| 6 o Graphics

MATL.AB iI}ClU.FieS good tools for visualization. Basic 2-D plots, fancy 3-D
graphics with hghtmg and color-maps, complete user-control of the sraphics
objects through Handle. Graphics, tools for design of sophisticated graph-
ics user-interface, and animation are now part of MATLAB. What is special
bout MATLAB’s graphics facility is its ease of use and expandability. Com-
mands for most garden—varie_ty plotting are simple, easy to use, and intuitive.
If you are not satisfied with what you get, you can control and manipulate
virtually everything in the graphics window. This, however, requires an
understa,nding of the Handle Graphics, a system of low-level functions to
manipulate graphics objects. In this section we take you through the main

features of the MATLAB’s graphics facilities.

6.1 Basic 2-D Plots |

The most basic and perhaps the most useful command for prod11ci11g a simple

2-D plot is

plot(zvalues, yvalues, ’style-option’) Al

. b dinates
Where gualues and yvalues are vectors contalr}lng the v arlldaf i?g;n;nthat
of points on the graph and the style-option 15 &7 Op(;l?;:d ef;c.) and the
Pecifies the color, the.line style (-8 solid, dashed, COH' 2 be specified
Point-marker style (e.g. 0, +» *, etc.). All the ©

Ogether as the style-option in the general fzrm:tyle
. ;ers

color_lznestyle—mar & e length. Unequal

The two wwalues MUST have the sam . the plot

vectors gvalues and yve mmon Source of error 11

Cco -

e | . O
"8th of the two vectors is the mOSt g <ingle vector argument, in
S

QO [a .
Mmand, The plot function also WO
4___

hree options call

which case. the elements of the vector are plotted against, row g

rectors @ and y each of lengt) cOlum,
indices. Thus, for two column vectors . ! ‘ gth n, |

plot(x,y) plots y vs. @ with a solid line (the defay]y, line Stylo
plot(x,y,’--’) plots y vs. & with a dashed line (more oy this below,
plot (x) plots the elements of @ against their row indey,)

6.1.1 Style options

The style-option in the plot command is a character string that, ¢
1, 2, or 3 characters that specify the color and/or the line style.
several color, line-style, and marker-style options:

Onsistg (¢
There gy,

Color Style-option | Line Style-option | Marker Style-option
y yellow - solid + plus sign

m magenta -- dashed o circle

c cyan : dotted * asterisk

r red -. dash-dot X x-mark

g green . point

b blue " up triangle

w white S square

k - black d diamond, etc.

The style-option is made up of either the color option, the line-style
option, or a‘combination of the two.

Examples:

plot(x,y,%x?) plots y vs. with a red solid line,
plot(x,y,?:2) plots ¥ vs. = with a dotted line,

plot(x,y, ’b--?) plots y vs. = with a blue dashed line,
plot(x,y,’+’) ‘blots y vs. 2 as unconnected points marked by +-

When no style option is specified, MATLAB uses the default option—a blue
solid line.

6.1.2 Labels, title, legend, and other text objects

Plots may be annotated with x
mands.

The first three commands tak
quires three arguments— text(z-
coordinate values are taken from

1-
label, ylabel, title, and text con

re-
€ string arguments, while the last Ol}:t p
coordinate, y-coordinate, ‘text’), Whe!
the current plot. Thus,
- xlabel(’Pipe Length’)

. labels the x-axis with Pipe Length
ylabel(’Fluid Pressure’)

i Sure.
labels the y-axis with Fluid Pres

v

iﬁle('Pressure Variation’) Cit fen
t

the plot with Pressure Variation,
oxt (2,6, Note thia dip”)
t P

wWrites ‘Noto thig dip” at the location
(2.0.6.0) in the plog coordinntes,

\We have already scen a1 example of xlabel, ylabel, and title in
Fig. 3.10. :\1} example of text appears in I'ig, 6.2, Thoe arguaments of
cext (2.9, text’) command may be véctors, in which ease 2 and 4 must have
(he same length and tezt may be just one string or a vector of strings, If text
is a vector then it must have the same length as = and, of course, like any
other string vector, must have each element of the same length, A useful
variant of the text command is gtext, which only takes string argument
(a single string or a vector of strings) and lets the user specify the location
of the text by clicking the mouse at the desired location in the graphics
window.

