{1/q} \ge (A^{r/2}B^p A^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ (2)

Let $q = \frac{p+r}{1+r}$ then $q \ge 1$ if $p \ge 1$ and $r \ge 0$ \therefore by (1), $(B^{r/2}A^pB^{r/2})^{\frac{1+r}{p+r}} \ge (B^{p+r})^{\frac{1+r}{p+r}}$ $\Rightarrow (B^{r/2}A^pB^{r/2})^{\frac{1+r}{p+r}} \ge B^{1+r}$ and by (2), $A^{1+r} \ge (A^{r/2}B^pA^{r/2})^{\frac{1+r}{p+r}}$ for $p \ge 1$ and $r \ge 0$ Hence the theorem.

Theorem F'

If $A \ge C \ge B \ge 0$ then for each $r \ge 0$ $(C^{r/2}A^pC^{r/2})^{1/q} \ge (C^{r/2}C^pC^{r/2})^{1/q} \ge (C^{r/2}B^pC^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ **Proof:**

Consider the Furuta inequality, If $A \ge B \ge 0$ then for each $r \ge 0$.

- (i) $(B^{r/2}A^pB^{r/2})^{1/q} \ge (B^{r/2}B^pB^{r/2})^{1/q}$
- (ii) $(A^{r/2}A^pA^{r/2})^{1/q} \ge (A^{r/2}B^pA^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$

Since
$$A \ge C$$
 by (i)
 $(C^{r/2}A^pC^{r/2})^{1/q} \ge (C^{r/2}C^pC^{r/2})^{1/q}$
(1)
Since $C \ge B$ by (ii)

Since $C \ge B$ by (ii) $(C^{r/2}C^pC^{r/2})^{1/q} \ge (C^{r/2}B^pC^{r/2})^{1/q}$ By (1) and (2), for each $r \ge 0$,
(2)

 $(C^{r/2}A^pC^{r/2})^{1/q} \ge (C^{r/2}C^pC^{r/2})^{1/q} \ge (C^{r/2}B^pC^{r/2})^{1/q}$ holds for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ Similarly taking B=C in (1), we get (i) and taking A=C in(2), we get (ii) Hence Furuta inequality and (1) and (2) are equivalent.

Theorem F"

If $A \ge C \ge B \ge 0$ holds iff $(C^{r/2}A^pC^{r/2})^{1/q} \ge (C^{r/2}C^pC^{r/2})^{1/q} \ge (C^{r/2}B^pC^{r/2})^{1/q}$ holds for all $r \ge 0$, $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ **Proof:** By Theorem F', $A \ge C \ge B \ge 0 \Rightarrow (C^{r/2}A^pC^{r/2})^{1/q} \ge (C^{r/2}C^pC^{r/2})^{1/q} \ge (C^{r/2}B^pC^{r/2})^{1/q}$ (1) holds for all $r \ge 0$, $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$ Conversely, assume (1), Put r = 0, p = q = 1 then we get $A \ge C \ge B$ Hence the theorem.

Theorem G: (Generalized Furuta inequality)

If $A \ge B \ge 0$ with A > 0 then for $t \in [0, 1]$ and $p \ge 1$ $A^{1-t+r} \ge \{A^{r/2}(A^{-t/2}B^pA^{-t/2})^sA^{r/2}\}^{\frac{1-t+r}{(p-t)s+t}}$ for $s \ge 1$ and $r \ge t$ **Proof:** Assume that B is invertible. Claim: If $A \ge B \ge 0$ with A > 0, then $A \ge \{A^{t/2} (A^{-t/2} B^p A^{-t/2})^s A^{t/2}\}^{\frac{1}{(p-t)s+t}}$ (1)for $t \in [0, 1]$ $p \ge 1$ and $s \ge 1$. Let $A \ge B > 0, t \in [0, 1]$ Suppose if $1 \le s \le 2$, $p \ge 1$. then s - 1, $\frac{1}{(p-t)s+t} \in [0, 1]$ Since $t \in [0, 1]$ by Lowner- Heinz inequality $A \ge B > 0 \implies A^t \ge B^t$ (2)Let $B_1 = \{A^{t/2}(A^{-t/2}B^p A^{-t/2})^s A^{t/2}\}^{\frac{1}{(p-t)s+t}}$ and $A_1 = A$ By lemma, (