Legend:

The legend command produces a boxed legend on a plot, as shown, for
example, in Fig. 6.3 on page 166. The legend command is quite versatile.
It can take several optional arguments. The most commonly used forms of
the command are listed below.

legend(stringl, string2, ..) produces legend using the text in
stringl, string2, etc. as labels.
legend(LineStylel, stringl, ..) specifies the line-style of each label.
legend(.., pos) writes the legend outside the plot-fram
' if pos = -1 and inside the frame if Pos =
(There are other options for pos t00.)
legend off deletes the legend from the plot.

When MATLAB is asked to produce a legend, it tries to find a place on
the plot where it can write the specified legend without running into lines,
grid, and other graphics objects. The optional argument pos specifies the
location of the legend box. pos=1 places the legend in the upper right hand
corner (default), 2 in the upper left hand corner, 3 in the lower left hand
corner, and 4 in the lower right hand corner. The user, however, can move
the legend at will with the mouse (click and drag). For more information,
S¢e the on-line help on legend.

6.1.3 Axis control, zoom-in, and zoom-out

Once a plot is generated you can change the axes limits with the axis
“mmand. Typing

axis ([zmin zmaz ymin ymax])

changes the current axes limits to the specified new values zmin and Tmag

for the x-axis and ymin and ymaxz for the y-axis.

FExamples:
axis([-5 10 2 221); sets the x-axis from =5 t0 10, y-axis from 2 to 292,
axy = [-5 10 2 22]; axis(axy); same as above,

ax = [-5 10]; ay = [2 22]; axis([ax ayl); same as above,

The axis command may thus be used to zoom-in on a particular section
of the plot or to zoom-out!. There are also some useful predefined string
arguments for the axis command:

axis(’equal’) sets equal scale on both axes

axis(’square’) sets the default rectangular frame to a square
axis(’normal’) resets the axis to default values

axis(’axis’) freezes the current axes limits

axis(’off’) removes the surrounding frame and the tick marks.

The axis command must come after the plot command to have the desired
effect. '

‘Semi-control of axes

It is possible to control only part of the axes limits and let MATLAB set the
other limits automatically. This is achieved by specifying the desired limits
in the axis command along with inf as the values of the limits which you
would like to be set automatically. For example,

axis([-5 10 -inf inf]) sets the x-axis limits at —5 and 10 and lets
the y-axis limits be set automatically.
axis([-5 inf -inf 22]) sets the lower limit of the x-axis and the

upper limit of the y-axis, and leaves the
other two limits to be set automatically.

6.1.4 Modifying plots with Plot Editor

- MATLAB 6 provides an enhanced (over previous versions) interactive tool for
. modifying an existing plot. To activate this tool, go to the Figure window
“and click on the left-leaning arrow in the menu bar (see Fig. 6.1). Now you
can select and double (or right) click on any object in the current plot to edit
it. Double clicking on the selected object brings up a Property Editor window
where you can select and modify the current properties of the object. Other
tools in the menu bar, e.g., text (marked by A), arrow, and line, lets you
modify and annotate figures just like simple graphics packages do.

1There is also a zoom command which can be used to zoom-in and zoom-out using the
mouse in the figure window. See the on-line help on zoom.

Plot editing tools

Figure 6.1: MATLAB provides interactive plot editing tools in the Figure
window menu bar. Select the first arrow (left-leaning) for activating plot
editor- Gelect A, the right-leaning arrow, and the diagonal line for adding

text, aITOWS, and lines, respectively, in the current plot.

You can also activate the plot editor in the figure window by typing
plotedit on the command prompt. You can activate the property editor by .

typing propedit at the command prompt. However, to make good use of
the property editor, you must have some understanding of Handle Graphics.

See Section 6.4 on page 190 for details.

6.1.5 Overlay plots

There are three different ways of generating overlay plots in MATLAB: the

. plot, hold, and line commands.

Method-1: Using the plot command to generate overlay plots

f data is available, plot command with multiple arguments

may be used to generate an overlay plot. For example, if we have three
sets of data— (x1,y1), (x2,¥2), and (x3.y3)—the command plot (51
x2,y2,7:’, x3,y3,’0’) plots (x1,y1) with a solid line, (x2,y2) with a dot-
ted line, and (x3,y3) as unconnected points marked by small circles ('0).
all on the same graph (See Fig. 6.2 for example). Note that the vectors
(xi,yi) must have the same length pairwise. If the length of all vectors is the
same, then it is convenient to make a matrix of x vectors and a matrix of
¥ vectors and then use the two matrices as the argument of the plot com-
mand. For example, if

x1, v1, x2, y2, x3. and y3 are all column vectors of
length n then typing X=[x1 x2 x31

Y=[y1 y2 y3]; plot (X,Y) produces
a plot with three lines drawn in different color

s. When plot command is
used with matrix arguments, each column of the second argument MAatrix is
plotted against the corresponding column of the first

If the entire set o

argument matrix

>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>
L >>

—ay,

% Generate vector t

t=linspace(0,2*pi, 100);
% Calculate yl, y2; v3

yil=sin(t); y2=t;
Y3=t—(t."3)/6+(t."5)/120;

plot(tlyl’t'yzl|__|,tly3"o') % Plot (t:y'l) With SOlid li
%- (t,y2) with dahed line ar:le
%- (t,y3) with circleg :

axis([0 5 -1 5]) - % Zoom~-in with new axig Llimit

xlabel('t"') % Put x-label 8

yvlabel ('Approximations of sin(t)')% Put y-label

title('Fun with sin(t)"') % Put title

text (3.5,0, 'sin(t) ") drite SR (L) e tpolerav

gtext ('LJ:near approximation') . gtext writes the specified string at a

gtext ('First 3 terms') location clicked with the mouse in the

gtext ('in Taylor series') graphics window. So after hitting return

at the end of gtext command, go to the
graphics window and click a location.

o bc’) ‘Fi\r'st 3terms
: 0. in Taylor-series
ofii 2

=
=
=5
e
-
[S)
o
c
.2
=
©
£
x
i
P
Q
o
<

. _ 1,
Figure 6.2.. Example of an overlay plot along with examples of. xlabTOt—
ylabel, title, axis, text, and gtext commands. The three 1inés P

= Sl — 3
ted are y1 =sint, ys =¢, and y3=t—§—!+t5—"§.

e the hold commane .
10(1_2: Using and Lo peneragae overlay plots
1 ' :
of , N o
\l v of making overlay plots is with (] hold commn ,
er wad : luring a sessi [¢ command, l“\""’-””’.
'\”()[; ot any])0““ during a session reezes (he Carront |;|ul it he !’l‘mhif'
? | (« ¢ !
. nt plots geners ' : ' '
bold ! qubsequent pl generated by (e plot commund e simply

. oW .o Ly FT . . . '
(indo | (he existing plot. The following seript file shows
¢ '

adde pe plot as in Fig. 6.2 by using’the hold comman,
e P

how Lo grenerate

h(‘ S

(ot file to generate an overlay plot with the hold

command -
‘lriii:;age(o,Q*pi,lOO); :/. Generate vector x ermand
x’;sin(X); °/., Calculate y1
Yiot(x’yp f Plot (x,y1) with solid line
' 1d on L °/» Invoke hold for overlay plots
e plot (x,¥2, —) h Plot (x,y2) with dashed line
F e (x.3)/6+(x.76)/120; % Calculate y3
1ot(x,y3,’°’) % Plot (x,y3) as pts. marked by ’o’
axis([0 5 1 51) % Zoom-in with new axis limits
pold off % Clear hold command

The hold command is useful for overlay plots when the entire data set to
be plotted is not available at the same time. You should use this command if
you want to keep adding plots as the data becomes available. For example,
if a set of calculations done in a for loop generates vectors z and y at the
end of each loop and you would like to plot them on the same graph, hold
is the way to do it.

Method-3: Using the line command to generate overlay plots

The line is a low-level graphics command which is used by the plot tom-
mand to generate lines. Once a plot exists in the graphics window, additional
lines may be added by using the line command directly. The line com-
mand takes a pair of vectors (or a triplet in 3-D) followed by parameter
"ame/parameter value pairs as arguments:

‘Mata, ydata, ParameterName, ParameterValue)

R:rslacommand simply adds lines to the existing axes. For exa,mp-le, the
follow-y plot .Created by the above script file could .also be created with the
mandmg script file, which uses the 1ine command instead of the hold com-

~ As a bonus to the reader, we include an example of the legend

COm
: Mand (see page 161).

t=1inzcript file to generate an overlay plot with the line command --
yhSinlz‘acl;:e(o’2*pi’100); Y Generate vector t
y2=t; ; % Calculate y1, y2, y3

Wy -
e 3)/6+(t.~5) /120;

.

plot(t,yl) °/° Plot (t,}’i) with (defaU.lt) Solid
line(t,y2,’linestyle’,’—-’) % Add line (t,y2) with daheq 1ine line
1ine(t,y3, ‘marker’, ’07) % Add line (t ,}'3) Plotted With Circleand

8
axis([0 5 -1 5]) h Zoom-in with new axis limjtg
xlabel(’t’) % Put x-label

ylabel (’Approximations of sin(t)’)
% Put y-label
title("Fun with sin(t)?) % Put title

legend(’sin(t)’,’linear approx.’,’5th order approx.’)
%» add legend

The output generated by the above script file is shown in Fig. 6.3, After
generating the plot, click and hold the mouse on the legend rectangle ap(
see if you can drag the legend to some other position. Alternatively, yoy
could specify an option in the legend command to place the legend rectangle
in any of the four corners of the plot. See the on-line help on legend.