$$(YXY^*)^{\lambda} = YX^{1/2}(X^{1/2}Y^*YX^{1/2})^{\lambda-1}X^{1/2}Y^*$$

where $X \ge 0$ we have $(A^{-t/2}B^{p}A^{-t/2})^{s} = A^{-t/2}B^{p/2}(B^{p/2}A^{-t/2}A^{-t/2}B^{p/2})^{s-1}B^{p/2}A^{-t/2}$

$$\therefore B_1 = \{ B^{t/2} (B^{p/2} A^{-t} B^{p/2})^{s-1} B^{p/2} \}^{\frac{1}{(p-t)s+t}}$$

$$\leq \{ B^{t/2} (B^{p/2} B^{-t} B^{p/2})^{s-1} B^{p/2} \}^{\frac{1}{(p-t)s+t}} [by(2)]$$

$$= \{ B^{p/2+(p-t)(s-1)+p/2} \}^{\frac{1}{(p-t)s+t}}$$

$$= \{ B^{p+(p-t)s-p-t} \}^{\frac{1}{(p-t)s+t}}$$

$$= B \leq A = A_1$$

i.e
$$B_1 \leq A_1$$
 (3)
Hence (1) is proved for $1 \leq s \leq 2$.
Now since $A_1 \geq B_1 > 0$, replacing A by A_1 and B by B_1 in (1), we get ,
 $A_1 \geq \{A_1^{t_1/2}(A_1^{-t_1/2}B_1^{p_1}A_1^{-t_1/2})^{s_1}A_1^{t_1/2}\}^{\frac{1}{(p_1-t_1)s_1+t_1}}$ (4)
for $1 \leq s_1 \leq 2$, $p_1 \geq$ and $t_1 \in [0, 1]$
Put $t_1 = t \in [0, 1]$ and $p_1 = (p - t)s + t \geq 1$ in (4)
then,
 $A \geq \{A^{t/2}(A^{-t/2}([A^{t/2}(A^{-t/2}B^pA^{-t/2})A^{t/2}]^{\frac{1}{(p-t)s+t}})^{(p-t)s+t}A^{-t/2})^{s_1}A^{t/2}\}^{\frac{1}{(p-t)ss_1+t}}$
 $= \{A^{t/2}(A^{-t/2}[A^{t/2}(A^{-t/2}B^pA^{-t/2})^sA^{t/2}]A^{-t/2})^{s_1}\}^{\frac{1}{(p-t)ss_1+t}}$
 $= \{A^{t/2}(A^{-t/2}B^pA^{-t/2})^{ss_1}A^{t/2}\}^{\frac{1}{(p-t)s+t}+t}$ for $t \in [0, 1]$, $p \geq 1$ and $1 \leq ss_1 \leq 4$ (5)
Repeating this process, we get (1), for $t \in [0, 1]$, $p \geq 1$ and any $s \geq 1$
Put $A_2 = A$ and $B_2 = \{A^{t/2}(A^{-t/2}B^pA^{-t/2})^sA^{t/2}\}^{\frac{1}{(p-t)s+t}+t}$ in (1) then $A_2 \geq B_2 \geq 0$
Therefore by Furuta inequality (ii) for $t \in [0, 1]$ and $p \geq 1$ and $s \geq 1$
 $A_2^{1+r_2} \geq (A_2^{r_2/2}B_2^{p_2}A_2^{r_2/2})^{\frac{1+r_2}{p_2+r_2}}$ holds for $p_2 \geq 1$ and $r_2 \geq 0$ (6)
Put $r_2 = r - t \geq 0$ and $p_2 = (p - t)s + t \geq 1$ in (6) then
 $A^{1+r-t} \geq (A^{\frac{r-t}{2}}A^{t/2}(A^{-t/2}B^pA^{-t/2})^sA^{t/2}^{\frac{r-t}{2}}A^{\frac{r-t}{2}})^{\frac{(p-t)}{(p-t)s+t}}$

$$= A^{r/2} (A^{-t/2} B^p A^{-t/2}) A^{r/2} (A^{-t/2} B^p A^{-t/2})^{(p-t)s+t}$$

$$= A^{r/2} (A^{-t/2} B^p A^{-t/2}) A^{r/2} (A^{-t/2} B^p A^{-t/2})^{(p-t)s+t}$$

$$= A^{r/2} (A^{-t/2} B^p A^{-t/2}) A^{r/2} (A^{-t/2} B^p A^{-t/2})^{(p-t)s+t}$$

for $s \ge 1$ and $r \ge t$

Hence the Generalized Furuta inequality is proved.