Fun with sin(t)

5 T T T T I T I ~l‘ T 7
@ - i
oA
7

7
. >
al — sin(y) e
— — linear approx. - T
O 5th order approx. P o
> 7
. B O
P
3r P < o) il
v
i o)
7
7 = o
Y o
2r - o)

Approximations of sin(t)

—t

Figure 6.3: Examp}e of an overlay plot produced by using the line com-
mand. The legend is produced by the legend command. See the script file
for details. _

6.1.6 Specialized 2-D plots

There are many specialized graphics Munctiony for 2-p plotting, The '

used as alternatives to {he Plot commay] we hiave just, (li“!(:l’l‘w's’[(j‘.(l ;I‘ll(l):‘;ll'()'
a whole suite of ezplotter I"unct'.ions, such ag ezplot ,‘ ezpollér“ le. 60
etc., which are truly casy to use. See Section 3.6 for a (lis(:uqsi:m 'chin't?ur,
ples of these functions. ' | e

Here, we provide a list of other functiong commonly yge

o d for pPlotting -y,
area creates a filled area, plot

bar creates a bar graph

barh Creates a horizontal bay graph

comet makes an animated 2-D plot

compass ' creates arrow graph for complex numbers
- contour makes contour plots

contourf makes filled contour plots

errorbar plots a graph and puts error bars

feather makes a feather plot

fill draws filled polygons of specified color

fplot plots a function of a single variable

hist : makes histograms

loglog creates plot with log scale on both x and y axes
pareto makes pareto plots

pcolor makes pseudocolor plot of a matrix

pie creates a pie chart

plotyy makes a double y-axis plot

plotmatrix makes a scatter plot of a matrix

polar plots curves in polar coordinates

quiver plots vector fields

rose . makes angled histograms

Scatter creates a scatter plot

semilogx makes semilog plot with log scale on the x—ax%s
Semilogy makes semilog plot with log scale on the y-axis
Stairs plots a stair graph

Stem plots a stem graph

On the following pages we show examples of these functions.. The com-
Mands shown in the middle column produce the plots shown in the right
column. There are several ways you can use these graphics functions. Al§o,
Many of them take optional arguments. The following exampl'es should gnge
You a basic idea of how to use these functions and what k1n{i of plot ho
®Xpect from them. For more information on any of these functions see the
On-line help.

o

Function

Example Script /_-'

fplot

f(t) =tsint, 0 <t < 107

fplot (*x.*sin(x)’, [0 10%pil)

Note that the function to be
plotted must be written as
a. function of x.

Output e

m—

" '

semilogx

=e b y=t 0<t<2w

"t=linspace(0,2*pi,200) ;

x = exp(-t); y = t;
semilogx(x,y), grid

semilogy

z=t, y==e ()§§t§§2q

t=linspace(0,2%pi,200);

. semilogy(t,exp(t))

grid

loglog

=€t y=100+ e?t, 0<t<or

t=linspace(0,2%pi,200);
x = exp(t);

y = 100+exp(2+*t);
loglog(x,y), grid

Example Script

. polar

r? =2sinbt, 0<t<2n

t=linspace(0,2%pi,200);
r=sqrt (abs(2*sin(5%t)));
polar(t,r)

W)' 6

Oul,pni,'

(24}

fill

r2 = 2sinbt, 0<t<2n

x = rcost, y=rsint

t=linspace(0,2%pi,200);
r=sqrt (abs(2*sin(5¥t)));
x=r.*cos(t);
y=r,*sin(t);
£fi11(x,y,’k’),
axis(’square’)

bar

2 = 2sinbt, 0<E<2W

y = rsint

t=linspace(0,2*pi,200);
r=sqrt(abs(2*sin(5*t)));
y=r.*sin(t);

bar(t,y)

axis([0 pi 0 infl);

errorbar

f approx 3!’
error = f approx
x=0:.1:2;

aprx2=x-x. 3/6;
er=aprx2—sin(x);

verrorbar(x,aprx2,er)

\

pction fxample Seript,

Fu e

Out o,

\

) ' ' I
Plot, of o pursinelric spmce curye:

w(h) = b, y(h) 1 4(l) = 1 s
P 04
Plotz 0 ' bzl A
t=1inﬂpace(0,1,100); 04
[l I

=t ; y=t."2; z=t."3; o).
plotS(x,y,z),grid |

A
‘/’/'

 — _
Plot of 4 filled polygons
with 3 vertices cach.

x=[0 0 0 0; 11 -1 1;
1 -1 -1 -1];

£1113 y=[0 0 0 O; 4 4 4 4;

4 4 4 4];

7=[0 0 0 0; 1 1 -1 -1;
111 -11;

fill3(X,Y,Z,rand(3,4))

view(120,30) ///_

es of

Plot of 3-D contour lin

| 5
| o3
z T2+ Y

| COntOur3
i linspace(—3,3,50);
[x,y] =meshg;rid(r,f; ;
=2 s

z=—5./(1+x.‘2+Y~

E contourB(z)

Function

Example Script

surf

» = COSX CosyEe
x| <5, |yl <9

ua = -5:.2:5;

[X,Y] = meshgrid(u, u);

7 = cos(X).*cos(Y) .*. ..
exp(—sqrt(X.‘2+Y.“2)/4);

surf (X,Y,Z)

-0.5 >

04

Output

surfc

—1/m2+y2
z = COST COSyYE€ 4

u = -5:.2:5;

[X,Y] = meshgrid(u, u);

7 = cos(X) .xcos(Y).*...
exp(-sqrt(X.“2+Y.“2)/4);

surfc(Z) | |

view(-37.5,20)

axis(’off’)

surfl

—z24y2
z = coszcosye &

lz| <5, |y|<5

u = -5:.2:5;

[X,Y] = meshgrid(u, u);

Z = cos(X) .*cos(Y) .*...
" exp(-sqrt(X."2+Y.72)/4);

surfl(Z)

shading interp

colormap hot

pesh

|

meshz

Example Script

Output,

—

9

1 +x2 + 92
|z <3, |yl <3

VA =

x = linspace(-3,3,50);
y =%

[x,y] = meshgrid(x,y);
5=-5./(1+x.72+y."2);
mesh (2z)

A\

I\
N

AR
AN
AW

TN

'\

\

\ i

\

2T S5
et
s
5K

()
0k

Y
\

1]
\/

Y/

N

¥l / "
\\\‘“\\\.{:“{';'%
\\\“}s:." ,"l 7
W N;O [

5!
S
lz| <3, lyl<3

' 1inspace(-3,3,50);

y =%
=gyl = meshgrid(x,y);

z=—5./(1+x.‘2+y.“2);

meshz (z)
view(-37.5, 50)

Vaterfall

5
IR e
S 1+ 22 + 92
| <3, vl <3

X = 1inspace(-3,3s50);

y =%

¥Ix,y).= meshgrid(x,y);
=—5./(1+x.“2+y.“2);
waterfall(z)

hidden off

30

.8

! \\:‘

80
SR
\\ O

\ \“‘ .0’0"

o
(X)

)

%

%
SIS
SOXXUHL
0.0, ""'l,,’l,,,
o
'l,/lll/l,’!

iy
pprt?’

50

Function

e

Sphere

Example Script

f”f—
A unit sphere centered at the

origin and generated by 3 matrices
z, y, and z of size 21 x 21 each.

sphere (20)

or
[x,y,z]=sphere(2o);

surf (x,¥,2)

ellipsoid

An ellipsoid of radii rz =1, 7y = 2
and 7z = 0.5, centered at the

origin.

cx=0; cy=0; ¢cz=0;
rx=1; ry=2;‘rz=0.5;
ellipsoid(cx,cy,cz,rx,ry,rz)

cylinder

A cylinder gerierated by

r = sin(3mz)+2

z=[0:.02:11";
r=sin(3*pi*z)+2;
cylinder(r)

Slice

Slices of the volumetric function
f(a:,y,z) = 1:2 +y2 —22

o] <3, gl <3 ol $3at 7=
and 2.5, y = 2.5, and z =10

v = [-3:.2:3];
[x,y,z]=meshgrid
f=(x.~2+y. 2-2.72);
xv=[-2 2.5]; yv=2.5i zv=0;
SIice(x,y,z,f,xv,yv,ZV);
view([-30 30])

(v,v,V);

The value of the function is indi-

cated by the color intensity- /__J

